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Abstract: A third-order aberration theory has been developed for the Offner imaging spectrometer
comprising an extended source; two concave mirrors; a convex diffraction grating; and an image
plane. Analytic formulas of the spot diagram are derived for tracing rays through the system based
on Fermat’s principle. The proposed theory can be used to discuss in detail individual aberrations of
the system such as coma, spherical aberration and astigmatism, and distortion together with the focal
conditions. It has been critically evaluated as well in a comparison with exact ray tracing constructed
using the commercial software ZEMAX. In regard to the analytic formulas, the results show a high
degree of practicality.
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1. Introduction

An imaging spectrometer can provide a simultaneous collection of spatial and spectral information
of targets with high resolution [1]. Currently, spectrometers have become an indispensable part of
many fields including satellite remote sensing, space exploration, security, environment assessment,
resource detection, agriculture, medicine, manufacturing, oceanography, and ecology [2–6].

The recent trend in imaging spectrometers is toward a simple set-up and a very compact
configuration with high optical performance over the whole spectral range of the system [7]. This can
be observed in the Offner imaging spectrometer with a concentric structure, using spherical optics.
This spectrometer is obtained by replacing the convex secondary mirror of the Offner imaging system
with a reflective convex diffraction grating [8]. It provides a high signal-to-noise ratio and small spot
sizes together with low spatial and spectral distortions [7–11]. Because diffraction occurs at the grating,
the perfect symmetry of the concentric configuration is altered, thereby increasing for example the
coma and astigmatism. Although good optical performance is maintained with the rapid development
of imaging spectrometers; more improvements need to be achieved to meet the dual demands for
higher spatial and spectral resolution.

There have been various attempts to optimize and design an aberration-correct Offner imaging
spectrometer. In 1999, Chrisp split the concave mirror into two concentric mirrors of different radii,
increasing the degrees-of-freedom of the system designs [12]. By changing the off-axis parameters,
tilting or decentering some elements, and making appropriate adjustments to the radii of the two
spherical mirrors, the optical quality of the system was optimized. In 2001, Xiang and Mikes proposed
an aberration-corrected spectrometer that included a convex diffraction grating having a number of
nonparallel lines [13]. They believed the curves of the convex grating provided the correction for
field aberrations. However, forming such a convex grating is difficult with the existing technology
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and theory. In 2006, Prieto-Blanco and coworkers presented an approach based on the calculation
of both the meridional and the sagittal images of an off-axis object point [5]. Making the meridional
and sagittal curves tangent to each other for a given wavelength results in a decrease in astigmatism.
In 2007, Robert analyzed the out-of-plane dispersion in an Offner spectrometer. When the dispersion
is perpendicular to the meridional plane, better performance is obtained for the system with a short
entrance slit [14]. In 2014, Prieto-Blanco and coworkers proposed a Wynne-Offner layout consisting
of a concave mirror and a concentric meniscus lens that included a diffraction grating at the center
of one of its surfaces [15–18]. All the above methods have described the effect of aberrations such
as astigmatism on the optical quality of the Offner spectrometer and how to optimize the system.
However, these methods are relatively singular-use solutions and are not widely used in developing a
system for different requirements [19,20].

In this paper, we propose a third-order geometric aberration theory of the Offner imaging
spectrometer to provide an alternative aberration-correction method. This method is an extension
and new application of Namioka’s theories [21–26]. Namioka and his team have shown aberration
theories based on the light path function for a single grating or a double-element system that can
correctly describe the individual aberrations and can be used to design an advanced optical system.
Taking an extended source into consideration, analytic formulas of the spot diagram and the individual
aberrations are derived for tracing rays through the system based on Fermat’s principle and Namioka’s
theories. With these formulas, aberrations including coma, aberration, astigmatism, and distortion
of the three-concentric-element (Offner) configuration are discussed in detail together with focal
conditions. Finally, the theory is critically evaluated in a comparison with exact ray tracing constructed
using the commercial software ZEMAX (Zemax software development company, bellevue, WS, USA).
The results indicate a high degree of validity of the analytic formulas.

2. Three-Concentric-Element (Offner) Optical System

We consider an Offner optical system that comprises a planar light source S, two concave mirrors
M1 and M2, a convex diffraction grating G, and an image plane Σ (Figure 1). In this system, the elements
are arranged in such a way that the normal axes to S at A0, to M1 at O1, to G at O, and to M2 at O2 lie
in a common plane called the meridional plane. The incident principal ray A0O1 is reflected by M1

toward O, and the reflected principal ray O1O of wavelength λ in the m1th order is diffracted by G
toward O2. The diffracted principal ray OO2 is then further reflected by M2. This reflected principal
ray of λ meets Σ at a point B0, which lies in the meridional plane as well. Here we assume that the
principal ray of wavelength λ is designed to end up in the center of the image plane Σ; and we assume
that the image plane Σ is perpendicular both to the reflected principal ray O2B0 and to the meridional
plane as well. The distances A0O1, O1O, OO2, and O2B0 are denoted by r1, r, r′, and r2, respectively.

For convenience, we introduce five rectangular coordinate systems attached to S, M1, G, M2, and Σ
(Figure 1). The origins are at A0, O1, O, O2, and B0, the XS, x1, x, x2, and X axes are the normal axes of
the respective elements, and the YS, y1, y, y2, and Y axes lie in the meridional plane. A general ray
originating from a source point A in S is reflected at a point Q1 on the surface of M1. The reflected ray
meets G at a point P on the nth groove of G, and the diffracted ray of wavelength λ in m-th order meets
M2 at a point Q2. The outgoing ray of wavelength λ from Q2 intersects Σ at a point B, forming a spot in
the image plane Σ. We designate the coordinates of A, Q1, P, Q2, and B by (0, s, z), (ξ1, ω1, l1), (ξ, ω, l),
(ξ2, ω2, l2), and (0, Y, Z) in the XSYSZS, x1y1z1, xyz, x2y2z2, and XYZ systems, respectively, and those of
A and B as well by (x1, y1, z1) and (x2, y2, z2) in the x1y1z1 and x2y2z2 system, separately. Here, x1 and
y1 are expressed as

x1 = r1 cos θ1 + s sin θ1, y1 = r1 sin θ1 − s cos θ1. (1)
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3. Ray-Tracing Formulas 

Figure 1. Schematic diagram of an Offner configuration and its coordinate systems.

