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Abstract: Among the existing wireless indoor positioning systems, UWB (ultra-wideband) is one of
the most promising solutions. However, the single UWB positioning system is affected by factors
such as non-line of sight and multipath, and the navigation accuracy will decrease. In order to make
up for the shortcomings of a single UWB positioning system, this paper proposes a scheme based
on binocular VO (visual odometer) and UWB sensor fusion. In this paper, the original distance
measurement data of UWB and the position information of binocular VO are merged by adaptive
Kalman filter, and the structural design of the fusion system and the realization of the fusion algorithm
are elaborated. The experimental results show that compared with a single positioning system,
the proposed data fusion method can significantly improve the positioning accuracy.
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1. Introduction

In an indoor environment, obtaining the location and orientation of a moving vehicle is an
important part of the autonomous navigation of indoor vehicles. In some occasions where high indoor
positioning accuracy is required, a high-precision optical motion capture system [1] can be selected,
which can provide centimeter-level positioning accuracy. However, it is costly and complicated in
structure, and has high requirements for layout and installation in an indoor scene, so it cannot be
widely used in the field of vehicle interior positioning. The inertial navigation system (INS) can provide
positioning information for the vehicle both indoors and outdoors, but its positioning accuracy is
directly proportional to the manufacturing cost. For the inertial navigation system used in the vehicle,
its positioning error will accumulate over time, and it cannot provide long-term reliable positioning for
the vehicle [2]. With the development of digital image processing technology and advances in the fields
of high-performance processors and CCD (charge-coupled device) sensors, vision-based odometer
technology has gradually become a research hotspot in the field of navigation. The visual odometer
estimates the pose of the camera by analyzing and processing the sequence of images between adjacent
frames. Similar to the IMU (inertial measurement unit), its positioning error will also drift, which is
not suitable for long-term positioning navigation [3].

In recent years, wireless indoor positioning systems have become more and more popular, and IPS
(indoor positioning systems) can provide global positioning information for indoor mobile vehicles.
Existing wireless positioning systems include RFID (radio frequency identification) [4], WIFI [5],
ZigBee [6], and so on. Although RFID is low in cost and compact in structure, it is less affected by
non-line of sight [7], however, it has a small scope of work, does not have communication capabilities,
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and requires a large amount of infrastructure to accurately locate. WIFI is easily interfered by mobile
devices, resulting in poor positioning accuracy, so it is not suitable for indoor positioning of vehicles.
In the indoor environment, ZigBee has low positioning accuracy due to the influence of the building
structure [8]. Compared with the above wireless positioning scheme, ultra-wideband (UWB) [9]
is one of the most promising indoor positioning technologies. UWB has the characteristics of low
power consumption and high bandwidth, and can transmit a large amount of data with low energy
consumption. At the same time, UWB has strong penetrating power, which can reduce multipath
interference and provide higher positioning accuracy [10]. Bastida-Castillo et al. used UWB technology
to track the position of athletes and compare them with GPS (global positioning system) technology.
Experiments show that UWB is more accurate than GPS in determining distance and measuring
average speed [11]. In contrast, UWB can not only accurately estimate the player’s position on the court,
but also because of the automatic and portable features of UWB, it is very suitable for tactical analysis
and measurement [12]. Bastida-Castillo et al. also verified that the UWB positioning system has strong
reliability, and the use of different devices does not have a significant impact on measurement error [13].
In order to feedback potential dangers to road users, especially cyclists, Davide et al. [14] proposed a
positioning system based on UWB technology. Bicycles were equipped with low-cost, low-complexity
active tags and HMIs (human machine interfaces), and reference nodes were placed at intersections
(infrastructure-based architecture) or vehicles (vehicle-based architecture). The results show that even
in the harsh propagation environment, sub-meter positioning accuracy and good tracking ability can
be achieved. Considering that UWB has the above characteristics, this paper chooses the UWB-based
fusion system as the indoor positioning scheme for mobile vehicles.

2. Related Work

If the UWB positioning system wants to achieve high-precision positioning performance, it needs
to work in a limited indoor scene. However, in practical applications, the indoor environment is
affected by complex factors such as building structure and scene distribution. UWB faces problems such
as non-line of sight (NLOS) and multipath, which causes the positioning accuracy of the UWB system
to be impaired. In order to overcome the shortcomings of the single UWB positioning method, relevant
literature based on UWB multi-sensor fusion has emerged to improve the accuracy of navigation
and positioning.

