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Abstract: For improving the performance of multiple-target detection in a colocated multiple-input
multiple-output (MIMO) radar system, a constant-modulus-waveform design method is presented
in this paper. The proposed method consists of two steps: simultaneous multiple-transmit-beam
design and constant-modulus-waveform design. In the first step, each transmit beam is controlled by
an ideal orthogonal waveform and a weight vector. We optimized the weight vectors to maximize
the detection probabilities of all targets or minimize the transmit power for the purpose of low
intercept probability in the case of predefined worst detection probabilities. Various targets’ radar
cross-section (RCS) fluctuation models were also considered in two optimization problems. Then,
the optimal weight vectors multiplied by ideal orthogonal waveforms were a set of transmitted
waveforms. However, those transmitted waveforms were not constant-modulus waveforms. In the
second step, the transmitted waveforms obtained in the first step were mapped to constant-modulus
waveforms by cyclic algorithm. Numerical examples are provided to show that the proposed
constant-waveform design method could effectively achieve the desired transmit-beam pattern, and
that the transmit-beam pattern could be adaptively adjusted according to prior information.

Keywords: MIMO radar; constant waveform design; multiple-target detection

1. Introduction

Multiple-input and multiple-output (MIMO) radars have become the focus of intensive research
in recent years[1–3]. A MIMO radar is generally defined as a radar system with multiple-transmit
linearly independent waveforms that enables the joint processing of data received by multiple receiving
antennas. MIMO radar antennas may be widely separated [2] to improve target-detection capabilities
or colocated to improve spatial resolution, parameter identifiability, and interference-rejection
capabilities [3].

A colocated MIMO radar, in which transmit and receive antennas are closely spaced, is similar to
the phased-array radar, except that the transmitted waveforms are correlated or uncorrelated with each
other [4–6]. In other words, a phased array can be regarded as a special case of a colocated MIMO radar.
A flexible transmit beam pattern is one of the most significant advantages of the colocated MIMO radar,
because a MIMO radar has many more degrees of freedom (DOF) than a phase-array radar, and it can
achieve a beam pattern significantly closer to the desired beam pattern [7]. The conventional approach
for a transmit beam pattern includes two steps [6,7]. The first step is to optimize covariance matrix R
of transmitted waveforms under a total power constraint or an element power constraint to achieve
the desired beam pattern [6,7] or to satisfy the minimum parameter-estimation error [8]. The second
step is to determine the waveform matrix whose covariance matrix is equal or close to R [6]. In this
step, an efficient algorithm, the cyclic algorithm (CA), is proposed to obtain the constant modulus or
low peak-to-average-power ratio (PAR) waveforms with good auto- and cross-correlation properties.
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However, with the increase of the number of antennas, the optimal transmitted waveforms or
covariance matrix of the transmitted waveforms cannot be figured out immediately due to heavy
computation. A more efficient approach was proposed to synthesize transmitted signals by designing
a weight matrix given a set of orthogonal waveforms [9–11]. By optimizing the weight matrix, the
paper [9] focused the transmitting energy within a certain spatial sector to improve the Signal-to-Noise
Ratio (SNR) gain. Using a similar method, a study [10,11] formed the desired beam patterns with
lower sidelobe levels for generalized MIMO configurations. Then, the waveform-design problem was
converted into the optimization of the weight matrix with the assumption of complete orthogonal
waveforms. The transmitted waveform could aso be expressed by a weighted sum of orthogonal
waveforms. However, the approach could not ensure that the transmitted waveforms satisfied the
constant-modulus constraint.

Desired transmit-beam patterns generally fall into two categories: broad beams for search mode
and multiple pencil beams for the track mode of multiple targets [7]. It is worth noting that both
categories of beam shapes can be realized by the method in [4–7]. In fact, this method could design
beams of any shape, of course, including wide beams and multiple beams. A novel range-angle-
dependent beam pattern was formed in a frequency-diverse-array MIMO (FDA-MIMO) radar [12,13].
Based on the MIMO radar, the FDA-MIMO radar is capable of employing a small frequency increment
across the array elements and utilize degrees of freedom in the range–angle domains to jointly
determine the range and angle parameters of the target.