We assume as well that the zeroth groove of G passes through O, and that the groove number n is
positive or negative according to whether the n-th groove passes through the y-axis on its positive or
negative side. The groove number n of G expressed in a power series of ω and l is given as [26]:

nλ0 = n10ω+
1
2
(n20ω

2 + n02l2 + n30ω
3 + n12ωl2) +

1
8
(n40ω

4 + 2n22ω
2l2 + n04l4) + . . . , (2)

where λ0 is the recording wavelength of G.
In this system shown in Figure 1, both the concave mirrors M1 and M2 and the convex grating G

are spherical in shape. The corresponding mathematical expression of the surface figure of Mi (or G) is
given by

(ξi −Ri)
2 +ωi

2 + li2 = Ri
2, (3)

where Ri (i = 1, 2 for M1 and M2, no suffix for G) is the radius of Mi or G. Equation (3) expanded as a
power series of ωi and li is:

ξi =
1

2Ri
ω2

i +
1

2Ri
l2i +

1
8R3

i

ω4
i +

1
4R3

i

ω2
i l2i +

1
8R3

i

l4i + O(
ω6

i

R3
i

). (4)

The angles of incidence θi and reflection/diffraction θi
′ of the principal ray at the vertices of Mi

(or G) are considered as positive or negative depending on whether the relevant principal ray lies in
the first or fourth quadrant of the xiyizi coordinate system. The angles θ and θ′ are related through the
grating equation,

σ(sin θ+ sin θ′) = mλ, (5)

where σ is the effective grating constant obtained by:

σ ≡ 1/(∂n/∂ω)ω=l=0 = λ0/n10, (6)

which can be referred to [26].
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3. Ray-Tracing Formulas

First, we denote the distances AQ1, Q1P, PQ2, and Q2B by q1, p1, q2, and p2, respectively. According
to Namioka’s theory, the application of Fermat’s principle to the light-path function for Mi,

FMi = qi + pi, (7)

yields the direction cosines (Li
′, Mi

′, Ni
′) of the reflected ray pi in terms of the direction cosines

(Li, Mi, Ni) of the incident ray qi and given system parameters:

L′i = Li + τi,
M′i = Mi − τi

(
∂ξi
∂ωi

)
,

N′i = Ni − τi
(
∂ξi
∂li

)
.

(8)

where all the quantities are defined in the xiyizi coordinate system. In Equation (8), we have

τi =
2[−Li + Mi(∂ξi/∂ωi) + Ni(∂ξi/∂li)]

1 + (∂ξi/∂ωi)
2 + (∂ξi/∂li)

2 , (9)

where i = 1, 2 for M1 and M2. Li, Mi, and Ni are obtained from the definition of the direction cosines of
the incident ray qi.

The intersecting point P (ξ, ω, l) is determined by solving simultaneously the equation of the ray
Q1P in the xyz coordinate system

ξ− ξ1

L
=
ω−ω1

M
=

l− l1
N

, (10)

and Equation (3) with i = 1. In Equation (10) (ξ1,ω11, l1) and (L, M, N) are the coordinates of the point
Q1 and the direction cosines of the ray Q1P, which are both defined in the xyz coordinate system. They
are obtained by applying proper coordinate transformations to (ξ1,ω1, l1) and (L1

′, M1
′, N1

′).
Different from the above calculation for Mi, the application of Fermat’s principle to the light-path

function for G,
F = p1 + q2 + nmλ, (11)

yields the direction cosines (L′, M′, N′) of the diffracted ray PQ2 in terms of the direction cosines
(L, M, N) of the incident ray Q1P and given system parameters:

L′ = L + τ,
M′ = M + mλ

(
∂n
∂ω

)
− τ

(
∂ξ
∂ω

)
,

N′ = N + mλ
(
∂n
∂l

)
− τ

(
∂ξ
∂l

)
.

(12)

where all the quantities are defined in the xyz coordinate system. In Equation (12), we have

τ = 1
ρ

(
ν+

√
ν2 − κρ

)
,

ρ = 1 +
(
∂ξ
∂ω

)2
+

(
∂ξ
∂l

)2
,

ν = −L +
(
M + mλ ∂n

∂ω

)
∂ξ
∂ω +

(
N + mλ∂n

∂l

)
∂ξ
∂l ,

κ = 2mλ
(
M ∂n

∂ω + N ∂n
∂l

)
+ (mλ)2

[(
∂n
∂ω

)2
+

(
∂n
∂l

)2
]
.

(13)
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The intersecting point Q2 (ξ2, ω2, l2) is determined by solving simultaneously Equation (3) with
i = 2 and the equation of ray PQ2 in the x2y2z2 coordinate system,

ξ2 − ξ

L2
=
ω2 −ω

M2
=

l2 − l
N2

, (14)

where (ξ, ω, l) and (L2, M2, N2) are the coordinates of point P and the direction cosines of ray PQ2,
both defined in the x2y2z2 coordinate system. They are obtained by applying proper coordinate
transformations to (ξ,ω, l) and (L′, M′, N′).

The image plane Σ is expressed in the x2y2z2 coordinate system as

x2 cos θ′2 + y2 sin θ′2 = r2. (15)

Then, the intersection B of the reflected ray Q2B with the image plane Σ is determined by solving
the equation of the ray Q2B in the x

2y2z2 coordinate system,
x2 − ξ2

L′2
=

y2 −ω2

M′2
=

z2 − l2
N′2

, (16)

from which we obtain:

x2 = ξ2 + p2L′2, y2 = ω2 + p2M′2, z2 = l2 + p2N′2. (17)

By applying proper coordinate transformations to B (x2, y2, z2), the ray-traced spot B (0, Y, Z) in
the XYZ coordinate system is expressed as

Y = (r2 sin θ′2 − y2) sec θ′2, Z = z2. (18)

All the above equations presented in this section provide a complete set of ray-tracing formulas.

4. Analytic Expression of Spot Diagrams and Aberrations

The imaging characteristics of the three-concentric-element optical system may be analyzed
numerically using ray tracing. Although ray tracing provides accurate spot diagrams with comparative
ease, it lacks the ability to give explicit analytical expressions for the focal condition and individual
aberrations of the system under consideration. According to Namioka’s theory, we express the
relationship between the coordinates of a source point and its image by expanding the ray-tracing
formulas given in Section 3 into power series of ω1, l1, and the coordinates of A0 in the XSYSZS system.
In this way—although laborious—a third-order aberration theory is developed for the system, which
has a high degree of validity.

Taking the expansion of the coordinates of point P as an example, we determine its position in
the xyz coordinate system by finding the intersection of ray Q1P with the grating blank surface. We
express ω and l in a power series of ω1

hl1izjsk (h + i + j + k ≤ 3) under assumptions of:

ω =
3∑

h+i+ j+k=1

Ahijkω
h
1li1z jsk, l =

3∑
h+i+ j+k=1

Bhijkω
h
1li1z jsk. (19)

To determine ω and l, we derive first the direction cosines (L, M, N) as power series of ω1, l1, s
and z by expanding their definitions:

L =
ξ− ξ1

p1
, M =

ω−ω1

p1
, N =

l− l1
p1

, (20)
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as

L =
3∑

h+i+ j+k=1

(
Hhijk

)
L
ωh

1li1z jsk,

M =
3∑

h+i+ j+k=1

(
Hhijk

)
M
ωh

1li1z jsk,

N =
3∑

h+i+ j+k=1

(
Hhijk

)
N
ωh

1li1z jsk.