The existing UWB integration scheme generally considers the use of an inertial navigation system
(INS) to meet the positioning requirements by blending data information from the INS. Hol et al. [15]
proposed a tight coupling method based on UWB and inertial sensors to estimate the position and
attitude of 6DOF (degree of freedom). They used accelerometers, gyroscopes, and time of arrival (TOA)
measurements directly for sensor fusion, rather than the filtered position or acceleration. Experiments
show that even with multipath and non-line of sight, the tightly coupled system can still obtain robust
and accurate positioning results. However, the experimental mileage is shorter and the positioning
accuracy in height is poor. In order to solve the delay and low bandwidth problem caused by the UWB
constant speed hypothesis, Li et al. [16] proposed an Extended Kalman Filter (EKF)-based algorithm
to fuse the inertial measurement unit (IMU) and UWB, in which the state vector of EKF takes into
account the acceleration deviation in three directions. Experiments showed that this method can
significantly improve the positioning accuracy and reduce the delay. However, in practical applications,
it is difficult to obtain accurate IMU acceleration deviation, and when the MAV (Micro Air Vehicle)
is landing, the IMU measurement will produce an abnormality, and the positioning performance of
the fusion system relying on the acceleration information will be significantly reduced. Benini et
al. [17] used the UbiSense UWB real-time positioning system and the low-cost IMU to perform the
fusion by the Biased Extended Kalman Filter (BEKF). In order to improve the positional accuracy, the
deviation and scale factor of the accelerometer and the gyroscope were also considered. However,
the fusion algorithm does not use the original measurement data of UWB, but uses the estimated
three-dimensional coordinates (x, y, z) of the UWB system as the observation of the Kalman filter.
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In order to overcome the shortcomings of UWB and IMU, Yao et al. [18] merged the two by extending
the Kalman filter (EKF). The UWB was used to calibrate or estimate the IMU error, while the IMU was
used to detect and isolate the damaged UWB sensor data to improve overall positioning performance.

In recent years, applications that use monocular or stereoscopic information to blend other sensors
to improve positioning have become more common. Among them, visual aid UWB was used to
improve the estimation accuracy of helicopter landing missions [19], Hoeller et al. integrated sensor
measurement information to learn and compensate for the deviation of the UWB positioning system.
In the case of visual impairments, this compensation bias could be used to improve the accuracy of the
task. However, the article uses a visual method based on planar artificial markers, and the vision is
mainly used to assist UWB to improve the estimation accuracy of helicopter landing missions. Tiemann
et al. [20] used the data of the monocular SLAM (Simultaneous Localization and Mapping) system
to enhance UWB positioning performance. Since the position estimation of the monocular SLAM
has no global reference information and scale factor, the article used UWB position information to
estimate and optimize those unknown parameters to achieve automatic flight of the UAV (Unmanned
Aerial Vehicle) in the area where the wireless positioning was not covered. However, the method
proposed in the article needs to be equipped with a highly networked architecture, and frequent
information exchange between systems is required. Benini et al. [21] fused low-cost IMU, UWB, and
visual information through EKF, but the visual odometer is used to detect the marked pictures near the
UAV proximity area, and the fusion method is mainly used to improve the local positioning effect of
the micro drone. Due to the scale uncertainty of the monocular visual odometer, it is impossible to
provide an accurate global reference position for indoor autonomous navigation [20]. Compared to
monocular, the binocular scheme can calculate depth information to provide more accurate positioning
results [22]. Therefore, the main work of this paper is to use the position information of the binocular
visual odometer (VO) to integrate with UWB to improve the positioning accuracy of UWB indoors.

The structure of this paper is as follows: Section 3 introduces the principle of UWB ranging and
positioning. Section 4 first introduces the depth calculation principle of the binocular camera, and then
briefly describes the feature-based binocular visual mileage calculation method. Section 5 describes
the structural design of the fusion system of UWB and binocular VO, and then describes the modeling
process of the fusion algorithm. Section 6 introduces the configuration of the experimental hardware
and the construction of the experimental platform, then analyzes the experimental results. Section 7
summarizes the fusion algorithm proposed in this paper.

3. UWB (Ultra-Wideband) Positioning System

The UWB positioning system consists of a tag and several anchor sensors. The process of obtaining
the three-dimensional coordinates of the tag sensor generally consists of two parts: (1) use the TOF
(time of flight) ranging method to obtain the distance between the tag and anchors, and (2) calculate
the coordinates of the tag using the trilateration method [23] or the least squares method [24] based on
the measured distance.

3.1. UWB Ranging Principle

The TOF ranging method belongs to the two-way ranging technology, which mainly uses the
propagation time of signals between two asynchronous receivers to measure the distance between
nodes. Since the distance obtained by the TOF ranging technology is linear with the signal propagation
time, the distance measurement result of the method is more accurate in an ideal viewing environment.

The ranging method of the UWB module used in this paper is the two way-time of flight (TW-TOF),
and its ranging principle is shown in Figure 1. When two modules are started, each module generates
an independent timestamp. Module A’s transmitter transmits a requested pulse signal to module B
on its timestamp Ta1, then module B receives the signal at its own timestamp Tb1. Module B in turn
transmits a response signal to module A at a time Tb2, and module A receives the signal at a time
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Ta2. According to the propagation time of the pulse signal between the two modules, the distance D
between the two modules can be calculated by Equation (1), where C represents the speed of light.
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D = C ∗ [(Ta2 − Ta1) − (Tb2 − Tb1)]/2 (1)

3.2. UWB Positioning Principle

In order to obtain the three-dimensional coordinates of the tag, this paper requires 4 anchor
sensors to be used together. According to the positioning relationship of the anchors and the label
shown in Figure 2, the distance Formula (2) is as follows:√

(x0 − xu)
2 + (y0 − yu)

2 + (z0 − zu)
2 = d0√

(x1 − xu)
2 + (y1 − yu)

2 + (z1 − zu)
2 = d1√

(x2 − xu)
2 + (y2 − yu)

2 + (z2 − zu)
2 = d2√

(x3 − xu)
2 + (y3 − yu)

2 + (z3 − zu)
2 = d3

(2)

where, xi, yi, zi(i = 0, 1, 2, 3) represents the known position of the 4 anchor points in the coordinate
system, and (xu, yu, zu) represents the position of the label in the coordinate system, the position of
which is unknown.
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It can be seen from the above formula that although there are four equations in Equation (2),
there are only three unknowns, and an accurate solution cannot be obtained. Therefore, we can use
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the iterative method and the least squares method to estimate the optimal solution (x̂, ŷ, ẑ) of the
tag position.

(x̂, ŷ, ẑ) = min
(xu,yu,zu)

∑3

i=0

[
di −

√
(xi − xu) + (yi − yu) + (zi − zu)

]2
(3)

Since Equation (2) is a nonlinear system of equations, the common solution is to linearize it. The
above Equation (3), can be simplified to Equation (4), where i = 0, 1, 2, 3:

di =

√
(xi − xu)

2 + (yi − yu)
2 + (zi − zu)

2 (4)

Linearize this equation and get the result as Equation (5):

∆d = H∆x (5)

where, ∆d and ∆x are vectors and H is a matrix, which respectively represent the following meanings:

∆d =
[
δd0 δd1 δd2 δd3

]T
(6)

∆x =
[
δxu δyu δzu

]T
(7)

H =


x0−xu

d0

y0−yu
d0

z0−zu
d0

x1−xu
d1

y1−yu
d1

z1−zu
d1

x2−xu
d2

y2−yu
d2

z2−zu
d2x3−xu

d3

y3−yu
d3

z3−zu
d3

 (8)

Since H is not a square matrix, its inverse matrix cannot be directly solved. In Equation (5), there
are four equations in the linear equations, more than the unknowns, which can be solved by the least
squares method. By solving the pseudo inverse matrix for H, the solution of the system of equations
can be obtained:

δx =
[
HTH

]−1
HTδd (9)

4. Visual Odometer (VO)

In the field of computer vision and mobile robotics, vision-based odometer technology has been
widely used. The technique can obtain the 6-degree-of-freedom motion (position, attitude) of the
camera by analyzing and processing the sequence of adjacent frame images, and restore the spatial
structure of the scene. Visual odometers typically use a monocular camera or a binocular camera
solution. Since the image acquired by the monocular camera lacks depth information, there is an
uncertain scale factor for the motion trajectory of the monocular visual odometer. Compared to
the monocular visual odometer, the stereo vision odometer can recover the depth information by
the sequence of images acquired by the left and right cameras, so the stereo vision odometer can
estimate the exact trajectory. Therefore, the camera used in this article is a binocular RGB (red, green,
blue) camera.