(21)

where coefficients (Hhijk)L, (Hhijk)M, and (Hhijk)N are functions of R1, r, θ1, and θ only.
Next, we adopt another approach to expand the direction cosines of the ray Q1P in terms of L1

′,
M1
′, and N1

′:

L′ =
3∑

h+i+ j+k=1

(
Hhijk

)′
Lω

h
1li1z jsk,

M′ =
3∑

h+i+ j+k=1

(
Hhijk

)′
Mω

h
1li1z jsk,

N′ =
3∑

h+i+ j+k=1

(
Hhijk

)′
Nω

h
1li1z jsk.

(22)

where the coefficients (Hhijk)L
′, (Hhijk)M

′, and (Hhijk)N
′ are functions of R1, r1, θ1, and θ only. We obtain

coefficients Ahijk and Bhijk by equating coefficients (Hhijk)L, (Hhijk)M, and (Hhijk)N of Equation (21) to the
corresponding ones, (Hhijk)L

′, (Hhijk)M
′, and (Hhijk)N

′ of Equation (22), which determines the coefficients
Ahijk and Bhijk uniquely. Therefore, the coordinates of the intersecting point P in terms of ω1, l1, s and
z are

ω = A1000ω1 + A0001s + A2000ω
2
1 + A1001ω1s + A0002s2 + A0200l21

+ A0110l1z + A0020z2 + A3000ω
3
1 + A2001ω

2
1s + A1200ω1l21 + A1110ω1l1z

+ A1020ω1z2 + A1002ω1s2 + A0201l21s + A0111l1zs + A0021z2s + A0003s3,
(23)

l = B0100l1 + B0010z + B1100ω1l1 + B1010ω1z + B0101l1s + B0011zs + B2100ω
2
1l1

+ B2010ω
2
1z + B1101ω1l1s + B1011ω1zs + B0300l31 + B0210l21z + B0120l1z2

+ B0102l1s2 + B0012zs2 + B0030z3.
(24)

Explicit expressions of Ahijk and Bhijk that are applicable to spherical mirror M1 are given in [24].
This expansion method for the coordinates of P is used as well to derive power series expressions

of the coordinates of Q2 and those of B in the x2y2z2 and XYZ coordinate system, respectively. Then,
the coordinates (0, Y, Z) of the ray-traced spot B formed in the image plane Σ, which are determined
through Equations (15) to (18), are finally expressed as power series in ω1

hl1izjsk,

Y = E1000ω1 + E0001s + E2000ω
2
1 + E1001ω1s + E0002s2 + E0200l21 + E0110l1z

+ E0020z2 + E3000ω
3
1 + E2001ω

2
1s + E100ω1l21 + E1110ω1l1z + E1020ω1z2

+ E1002ω1s2 + E0201l21s + E0111l1zs + E0021z2s + E0003s3 + OE(κ
′4),

(25)

Z = F0100l1 + F0010z + F1100ω1l1 + F1010ω1z + F0101l1s + F0011zs + F2100ω
2
1l1

+ F2010ω
2
1z + F1101ω1l1s + F1011ω1zs + F0300l31 + F0210l21z + F0120l1z2

+ F0102l1s2 + F0012zs2 + F0030z3 + OF(κ
′4).

(26)

These two equations are the spot-diagram formulas for the three-concentric optical system. κ′4

represent the aberration terms ω1
hl1izjsk with h + i + j + k ≥ 4. OE and OF denote the higher-order

terms in the aberration coefficients. The coefficients Ehijk and Fhijk are the aberration coefficients, and we
express them in terms of Ahijk, Ahijk

′, Ahijk”, Bhijk, Bhijk
′, and Bhijk” in Appendices A and B. Here Ahijk

′,
Ahijk”, Bhijk

′, and Bhijk” are defined as:

A′hijk = Ahijk
∣∣∣r1→r,r→r′,θ→θ2,R→R2,ε1→ε ,

B′hijk = Bhijk
∣∣∣r1→r,r→r′,θ→θ2,R→R2,ε1→ε ,

(27)
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A′′ hijk = A′hijk
∣∣∣r→r′,r′→r2,θ2→0,R2→∞,ε→ε2 ,

B′′ hijk = B′hijk
∣∣∣r→r′,r′→r2,θ2→0,R2→∞,ε→ε2 ,

(28)

where r1 → r, for example, indicates replacement of r1 in Ahijk and Bhijk by r. In Equation (27), ε1

represents all the parameters with a subscript 1, except r1, in coefficients Ahijk and Bhijk, and ε stands
for the corresponding parameters with no subscript in Ahijk

′ and Bhijk
′.

5. Analysis of Focal Conditions and Aberrations

For demonstrating various aberrations curves in the next section and evaluating the spot-diagram
formulas, we adopt a well-designed and optimized Offner imaging spectrometer as a model. The values
of the specific parameters are listed in Table 1; here, the signs of the values are determined by the
sign convention.

Table 1. Parameters of the model Offner imaging spectrometer.

Parameter Value

Spectral range/nm 380–900
Radius of M1/mm 220
Radius of G/mm 112.2
Radius of M2/mm 216.85
Dimension of slit/mm2 0.025 × 12
Aperture of M1/mm2 65 × 65
Aperture of G/mm2 30 × 30
Constant of G/mm−1 0.01
Diffraction order of G −1
∠O1OO2 50.66◦

5.1. Focal Conditions

When the first-order aberration coefficients E1000 and F0100 are made zero, a configuration with
the appropriate instrument parameters is obtained. In such a configuration, the paraxial rays in the
meridional or sagittal plane are brought into focus, greatly reducing the aberration of the system.
The conditions E1000 = 0 and F0100 = 0 give the meridional and sagittal focal curves, respectively.

5.1.1. Meridional Focal Condition

The meridional focal condition E1000 = C1000 A1000 + C0001 = 0 is expressed as

2(F1)20(F∗)20 =
cos2 θ′1 cos2 θ

r2 , 2(F)20(F2∗)20 =
cos2 θ′ cos2 θ2

r′2
, (29)

where (F∗)20 is the value of (F)20 at r′ = (r”)M, and ()20 is the value of (F2∗)20 at r2 = (r2
′)M. The focal

distances r′ = (r”)M and r2 = (r2
′)M that satisfy Equation (29) are called the meridional focal distances

of G and M2 respectively. (F1)20, (F)20, and (F2)20 are defined as

(F1)20 = cos2 θ1
2r1

+ cos2 θ′1
2r −

2 cosθ1
R1

,

(F)20 = cos2 θ
2r + cos2 θ′

2r′ −
cosθ+cosθ′

R + (n)20Π,

(F2)20 = cos2 θ2
2r′ + cos2 θ′2

2r2
−

2 cosθ2
R2

(30)

Hence, Equation (29) reduces to:

2(F1)20 =
cos2 θ′1

r
−

cos2 θ′1

(r′1)M
, (F)20 =

cos2 θ

r
−

cos2 θ

(r)M
, (31)
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(F)20 =
cos2 θ′

r′
−

cos2 θ′

(r′′ )M
, 2(F2)20 =

cos2 θ2

r′
−

cos2 θ2

(r2)M
, (32)

where the meridional focal conditions for M1, G, and M2 are expressed, separately. In Equation (31),
(r1
′)M is the meridional focal distance of M1, giving the object distance of G in the meridional plane

as (r)M = r − (r1
′)M. Similarly, the object distance of M2 in the meridional plane is obtained from

Equation (32) as (r2)M = r′ − (r”)M. We then obtain the meridional focal distance of the Offner optical
system by solving Equations (30) to (32).