4.1. Binocular Camera Depth Calculation Principle

This section focuses on the principle of binocular cameras restoring scene depth. A binocular
camera is generally composed of horizontally mounted left and right cameras, and the optical axes
of the two cameras are parallel to each other. Ideally, the imaging model of both cameras can be
regarded as a pinhole imaging model. The distance between the two cameras’ optical centers, OL
and OR, is called the baseline of the binocular camera (Baseline, denoted as b), and the focal length
parameters of the cameras are the same. As shown in Figure 3 below, there is a point P in space, and the
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imaging points of the left and right cameras are PL and PR, respectively. Since the two cameras are only
displaced in the horizontal direction (X direction), the imaging points PL and PR are also different only
in the X direction. We mark the coordinate of PL on the X-axis of the left-eye camera imaging plane as
xL (which is a positive number), and PR is the coordinate mark of the right-eye camera imaging plane
X-axis as xR (which is a negative number). According to the triangle similarity principle, ∆PPLPR and
∆POLOR have similar relationships, as follows:

z− f
z

=
b− xL + xR

b
(10)

Organize the above formula to get:

z =
f b
d

, d = xL − xR (11)

In the formula, d represents the difference between the abscissas of the left and right image points,
called Disparity. As can be seen from Equation (11), the disparity d is inversely proportional to the
distance z, the larger the disparity, the smaller the measured distance. Considering the limit case,
when the disparity is only one pixel size, at this time, the depth measured by the binocular camera
has a theoretical maximum value zmax, and zmax is finally determined by fb. In general, the longer the
baseline of the two cameras, the farther the maximum distance the binocular camera can measure.
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According to the above, if you want to calculate the distance from the space point P to the camera
(depth z), you must know:

(1) Camera focal length f and camera baseline b. These two parameters can generally be obtained by
camera calibration.

(2) Disparity d, the corresponding relationship between the imaging points x and y of the left and
right cameras in the space is the core problem of the binocular visual odometer.

4.2. Pose Estimation

In the binocular visual odometer system, the binocular camera simultaneously acquires the left and
right sequence images at each moment. The left eye image sequence is: Imle f t

0,k =
{
Imle f t

0 , . . . , Imle f t
k

}
,

and the right eye image sequence is: Imright
0,k =

{
Imright

0 , . . . , Imright
k

}
. The camera coordinate system is
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as shown in Figure 4, in which the camera coordinate O0 whose initial time is 0 is taken as the global
coordinate. The relative positional transformation of the two cameras at adjacent time k − 1, k can be
represented by matrix: Tk−1,k ∈ R4×4, and the specific form is as follows:

Tk−1,k =

[
Rk−1,k tk−1,k

0 1

]
(12)

where Rk−1,k ∈ R3×3 represents the rotation matrix of the relative positions of the two cameras, and
tk−1,k ∈ R3×1 represents the translation matrix. Assuming that the current time is tc, the pose Etc relative
to the initial time k = 0 can be obtained by Tk−1,k(k = 1, . . . , tc) cumulative transformation. The specific
formula is as follows:

Etc =
tc∏
1

Tk−1,k (13)
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Feature point-based methods [25] have always been the mainstream solution in the field of visual
odometers. The program runs stably, is not sensitive to illumination and dynamic targets, and is
widely used in engineering fields. The feature point-based binocular visual odometer system generally
includes the following steps:

Initialization:

(1) Perform feature point detection on the left and right images;
(2) Stereo matching the feature points;
(3) Triangulation method to restore depth.
(4) New left and right image sequence:
(5) Perform feature point detection and matching on the new left and right images, and calculate the

depth by using the triangulation method;
(6) Feature matching of images of the previous frame and the current frame;
(7) The pose is solved using the calibrated camera parameters based on the calculated depth and the

already matched feature points.

In the visual odometer, the feature points are generally extracted, tracked, matched, and screened,
and the poses are estimated by the already matched feature points. Although the classic SIFT
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(scale-invariant feature transform) and SURF (speeded up robust features) feature point extraction
algorithms are better, the calculation is very large, and the binocular camera was used in the experiment.
The data processing capacity was significantly larger than that of the monocular camera. Therefore,
we used the ORB (Oriented FAST and Rotated BRIEF) feature point extraction algorithm [26] with
less computation and better real-time performance. In this paper, since the number of detected
feature points may be very large in actual scenarios, the Fast Approximate Nearest Neighbor (FLANN)
algorithm [27] was used to match feature points and improve real-time performance. The images of
the experimental scene taken by the Zed camera were extracted and matched by the feature points, as
shown in Figure 5. In general, visual-based odometer systems will experience cumulative drift and
will not provide long-term reliable positioning for indoor vehicles. This is because the visual odometer
generally estimates only the relative motion relationship between the current frame and the previous
frame image. The position, velocity, and attitude errors calculated at the current time will be passed to
the next moment. After a period of time, the estimated trajectory will no longer be accurate.
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5. Data Fusion Strategy

According to the above content, due to multipath effects, non-line of sight (NLOS) and other
factors, the UWB system alone cannot provide stable, reliable, and accurate positioning information for
indoor mobile vehicles. The binocular visual odometer can obtain the 6-degree-of-freedom movement
(position, attitude) of the camera, and obtain the relative positioning information of the moving vehicle.
However, the positioning error will accumulate over time and cannot provide long-term reliable
positioning for indoor moving vehicles. In order to overcome the shortcomings of the above two
positioning schemes, this paper intends to integrate UWB and the binocular visual odometer. After
fusing, UWB can correct the cumulative error produced by the binocular visual odometer, while
the binocular visual odometer can also smooth the UWB measurement data and compensate for the
deficiencies caused by multipath.

5.1. System Structure Design

Referring to the fusion scheme of UWB and other sensors, a tightly coupled or loosely coupled
approach can be used. In the loose coupling method, the UWB raw distance measurement is first
obtained by triangulation or least squares to obtain the position estimate, then, the UWB position
estimate is used as data to integrate with other sensors [28]. In contrast to loose coupling, the tight
coupling method directly uses the original TOA measurement for each anchor point [15,29]. Since the
loose coupling method requires pre-processing of the UWB raw measurement data, in some cases,
the UWB information is lost. With a tightly coupled approach, we can make the most of the available
information for UWB. Therefore, for UWB and the binocular visual odometer, this paper adopts the
tight coupling method.

Sensor information fusion methods mainly include: weighted average method, Kalman filter,
Bayesian reasoning, neural network, and other algorithms. Although the weighted average method is
simple and intuitive, it is difficult to obtain an optimal weighted average, and it takes a lot of time to
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calculate the optimal weighted average. The information in Bayesian inference in multi-sensor fusion
is described as probability distribution, which requires prior probability and likelihood function, and
the analysis and calculation is very complicated. The neural network algorithm trains and adjusts the
weight of the network according to the input data samples, however, the neural network requires a
large amount of data and has poor real-time performance.

The Kalman filter generally uses a linear system state equation, combined with other input
information and observation data, to optimally estimate the state of the system. The Kalman filter
requires the estimated value of the system state at the previous moment and the observation information
at the current time to estimate the optimal value of the current state. Because the Kalman filter is easy
to program and can process and update the data collected in the field in real time, it is widely used in
the engineering field.

The system model and the measurement model of the fusion algorithm in this paper can be
determined, and the system model is linear, so we use the linear Kalman filter. Since the system
model and noise characteristics have an impact on the performance of the Kalman filter, in practical
applications, the statistical properties of the noise are difficult to obtain. Based on the above, this paper
uses the Adaptive Kalman Filter, which can dynamically estimate the system noise covariance matrix
Q and the observed noise covariance matrix R.

The UWB/binocular VO data fusion system structure designed in this paper is shown in Figure 6.
The data information of the UWB system is the original distance measurement dUWB

i (i = 0, 1, 2, 3),
and the measurement information is the TOF distance from the UWB tag to the four anchor points.
However, the feature-based binocular visual odometer can obtain the relative position with depth
information, but it cannot output the distance of four anchor points like the UWB system, and needs
further processing. The relative position of the binocular VO system solution is converted into a
distance measurement similar to the UWB system, which generally requires two steps. Step 1: since
the binocular VO obtains the relative position information of the carrier, it needs to be converted
into global position coordinates. Step 2: Calculate the Euclidean distance of the binocular VO global
position coordinates to the four anchor points based on the known x, y, z direction coordinates of the
anchors. The Euclidean distance dVO

i (i = 0, 1, 2, 3) finally obtained is the distance measurement of the
binocular VO.