5.1.2. Sagittal Focal Condition

We present the sagittal condition F0100 = D0010 + D0100 B0100 = 0 as

2(F1)02(F
∗)02 =

1
r2 , 2(F)02(F2

∗)02 =
1

r′2
, (33)

where (F*)02 is the value of (F)02 at r′ = (r”)S, and (F2
*)02 is the value of (F2)02 at r2 = (r2

′)S. The focal
distances r′ = (r”)S and r2 = (r2

′)S that satisfy Equation (33), are called the sagittal focal distances of G
and M2, respectively. (F1)02, (F)02, and (F2)02 are defined by

(F1)02 = 1
2r1

+ 1
2r −

2 cosθ1
R1

,
(F)02 = 1

2r +
1

2r′ −
cosθ+cosθ′

R + (n)02Π,
(F2)02 = 1

2r′ +
1

2r2
−

2 cosθ2
R2

.
(34)

Similar to obtaining the meridional focus, we resolve Equation (33) into:

2(F1)02 =
1
r
−

1
(r′1)S

, (F)02 =
1
r
−

1
(r)S

, (35)

(F)02 =
1
r′
−

1
(r′′ )S

, 2(F2)02 =
1
r′
−

1
(r2)S

, (36)

which represent the sagittal focal conditions for the three elements of the system. Likewise, we obtain
the object distances of G and M2 in the sagittal plane in the form (r)S = r − (r1

′)S and (r2)S = r′ − (r”)S.
Here (r1

′)S in Equation (35) is the sagittal focal distance of G. Therefore, the sagittal focal distance of
the system is given by solving Equations (34) and (35).

For a real point source and a real image, the system shown in Figure 1 is capable of making the
tangential and sagittal focal points to coincide, yielding non-astigmatic image when (r2

′)M = (r2
′)S is

satisfied. Failure to meet the condition leads to the astigmatic aberration.

5.2. Aberration Analysis

Next, we introduce the polar coordinates

ω1 = rp cosα, l1 = rp sinα, (37)

in the entrance pupil centered at the vertex O1 of M1.

5.2.1. Spherical Aberration

In the ray-tracing formulas, spherical aberration is described by

Ysph = E3000ω
3
1 + E1200ω1l21, Zsph = F0300l31 + F2100ω

2
1l1, (38)
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which can be changed into:

Ysph = rp(E3000 cos2 α+ E1200 sin2 α) cosα, Zsph = rp(E3000 sin2 α+ E1200 cos2 α) sinα. (39)

The spherical aberration curves of the model optical system for the center wavelength (Figure 2)
are more complicated than common circular patterns of a centered lens system.
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Figure 2. Spherical aberration curves for λ = 700 nm of the model optical system in the meridional
focal plane: (a) with rp = 30, 25, 20, 15 mm and (b) with rp = 30 mm (each inset is an enlargement of a
central portion of the curve).

The spherical aberration curve is a circle of rp
3E3000 only when E3000 = E1200 = F0300 = F2100 is met.

This condition is satisfied by an axially symmetric centered Offner optical system, which is the same as
both a single mirror and a centered double-mirror system, yielding a concentric circular pattern for
various values of rp.

5.2.2. Coma

The coma of the concentric Offner optical system under consideration is expressed by:

Ycoma = E2000ω
2
1 + E2010ω

2
1z + E0210l21z + E1101ω1l1s,

Zcoma = F1100ω1l1 + F2001ω
2
1s + F1110ω1l1z + F0201l21s

(40)

Substitution of Equation (37) into Equation (40) yields:

a
{

2Ycoma
r2 − [E2000 + s(E2001 + E0201)]

}2
+ b

{
2Zcoma

r2 − z(F2010 + F0210)
}2

−2h
{

2Ycoma
r2 − [E2000 + s(E2001 + E0201)]

}{
2Zcoma

r2 − z(F2010 + F0210)
}
= c2,

(41)

where
a = (F1100 + sF1101)

2 + z2(F2010 − F0210)
2,

b = [E2000 + s(E2001 − E0201)]
2 + z2E2

1110,
c = (F1100 + sF1101)[E2000 + s(E2001 − E0201)] − z2E1110(F2010 − F0210),
h = z

{
E1110(F1100 + sF1101) + (F2010 − F0210)[E2000 + s(E2001 − E0201)]

}
.

(42)

With Equation (41) describing an ellipse, the model optical system produces elliptical patterns for
different values of rp (Figure 3).
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5.2.3. Astigmatism

Astigmatism is an image defect caused by two mutually perpendicular line images, one at (r2
′)M

and the other at (r2
′)S. Astigmatism of the concentric Offner optical system is represented by:

Yast = E0001s + E0200l21 + E0110l1z + E0020z2,
Zast = F0100l1 + F0010z.

(43)

which transforms to

Yast = E0200

[
Zast

F0100
+

(
E0110

2E0200
−

F0010

F0100

)
z
]2

+

E0020 −
E2

0110

4E0200

z2 + E0001s. (44)

The astigmatic curves obtained from the model optical system appear as crescent-shaped patterns
(Figure 4).
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5.2.4. Distortion

Distortion is the deviation between the actual image height and the ideal image height of the
chief ray originating from a source point (0, s, z) and passing through the vertex O1. In the ray-tracing
formulas, the distortion is expressed as

Ydist = E0001s + E0020z2 + E0002s2 + E0021z2s + E0003s3,
Zdist = F0010z + F0011zs + F0030z3 + F0012zs2.

(45)

which manifests as a barrel-like structure from the model optical system (Figure 5). Because of the use
of a very narrow slit illuminant, the distortions are visible in the Z direction and not in the Y direction.
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6. Analysis of Diagram and Discussion

In Section 5, the evaluation of individual aberrations in the model optical system was presented
using aberration curves, facilitating a better understanding of the imaging properties of the Offner
system. More importantly, such an evaluation method helps to design and optimize the Offner system
with an aberration-correction convex grating for different requirements.

However, before adopting the spot diagram formulas (25) and (26) in the design of an Offner
system and its grating, the equations need to be critically evaluated in a comparison with exact
ray-tracing. Here we compare spot diagrams computed from Equations (25) and (26) with those
determined by the exact ray tracing using ZEMAX configured with a model Offner system equipped
with a holographic convex grating.

Because of the large z value and a relatively small s value in the model system, a portion of the
spot diagram was constructed for various fields where we set z = 0, 0.6, and 6 mm with s = 0 without
loss of generality. All the diagrams in Figures 6 and 7 were constructed by generating 20000 rays of
wavelength 700 nm covering the whole field of view. Spot diagrams in (a) and (b) were constructed for
the selected point source presented in Figure 6, using the spot-diagram formulas and by ray tracing
using ZEMAX, respectively. Clearly, the spot diagrams in (a) and (b) are similar in shape, but there are
some deviations in size and position—especially in the Z direction; see Figure 6c.