According to the illustrated fusion system structure, after obtaining the distances of UWB and
binocular VO respectively, the error amount ∆di of dUWB

i and dVO
i , is used as the measurement input

of the Adaptive Kalman Filter. ∆di represents the optimal state estimate after filtering, which will
feed back the distance measurement of the binocular VO. The corrected binocular VO distance dVO

i is
solved by least squares, and the final global position of the fusion system can be obtained.
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5.2. Filtering Algorithm Model

In the Kalman filter used in this paper, the system state equation is as follows:

xk = Axk−1 + wk (14)

where, xk represents the system state vector of the fusion system at time k, and A represents the state
transition matrix from time k − 1 to time k. wk represents system noise, and the noise satisfies the
Gaussian white noise wk ∼ N(0,Q). The specific definition of xk is as follows, representing the error of
the carrier tag to the distance of four anchor points, and the state transition matrix A is the identity
matrix diag(1,1,1,1).

xk = [∆d0 ∆d1 ∆d2 ∆d3]
T (15)

The measurement equation for the fusion system is:

zk = Hxk + vk (16)

where, zk is the observation vector of the fusion system at time k, and H is the observation matrix. vk
represents observation noise, and the noise satisfies the Gaussian white noise vk ∼ N(0,R). The specific
definition of zk is as follows, representing the difference between the distance dVO

i of the binocular
VO solution and the TOF distance dUWB

i of the UWB system. The observation matrix H is an identity
matrix diag(1,1,1,1).

zk =
[
dVO

0 − dUWB
0 dVO

1 − dUWB
1 dVO

2 − dUWB
2 dVO

3 − dUWB
3

]T
(17)

According to the variable parameters defined above, the complete adaptive Kalman filter prediction
process is as follows. Where x̂k−1 represents the optimal estimate of the state at time k− 1, and x̂k,k−1
represents the predicted value of the state at time k obtained from the system state equation. Pk−1

represents the covariance matrix of the error between the updated value of the state and the true value
at time k− 1. Pk,k−1 represents the covariance matrix of the error between the predicted value and the
true value of the state at time k.

x̂k,k−1 = Ax̂k−1 (18)

vk = zk −Hx̂k,k−1 (19)

V̂k =
1
k

k∑
i=1

vivi
T (20)

Qk = Kk−1V̂kKk−1
T (21)

Pk,k−1 = APk−1AT + Qk (22)

The complete adaptive Kalman filter update process is as follows, where Kk represents the Kalman
gain matrix, Kk represents the optimal estimate of the state at time k, and Pk represents the covariance
matrix of the error between the updated and the true value at time k. In the iterative process, the system
noise covariance matrix Qk and the observed noise covariance matrix Rk are dynamically updated.

Rk = V̂k −HPk,k−1HT (23)

Kk = Pk,k−1HT[HPk,k−1HT + Rk]
−1

(24)

x̂k = x̂k,k−1 + Kkvk (25)

Pk = (I −KkH)Pk,k−1 (26)
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6. Experimental Study and Analysis of Results

In this section, two experiments were performed to verify the performance of the proposed data
fusion algorithm. First, we introduce the hardware configuration of the experiment, then, introduce
the experimental scenarios and steps. Finally, the experimental results are presented and discussed.
The experimental results show that the proposed binocular VO/UWB data fusion algorithm is superior
to the UWB positioning system alone.

6.1. Hardware Setup

The hardware platform used in this article is the NVIDA Jetson TX2 embedded development board.
The TX2 is a modular AI (artificial intelligence) supercomputer with NVIDA PascalTM architecture.
The TX2 is small, but powerful, energy efficient, and ideal for smart edge devices such as robots,
drones, smart cameras, and portable medical devices. The TX2 used in this article integrates the
Ubuntu16.04 system. The hardware settings are shown in Figure 7, and one end of the TX2 is connected
to a peripheral, such as a display.

The UWB hardware used in the experiment is equipped with the DW1000 module. The module
uses the STM32F103T8U6 MCU as the main control chip, including USB and serial port. The module can
be used as a base station or as a tag to switch via USB commands. The theoretical positioning accuracy
of the UWB system is about 15 cm, and the communication range is about 300 m. The binocular camera
used was a ZED stereo camera manufactured by Stereolabs, which can acquire the binocular RGB image
simultaneously and then calculate the depth on the computer by the binocular principle. The detected
maximum depth distance can reach 20 m. This article uses the Robotic Operating System (ROS) [30] to
connect components, because it provides a standard set of ROS interfaces and related communications.
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6.2. Analysis of Results

The experimental hardware platform was securely mounted on a wheeled cart that traveled along
a defined route. In order to obtain a real trajectory of driving, the experiment was carried out in a scene
equipped with an RTK (real-time kinematic) system. As shown in Figure 8, the experimental scene
was a rectangular open space with a length of about 11.6 m and a width of about 10.9 m. In order to
get an accurate Z-axis position, the experiment needed to set 4 anchor points (A0–A3). Among them,
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the height of A3 placement was preferably 1 m or 0.5 m higher than A0/A1/A2, and A0/A1/A2 were in
the same plane. The position parameters of each anchor point are shown in Table 1. The experiment
was performed twice in total, the trajectory of the first experiment was an approximately square closed
curve, and the second trajectory was an S-shaped curve.
Sensors 2019, 19, x FOR PEER REVIEW 13 of 22 
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Table 1. The global location information of anchors.

X (m) Y (m) Z (m)

Anchor 0 0 0 2.0
Anchor 1 11.6 0 2.0
Anchor 2 11.6 10.9 2.0
Anchor 3 0′ 10.9 2.5

In the first test, a wheeled cart equipped with a hardware platform produced an approximately
square closed curve. The original information such as the image sequence and UWB distance
measurement collected by the experiment was processed offline. According to the contents of
Sections 3–5, the UWB, binocular VO, and the merged driving path are compared as shown in Figure 9.
Since the wheeled cart was primarily traveling on a flat surface, Figure 9 shows only the paths along
the X and Y axes for ease of comparison. According to Figure 9, the actual path is obtained by the
RTK system and drawn with red lines as a reference. The other three paths are calculated using UWB,
binocular VO, and the Adaptive Kalman fusion algorithm.

As shown in Figure 9, the path obtained by the fusion algorithm proposed in this paper is closer
to the actual path than the path obtained by UWB and binocular VO independently. According to the
UWB system positioning principle, it can obtain the absolute positioning information of the vehicle.
The UWB positioning error does not diverge compared to the actual path. Although the depth of
binocular VO can be obtained by the binocular principle, it is not accurate enough and is smaller than
the actual depth information. At the same time, the trajectory of the binocular VO has a large drift,
the positioning error accumulates over time and cannot work alone for a long time. Comparing the
driving path, we can qualitatively analyze that the UWB/VO fusion algorithm proposed in this paper
not only has better positioning accuracy than single UWB positioning and binocular VO positioning,
but also smooths the UWB driving path.
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Figure 9. The comparison of trajectories in the X–Y plane.

In the second test, the wheeled cart produced an S-shaped curve. Figure 10 shows the path of the
S-shaped curve along the X and Y axes. As shown, the RTK trace represents the actual path and is
drawn with a red line as a reference. The other three paths represent the UWB, binocular VO, and
adaptive Kalman fusion algorithms, respectively. The UWB positioning error does not accumulate
compared to the actual path and the UWB path is closer to the actual path than the binocular VO path.
The depth information obtained by the binocular principle is smaller than the actual depth. At the
same time, the path of the binocular VO has cumulative drift, and the positioning accuracy decreases
with time. It is impossible to work alone for a long time. As shown in the second test results, the
UWB/VO tight coupling algorithm proposed in this paper is not only closer to the actual path than
the other two positioning methods, it can also smooth the UWB driving path and eliminate the glitch
generated by UWB.
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Figure 10. The comparison of trajectories in the X–Y plane.

Figure 11 represents the positional information of the UWB, binocular VO, and adaptive Kalman
fusion algorithms on the x and y axes, respectively. As shown in the figure, although the position of
the binocular VO is close to the actual position at the beginning, it gets worse and worse during the
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running because of the error accumulation. Although UWB did not perform well at the beginning,
it did not drift and the overall positioning performance was stable. The fusion algorithm is better
than the other two in the beginning, the driving process, and the ending phase. At the same time,
the location of the fusion algorithm is smoother than UWB.
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Figure 11. Position of different positioning methods in two directions.

Figure 12 shows the absolute position error of the UWB, binocular VO, and adaptive Kalman
fusion algorithms along the x and y axes. As shown in the figure, it can be observed that due to the drift
of binocular VO, the position error is significantly higher in the x and y directions than the other two
methods. The position error of a single UWB is between the other two methods. The UWB/binocular
VO fusion algorithm has less positional error than the other two in the beginning, driving, and ending
phases. In summary, the UWB/VO tight coupling algorithm proposed in this paper can not only
improve the positioning accuracy, but also smooth the UWB driving path and eliminate the glitch
generated by UWB. At the same time, it can also suppress the drift of the binocular VO to improve the
overall positioning performance.
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Figure 12. Position error of different positioning methods in X and Y directions.