The standard deviations σY and σZ of the spots in the Y and Z directions (Figure 6a,b) illustrate the
similarity in spot shape. The difference between the standard deviations of corresponding individual
spots is smaller than 0.4 µm in the Y direction and 0.65 µm in the Z direction. Nearly the same
dispersion tendency is seen depending on the system aberrations for the spot diagrams generated by
both the present theoretical model and the simulation model of ZEMAX.

Figure 7a shows the deviations of individual spots obtained by the spot-diagram formulas from
the corresponding ideal image points (0,0,0), (0,0,0.6) and (0,0,6). Figure 7b shows the deviations of
individual spots generated by ray tracing using ZEMAX from the corresponding ideal image points.
The deviations between ideal image points and spots from a simulation model (such as the theoretical
simulation model or the ZEMAX simulation model) depend on both the system aberrations and
model errors. The root-mean-squares RMS∆Y and RMS∆Z of the deviations are given in the respective
diagrams. Here, distinctions between the individual corresponding spots in Figure 7a,b—both in size
and position—are mainly determined by different model errors. However, the difference between
RMS∆Y and RMS∆Z of the spots in Figure 7a,b is smaller than 0.4 µm in the Y direction and 0.7 µm in
the Z direction. Therefore, the present theoretical model is similarly as useful as the ZEMAX model
in designing and optimizing the Offner optical system. Certainly, supplemented by the fourth- and



Sensors 2019, 19, 4046 12 of 18

higher-order aberration terms into the spot diagram formulas (25) and (26), more exact theoretical
model may be developed.Sensors 2019, 19, x FOR PEER REVIEW 13 of 23 
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Figure 7. ∆Y - ∆Z plots constructed for the model optical system at λ = 700 nm. (a) deviations, ∆Y -
∆Z, of individual spots in Figure 6a from the corresponding ideal image points (0,0,0), (0,0,0.6) and
(0,0,6); (b) deviations, ∆Y - ∆Z, of individual spots in Figure 6b from the corresponding ideal image
points (0,0,0), (0,0,0.6) and (0,0,6).

7. Conclusions

In this paper, a more practical method is adopted, comparing the theoretical simulation model
with the simulation model provided by the commercial software ZEMAX, and offers great practicality.
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A third-order aberration geometric theory was developed for tracing rays through the Offner
imaging spectrometer comprising an extended source, two concave mirrors, a convex diffraction grating,
and an image plane based on Fermat’s principle. The proposed theory provides analytic formulas
for individual aberrations and spot diagrams. Following on from Namioka’s work, aberrations were
analyzed and certain aberration curves were illustrated for a corresponding model optical system.
The validity of the theoretical model was evaluated in a comparison with a simulation model provided
by the commercial software ZEMAX and that of an actual model optical system. The results indicate
the proposed theoretical model has great utility and practicality.
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Appendix A. Aberration Coefficients Chijk and Dhijk

C1000 = A1000
′A1000

′′ + A0001
′′ cos θ′, (A1)

C0001 = A0001
′A1000

′′ cos θ1
′, (A2)

C2000 = A2000
′A1000

′′ + A1000
′2A2000

′′ + A1000
′A1001

′′ cos θ′ + A0002
′′ cos2 θ′ −A0001

′′ sin θ′

×

(
1

2R −
cosθ′

r′ −
A1000

′ cosθ2
r′

)
,

(A3)

C1001 = A1001
′A1000

′′ cos θ1
′ + 2A0001

′A1000
′A2000

′′ cos θ1
′ + A0001

′A1001
′′ cos θ1

′ cos θ′

+
A0001

′A1000
′′ sinθ1

′ cosθ
r +

A0001
′A0001

′′ cosθ1
′ sinθ′ cosθ2

r′ ,
(A4)

C0200 = A0020
′′ + A0200

′A1000
′′ + A0110

′′B0100
′ + A0200

′′B0100
′2
−

A0001
′′ sin θ′

2R
, (A5)

C0110 = A0110
′A1000

′′ + A0110
′′B0010

′ + 2A0200
′′B0010

′B0100
′, (A6)

C0020 = A0020
′A1000

′′ + A0200
′′B0010

′2
−

A0001
′A1000

′′ sin θ1
′

2R1
, (A7)

C0002 = A0002
′A1000

′′ cos2 θ1
′ + A0001

′A1000
′′

(
sin θ1

′ cos θ1
′

r
−

sin θ1
′

2R1

)
+ A0001

′2A2000
′′ cos2 θ1

′, (A8)

C3000 = A3000
′A1000

′′ + 2A1000
′A2000

′A2000
′′ + A1000

′3A3000
′′ + A2000

′A1001
′′ cos θ′

+ A1000
′2A2001

′′ cos θ′ + A1000
′A1002

′′ cos2 θ′ + A0003
′′ cos3 θ′ −

(
1

2R −
cosθ′

r′
)

×

(
r3A1000

′ cosθ′ cos2 θ2 secθ2
′

r′2 + A1000
′A1001

′′ sin θ′ + 2A0002
′′ sin θ′ cos θ′

+
A0001

′′ sin2 θ′

r′

)
−

A1000
′2A0001

′′ sinθ′ sinθ2
2R2r′ +

A0001
′′ cos2 θ′

2Rr′ + sinθ′ cosθ2
r′

×

(
A2000

′A0001
′′ + A1000

′2A1001
′′

)
−

r2A1000
′

r′3

(
cos2 θ2 sec θ2

′ + sinθ′ cos θ′ cos3 θ2

× sec2 θ2
′ tan θ2

′
)
+

A1000
′ sinθ′ sinθ2 cosθ2

r′2

(
A1000

′A0001
′′ −

2r2 cosθ′ secθ2
′

r′
)
,

(A9)

C1110 = A1110
′A1000

′′ + 2A0110
′A1000

′A2000
′′ + A1000

′A1110
′′B0010

′ + 2A1000
′A1200

′′B0010
′B0100

′

+ A0110
′′B1010

′ + 2A0200
′′B0100
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′ + 2A0200

′′B0010
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′′ cos θ′
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′′B0010
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′′ sinθ′ cosθ2
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−
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′ sinθ′
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(
2A0020