We did a statistical analysis of the position error of UWB, binocular VO, and fusion algorithm,
and divided the position error of the three positioning methods along the x and y axes into eight
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intervals according to the order from small to large and then calculated the number of location points
in each interval. Finally, we plotted the stack histogram of the position error distribution. Figures 13
and 14 show the position error distribution of the three positioning methods in the x and y directions,
respectively. It can be observed that the location points of the fusion algorithm are mainly distributed in
the first interval which represents the smallest position error, and in the first interval, the number of the
location points of the fusion algorithm are significantly more than the other two positioning methods.
Moreover, the location points of the fusion algorithm and the single UWB positioning method are
mainly distributed in the first three intervals, while the single VO method is still distributed in other
intervals due to the cumulative error.
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Figure 14. Position error distribution histogram in the Y direction.

According to the histogram distribution, we calculated the percentage of the number of location
points in the first three intervals of the three positioning methods. As shown in Table 2, in the x
direction, the percentage of the number of location points of the fusion algorithm in the interval (0,
0.3729) was 70.20%, as shown in Table 3, in the y direction, the percentage of the fusion algorithm in
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the interval (0, 0.2757) was 64.42%, they are significantly larger than the other two positioning methods.
The above statistical analysis has also verified that the UWB/binocular VO fusion algorithm proposed
in this paper can effectively improve the positioning accuracy.

Table 2. Percentage of location points in the x direction.

Position Error (m) Fusing UWB Only
(Ultra-Wideband)

VO Only
(Visual Odometer)

(0, 0.3729) 70.20% 58.65% 23.08%
(0.3729, 0.7459) 5.77% 18.27% 40.38%
(0.7459, 1.1188) 5.77% 8.65% 2.88%

Table 3. Percentage of location points in the y direction.

Position Error (m) Fusing UWB Only
(Ultra-Wideband)

VO Only
(Visual Odometer)

(0, 0.2757) 64.42% 40.38% 32.69%
(0.2757, 0.5514) 20.19% 37.50% 3.85%
(0.5514, 0.8271) 13.46% 21.15% 2.88%

The error is analyzed by the concept of Cumulative Distribution Function (CDF). According to
Equation (27), the error distribution of the three positioning methods can be obtained by:

F(x) = P(X ≤ x) (27)

As shown in Figure 15, in addition to the VO positioning effect being better at the beginning
stage, in other stages, the positioning error of the fusion algorithm was significantly smaller than the
other two positioning methods in both the X direction and the Y direction. This also verifies that in
the indoor environment, the positioning scheme of the fusion algorithm can effectively improve the
positioning effect.Sensors 2019, 19, x FOR PEER REVIEW 20 of 22 
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As shown in Table 4, the average errors along the x and y axes of the UWB, binocular VO, and
fusion algorithms are listed separately. It can be observed that the average error of the fusion algorithm
was smaller than a single UWB and a single VO positioning method. Experiments show that compared
to a single UWB positioning system, the proposed fusion algorithm can improve the positioning
accuracy by 16% on the x-axis and 27% on the y-axis.

Table 4. Mean error of three positioning methods.

Mean Error Fusing UWB Only VO Only

X (m) 0.3993 0.4752 0.9405
Y (m) 0.2769 0.3786 0.9357

7. Conclusions

Because a single UWB positioning system is affected by factors such as non-line of sight and
multipath, it cannot meet the high precision requirements of vehicle interior positioning. This paper
proposed a sensor fusion scheme based on binocular VO (visual odometer)/UWB (ultra-wideband).
Firstly, the structural design of the fusion system was introduced. Then the fusion algorithm based
on the adaptive Kalman filter was elaborated. Finally, the experimental data of two sets of wheeled
carts were collected to verify the feasibility of the algorithm. The experiments show that the binocular
VO/UWB fusion method can significantly improve the positioning accuracy of mobile vehicles in
indoor environments compared to a single UWB positioning scheme and feature point-based binocular
visual mileage calculation. The proposed binocular VO/UWB tightly coupled localization algorithm is
of great significance to solve the problem of indoor positioning of mobile vehicles under the condition
that GPS cannot work normally.
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