′′ −A0110
′′ + 2A0110

′′B0100
′ +
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′′ B0100

′ sinθ2
R2

)
,

(A10)
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C2001 = A2001
′A1000

′′ cos θ1
′ + 2A1000

′A1001
′A2000

′′ cos θ1
′ + 2A0001

′A2000
′A2000

′′ cos θ1
′

+ 3A0001
′A1000

′2A3000
′′ cos θ1

′ + A1001
′A1001

′′ cos θ1
′ cos θ′ + 2A0001

′A1000
′A2001

′′

× cos θ1
′ cos θ′ + A0001

′A1001
′′ sinθ1

′ cosθ cosθ′
r +

A1001
′A1000

′′ sinθ1
′ cosθ

r
+

2A0001
′A1000

′A2000
′′ sinθ1

′ cosθ
r +

A0001
′A1000

′′ sinθ1
′ sinθ

r

(
1

2R −
cosθ

r

)
−

(
r2A0001

′ cosθ1
′ cosθ′ cos2 θ2 secθ2

′

r′2 + A0001
′A1001

′′ cos θ1
′ sin θ′

)(
1

2R

−
cosθ′

r′
)
−

2A0001
′A1000

′A0001
′′ cosθ1

′ sinθ′ sinθ2
r′ ×

(
1

2R2
−

cosθ2
r′

)
+ A0001

′A1002
′′ cos θ1

′ cos2 θ′ + sinθ′ cosθ2
r′ (A1001

′A0001
′′ cos θ1

′ + 2A0001
′A1000

′

×A0001
′′ cos θ1

′) +
A0001

′A0001
′′ sinθ1

′ cosθ sinθ′ cosθ2
rr′ −

r2A0001
′ cosθ1

′

r′3

× cos θ2 sec θ2
′
(
cos θ2 + sin θ′ cos θ′

(
2 sin θ2 + cos2 θ2 sec θ2

′ tan θ2
′
))

,

(A11)

C1200 = A1200
′A1000

′′ + A1000
′A1020

′′ + 2A0200
′A1000

′A2000
′′ + A1000

′A1110
′′B0100

′

+ A1000
′A1200

′′B0100
′2 + A0110

′′B1100
′ + 2A0200

′′B0100
′B1100

′ + A0200
′A1001

′′ cos θ′

+ A0111
′′B0100

′ cos θ′ + A0201
′′B0100

′2 cos θ′ + A0021
′′ cos θ′ − A0001

′′

2Rr′

×

(
1−A1000

′ cos θ′ cos θ2 − 2 cos2 θ′
)
+ sinθ′

r′ (2A0020
′′ − 2A0020

′′B0100
′

+A0110
′′B0100

′
−A0110

′′B0100
′2 + A0200

′A0001
′′ cos θ2

)
−

sinθ′
2R (A1000

′A1001
′′

+2A0002
′′ cos θ′) − A0001

′′ B0100
′2 sinθ′ sinθ2

2R2r′ ,

(A12)

C1020 = A1020
′A1000

′′ + 2A1000
′A0020

′A2000
′′ + A1000

′A1200
′′B0010

′2 + 2A0200
′′B0010

′B1010
′

+ A0020
′A1001

′′ cos θ′ + A0201
′′B0010

′2 cos θ′ − A0001
′A1001

′′ sinθ1
′ cosθ′

2R1

−
A1000

′A0001
′A2000

′′ sinθ1
′

R1
−

A1001
′A1000

′′ sinθ1
′

2R1
+

A0001
′A1000

′′ cosθ1
′ cosθ

2R1r

−
sinθ′

r′
(A0001

′A0001
′′ sinθ1

′ cosθ2
2R1

+ A0110
′′B0010

′2
−A0020

′A0001
′′ cos θ2

+
A0001

′B0010
′2 sinθ2

2R2

)
,

(A13)

C0021 = A0021
′A1000

′′ cos θ1
′ + 2A0001

′A0020
′A2000

′′ cos θ1
′ + A0001

′A1200
′′B0010

′2 cos θ1
′

−
sinθ1

′ cosθ1
′

R1

(
A0001

′2A2000
′′ + A0002

′A1000
′′

)
−

A0001
′A1000

′′

2R1r

(
1− 2 cos2 θ1

′
)

+
2A0020

′A1000
′′ sinθ1

′

r + 2A0200
′′B0010

′
(
−

r2 sinθ1
′

r2 + B0011
′ cos θ1

′
)
,

(A14)

C1002 = A1002
′A1000

′′ cos2 θ1
′ + A0001

′2A2001
′′ cos2 θ1

′ cos θ′ + 3A0001
′2A1000

′A3000
′′ cos2 θ1

′

+ A0002
′A1001

′′ cos2 θ1
′ cos θ′ + 2A1000

′A0002
′A2000

′′ cos2 θ1
′ + 2A0001

′A1001
′A2000

′′ cos2 θ1
′

−

(
1

2R1
−

cosθ1
′

r

)
×

(
r2A1000

′′ cosθ1
′ cos2 θ secθ′ secθ3

r2 + A1001
′A1000

′′ sin θ1
′

)
−

r2A1000
′′ secθ′ secθ2

r3

(
cos2 θ+ sin θ1

′ cos θ1
′
(
2 sin θ cos θ+ Γ2 cos3 θ sec θ′

))
+

(
2A1000

′A0001
′A2000

′′ + A0001
′A1001

′′ cos θ′ + A0001
′A0001

′′ sinθ′ cosθ2
r′

)
×

(
sinθ1

′ cosθ1
′

r

−
sinθ1

′

2R1

)
+ 2A0001

′2A2000
′′ sinθ1

′ cosθ1
′ cosθ

r + sinθ′ cosθ2
r′

(
A0002

′A0001
′′ cos2 θ1

′

+A0001
′2A1001

′′

)
−

A0001
′2A0001

′′ cos2 θ1
′ sinθ′ sinθ2

r′ ×

(
1

2R2
−

cosθ2
r′

)
,

(A15)

C0201 = A0201
′A1000

′′ cos θ1
′ + A0001

′A1020
′′ cos θ1

′ + 2A0001
′A0200

′A2000
′′ cos2 θ1

′ + A0001
′A1110

′′

× B0100
′ cos θ1

′ + A0110
′′B0101

′ cos θ1
′ + A0001

′A1200
′′B0100

′2 cos θ1
′ + 2A0200

′′B0100
′B0101

′

× cos θ1
′
−

A1000
′′ sinθ1

′

r2

(
A0110

′ + A0001
′ sinθ

2R

)
+ r2 sinθ1

′

r2 (A0110
′ + 2A0200

′′B0100
′)

+ A0001
′ cosθ1

′

2R

(
A0001

′′ cosθ′ cosθ2
r′ −A1001

′′ sin θ′
)
,

(A16)

C0111 = A0111
′A1000

′′ cos θ1
′ + 2A0001

′A0110
′A2000

′′ cos θ1
′ + A0001

′A1110
′′B0010

′ cos θ1
′ + 2A0001

′

×A1200
′′B0010

′B0100
′ cos θ1

′ + A1000
′′ sinθ1

′

r (−2A0020
′ + A0110

′) + 2r2A0200
′′ B0010

′ sinθ1
′

r2

+ (A0110
′′ + 2A0200

′′B0100
′)
(
−

r2 sinθ1
′

r2 + B0011
′ cos θ1

′
)
+ 2A0200

′′B0010
′B0101

′ cos θ1
′,

(A17)

C0003 = A0003
′A1000

′′ cos3 θ1
′ + A0001

′3A3000
′′ cos3 θ1

′ + 2A0001
′A0002

′A2000
′′ cos3 θ1

′

+
A0001

′A1000
′′ cos2 θ1

′

2R1r −
A0001

′A1000
′′ sin2 θ1

′

r ×

(
1

2R1
−

cosθ1
′

r

)
+

(
1

2R1
−

cosθ1
′

r

)
×

(
2 sin θ1

′ cos θ1
′
(
A0002

′A1000
′′ + A0001

′2A2000
′′

))
,

(A18)
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D0100 = B0100
′B0100

′′
−

r2

r′
, (A19)

D0010 = B0010
′B0100

′′ , (A20)

D1100 = B1100
′B0100

′′ + A1000
′B1010

′′ + A1000
′B0100

′B1100
′′ + B0011

′′ cos θ′

+ B0100
′B0101

′′ cos θ′ − r2 sinθ′

r′2 (1− B0100
′),

(A21)

D1010 = B1010
′B0100

′′ + A1000
′B0010

′B1100
′′ + B0010

′B0101
′′ cos θ′ +

r2B0010
′ sin θ′

r′2
, (A22)

D0101 = B0101
′B0100

′′ cos θ1
′ + A0001

′B1010
′′ cos θ1

′ + A0001
′B0100

′B1100
′′ cos θ1

′ +
r′B0100

′′ sin θ1
′

r2 , (A23)

D0011 = B0011
′B0100

′′ cos θ1
′ + A0001

′B0010
′B1100

′′ cos θ1
′
−

r′B0100
′′ sin θ1

′

r2 , (A24)

D2100 = B2100
′B0100

′′ + A2000
′B1010

′′ + A2000
′B0100

′B1100
′′ + A1000

′B1100
′B1100

′′ + B0100
′B0102

′′ cos2 θ′

+ A1000
′2B0100

′B2100
′′ + B1100

′B0101
′′ cos θ′ + B0012

′′ cos2 θ′ + A1000
′B1011

′′ cos θ′

+ A1000
′2B2010

′′ + A1000
′B0100

′B1101
′′ cos θ′ + r2B1100

′ sinθ′

r′2 − B0100
′B0101

′′ sin θ′

×

(
1

2R −
cosθ′

r′
)
−

r2(1−B1100
′)

r′2 ×

(
sin2 θ′

r′ + A1000
′ sinθ′ sinθ2

r′ + cosθ′
2R

)
+ A1000

′ sinθ′
r′ (B1010

′′
− B0100

′B1010
′′ +B0100

′B0101
′′ cos θ2),

(A25)

D2010 = B2010
′B0100

′′ + A2000
′B0010

′B1100
′′ + A1000

′B1010
′B1100

′′ + A1000
′2B0010

′B2100
′′

+ B1010
′B0101

′′ cos θ′ + A1000
′B0010

′B1101
′′ cos θ′ + B0010

′B0102
′′ cos2 θ′

−
B0010

′B0101
′′ sinθ′

2R +
r2B0010

′ sinθ′

r′3 (sin θ′ + A1000
′ sin θ2)

+
r2B0010

′ cosθ′

2Rr′2 +
r2B1010

′ sinθ′

r′2 −
B0010

′ sinθ′
r′ (A1000

′B1010
′
− B0101

′′

× cos θ′ − A1000
′B0101

′′ cos θ2),

(A26)

D1101 = B1101
′B0100

′′ cos θ1
′ + A1000

′B0101
′B1100

′′ cos θ1
′ + A0001

′B0100
′B1101

′′ cos θ1
′ cos θ′

+ A1001
′B0100

′B1100
′′ cos θ1

′ + A0001
′B1100

′B1100
′′ cos θ1

′ + 2A0001
′A1000

′B2010
′′ cos θ1

′

+ 2A0001
′A1000

′B0100
′B2100

′′ cos θ1
′ + A0001

′B1011
′′ cos θ1

′ cos θ′ + A1001
′B1010

′′ cos θ1
′

+ B0101
′B0101

′′ cos θ1
′ cos θ′ + B0100

′′ sinθ1
′

r

(
−B1010

′ + B0101
′ cos θ+ r′ sinθ

r2

)
+ A0001

′ sinθ1
′ cosθ

r (B1010
′′ + B0100

′B1100
′′ ) + (A1000

′B1100
′′ + B0101

′′ cos θ′)

×
r′ sinθ1

′

r2 + A0001
′ cosθ1

′ sinθ′
r′ (B1010

′
− B0100

′B1010
′′ + B0100

′B0101
′′ cos θ2)

+ sinθ′
r′2

(
r′r2 sinθ1

′

r2 + r2B0101
′ cos θ1

′
−

r2A0001
′ cosθ1

′ sinθ2
r′ (1− B0100

′)
)
,

(A27)

D1011 = A0001
′B1010

′B1100
′′ cos θ1

′ + A1001
′B0010

′B1100
′′ cos θ1

′ + A1000
′B0011

′B1100
′′ cos θ1

′

+ B1011
′B0100

′′ cos θ1
′ + B0011

′B0101
′′ cos θ1

′ cos θ′ + A0001
′B0010

′B1101
′′ cos θ1

′ cos θ′

+ 2A0001
′A1000

′B0010
′B2100

′′ cos θ1
′ + sinθ1

′

r (B1010
′B0100

′′ + A0001
′B0010

′B1100
′′ cos θ)

−
r′ sinθ1

′

r2 (A1000
′B1100

′′ + B0101
′′ cos θ′) − r′

r3

(
sin θ+ cos2 θ sec θ′ tan θ2

)
× B0100

′′ sin θ1
′
−

A0001
′B0010

′ cosθ1
′ sinθ′

r′ (B1010
′′
− B0101

′′ cos θ2) +
r2 sinθ′

r′2

×

(
−

r′ sinθ1
′

r2 + B0011
′ cos θ1

′ + A0001
′B0010

′ cosθ1
′ sinθ2

r′
)
,

(A28)

D0300 = B0300
′B0100

′′ + B0100
′B0120

′′ + B0100
′2B0210

′′ + B0100
′3B0300

′′ + A0200
′B0100

′B1100
′′

+ A0200
′B1010

′′ −
1

2R

(
B0100

′B0120
′′ sin θ′ + r2 cosθ′

r′2 (1− B0100
′)
)
,

(A29)

D0300 = B0300
′B0100

′′ + B0100
′B0120

′′ + B0100
′2B0210

′′ + B0100
′3B0300

′′ + A0200
′B0100

′B1100
′′

+ A0200
′B1010

′′ −
1

2R

(
B0100

′B0120
′′ sin θ′ + r2 cosθ′

r′2 (1− B0100
′)
)
,

(A30)

D0120 = B0120
′B0100

′′ + A0110
′B0010

′B1100
′′ + A0020

′B0100
′B1100

′′ + B0010
′2B0210

′′ + A0020
′B1010

′′

+ 3B0100
′B0010

′2B0300
′′
−

sinθ1
′

2R1
(B0101

′B0100
′′ + A0001

′(B1010
′′ + B0100

′B1100
′′ ))

−
r′B0100

′′ cosθ1
′

2R1r2 ,
(A31)
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D0102 = A0001
′2B2010

′′ cos2 θ1
′ + A0001

′2B0100
′B2100

′′ cos2 θ1
′ + A0002

′B1010
′′ cos2 θ1

′

+ A0001
′B0101

′B1100
′′ cos2 θ1

′
−

1
2R1

(
B0100

′B2100
′′ sin θ1

′
−

r′B0100
′′ cosθ1

′

r2

)
+ B0102

′B0100
′′ + A0002

′B0100
′B1100

′′ cos2 θ1
′ +

r′A0001
′B1100

′′ sinθ1
′ cosθ1

′

r2

+
( sinθ1

′ cosθ1
′

r −
sinθ1

′

2R1

)
(A0001

′B1010
′′ + A0001

′B0100
′B1100

′′ ),

(A32)

D0030 = B0100
′′

(
B0030

′
−

r′ cos θ1
′

2R1r2

)
+ B0010

′
(
B0010

′2B0300
′′ + A0020

′B1100
′′

)
−

A0001
′B0010

′B1100
′′ sin θ1

′

2R1
, (A33)

D0012 = B0012
′B0100

′′ cos2 θ1
′ + A0002

′B0010
′B1100

′′ cos2 θ1
′ + A0001

′2B0010
′B2100

′′ cos2 θ1
′ + A0001

′B0011
′

× B1100
′′ cos2 θ1

′ + r′
r2

(
B0100

′′

((
1

2R1
−

2 cosθ1
′

r

)
sin θ1

′ cos θ sec θ′ tan θ2 −
cosθ1

′

2R1

−
sin2 θ1

′

r

)
−A0002

′B1100
′′ sin θ1

′ cos θ1
′

)
+ A0001

′B0010
′B1100

′′

( sinθ1
′ cosθ1

′

r −
sinθ1

′

2R1

)
.

(A34)

Appendix B. Aberration Coefficients Ehijk and Fhijk

E1000 = A1000C1000 + C0001, (A35)

E0001 = A0001C1000, (A36)

E2000 = A2000C1000 + A1000
2C2000 + A1000C1001 + C0002, (A37)

E1001 = A1001C1000 + 2A0001A1000C2000 + A0001C1001, (A38)

E0200 = A0200C1000 + B0100
2C0200 + B0100C0110 + C0020, (A39)

E0110 = A0110C1000 + 2B0100B0010C0200 + B0010C0110, (A40)

E0020 = A0020C1000 + B0010
2C0200, (A41)

E0002 = A0002C1000 + A0001
2C2000, (A42)

E3000 = A3000C1000 + 2A1000A2000C2000 + A2000C1001 + A1000
3C3000 + A1000

2C2001 + A1000C1002 + C0003, (A43)

E2001 = A2001C1000 + 2A1000A1001C2000 + 2A0001A2000C2000 + A1001C1001

+ 3A0001A1000
2C3000 + 2A1000A0001C2001 + A0001C1002,

(A44)

E1200 = A1200C1000 + 2A1000A0200C2000 + A0200C1001 + 2B1100B0100C0200 + B1100C0110 + A1000C1020

+ A1000B0100
2C1200 + A1000B0100C1110 + B0100

2C0201 + B0100C0111 + C0021,
(A45)

E1110 = A1110C1000 + 2A1000A0110C2000 + A0110C1001 + 2B1010B0100C0200 + 2B1100B0010C0200 + B1010C0110

+ 2A1000B0010B0100C1200 + A1000B0010C1110 + 2B0010B0100C0201 + B0010C0111,
(A46)

E1020 = A1020C1000 + 2A1000A0020C2000 + A0020C1001 + 2B0010B1010C0200 + A1000B0010
2C1200 + B0010

2C0201, (A47)

E1002 = A1002C1000 + 2A1000A0002C2000 + 2A0001A1001C2000 + A0002C1001 + 3A1000A0001
2C3000

+ A0001
2C2001,

(A48)

E0201 = A0201C1000 + 2A0001A0200C2000 + 2B0101B0100C0200 + B0101C0110

+ A0001B0100
2C1200 + A0001B0100C1110 + A0001C1020,

(A49)

E0111 = A0111C1000 + 2A0110A0001C2000 + 2B0100B0011C0200 + 2B0010B0101C0200

+ B0011C0110 + 2A0001B0100B0010C1200 + A0001B0010C1110,
(A50)

E0021 = A0021C1000 + 2A0020A0001C2000 + 2B0010B0011C0200 + A0001B0010
2C1200, (A51)

E0003 = A0003C1000 + 2A0002A0001C2000 + A0001
3C3000, (A52)
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F0100 = D0010 + B0100D0100, (A53)

F0010 = B0010D0100, (A54)

F1100 = B1100D0100 + A1000B0100D1100 + A1000D1010 + B0100D0101 + D0011, (A55)

F1010 = B1010D0100 + A1000B0010D1100 + B0010D0101, (A56)

F0101 = B0101D0100 + A0001B0100D1100 + A0001D1010, (A57)

F0011 = B0011D0100 + A0001B0010D1100, (A58)

F2100 = B2100D0100 + A1000B1100D1100 + A2000B0100D1100 + A2000D1010 + A1000
2B0100D2100

+ B1100D0101 + A1000
2D2010 + A1000B0100D1101 + A1000D1011 + B0100D0102 + D0012,

(A59)

F2010 = B2010D0100 + A1000B1010D1100 + A2000B0010D1100 + B1010D0101 + A1000
2B0010D2100

+ A1000B0010D1101 + B0010D0102,
(A60)

F1101 = B1101D0100 + A1000B0101D1100 + A0001B1100D1100 + A1001B0100D1100 + A0001B0100D1101

+ B0101D0101 + A1001D1010 + 2A1000A0001B0100D2100 + 2A1000A0001D2010 + A0001D1011,
(A61)

F1011 = B1011D0100 + A1000B0011D1100 + A0001B1010D1100 + A1001B0010D1100

+ B0011D0101 + 2A1000A0001B0010D2100 + A0001B0010D1101,
(A62)

F0210 = B0210D0100 + A0110B0100D1100 + A0200B0010D1100 + A0110D1010 + 3B0010B0100
2D0300

+ 2B0100B0010D0210 + B0010D0120,
(A63)

F0300 = B0300D0100 + A0200B0100D1100 + A0200D1010 + B0100
3D0300 + B0100

2D0210 + B0100D0120 + D0030, (A64)

F0120 = B0120D0100 + A0110B0010D1100 + A0020B0100D1100 + A0020D1010 + 3B0100B0010
2D0300 + B0010

2D0210, (A65)

F0102 = B0102D0100 + A0001B0101D1100 + A0002B0100D1100 + A0002D1010 + A0001
2B0100D2100 + A0001

2D2010, (A66)

F0030 = B0030D0100 + A0020B0010D1100 + B0010
3D0300, (A67)

F0012 = B0012D0100 + A0002B0010D1100 + A0001B0011D1100 + A0001
2B0010D2100, (A68)
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