Here, we mainly discuss multiple beams for target tracking. At locations like airports, parking lots,
and intersections, the angles and distances of the targets with respect to the radar greatly vary, which
requires the radar to have flexible and fast beam-forming capabilities. The colocated MIMO radar
for multiple-target tracking has been investigated in recent years [14–22] due to a flexible transmit
beam pattern. In [14,15], a simultaneous multibeam resource-allocation scheme was developed to
improve the worst tracking performance by adjusting the number, direction, and power of the beams.
As its extension, a study [17] developed joint beam selection and a power-allocation strategy for a
netted colocated MIMO radar system. In another study [18], the probabilistic uncertainty on the
target radar cross-section parameter was taken into account in a colocated MIMO radar system, and
the total power consumption of multiple beams was minimized to meet a specified multiple-target
localization-accuracy requirement with high probability. However, the focus in [14,15,17,18] is how
to design the desired multibeam pattern for certain purposes instead of how to synthesize the
desired multibeam pattern with the designed transmitted waveforms or the covariance matrix of the
transmitted waveform.

In [19], the waveform was determined to minimize the Bayesian Cramér–Rao bound (BCRB) or
the Reuven–Messer bound (RMB) for estimation of unknown system parameters. The corresponding
transmit beam was automatically focused on targets. This method was also applied to a target-tracking
problem in which the transmit beam pattern was sequentially determined based on historical
observations [20]. Another similar approach of designing waveforms is to minimize the expected
mean squared error [21]. However, the computational load in [19–21] was heavy because of the
heavy computation of the posterior probability density function of target parameters. Based on prior
information, a robust waveform design was proposed to maximize the detection probability of multiple
targets [23].

In [6–8,19,20,23], a transmit beam pattern was obtained by optimizing the covariance matrix of the
transmitted waveforms, which is a Semidefinite Programming (SDP) problem. Simultaneous multiple
pencil beams could actually be determined by beam direction and amplitude. If the beam direction
and amplitude, instead of the covariance matrix of transmitted waveforms, are optimized in designing
simultaneous multiple pencil beams, the dimension of the optimization variable is greatly reduced.
Based on this analysis, we propose a novel and concise signal model where each beam is controlled by
an ideal orthogonal waveform and a weight vector. For improving the performance of multiple-target
detection, we optimized the weight vectors to maximize the detection probabilities of all targets. When
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transmit power was enough to achieve good detection performance, we minimized the transmit power
for the purposes of low intercept probability in the case of predefined worst detection probabilities.
The ideal transmitted waveforms were expressed by the product of ideal orthogonal waveforms and
the optimal weight vectors. However, these ideal transmitted waveforms were not constant-modulus
waveforms. Inspired by work in [6], we chose a set of constant-modulus waveforms to approximate
the ideal transmitted waveforms by a cyclic algorithm. Furthermore, numerical examples are provided
to show that the proposed constant-waveform design method could effectively achieve the desired
transmit beam pattern, and that the transmit beam pattern could be adaptively adjusted according to
prior information.

The rest of this paper is organized as follows. Section 2 presents the proposed signal model for the
MIMO radar. In Section 3, two optimization problems for simultaneous multiple transmit-beam design
are introduced. In Section 4, the development of the cyclic algorithm for constant waveform design is
outlined and detailed. Simulation results are provided in Section 5, and this paper is concluded in
Section 4.

Notation: Boldface uppercase letters stand for matrices. Boldface lowercase letters stand for column
vectors. (·)∗, (·)T , and (·)H denote the conjugate, transpose, and conjugate transpose, respectively; ⊗,
Kronecker product; ~, convolution operation; �, Hadamard product; | · |, modulus of complex scalar
or element-wise modulus of a complex vector; ‖·‖, `2-norm; ‖·‖F, Frobenius norm; (·)− 1

2 , inverse of
Hermitian square root of a matrix; and tr{·} and Re{·}, trace and real part, respectively.

2. Signal Model

Consider a colocated MIMO radar equipped with M transmit antennas and N receive antennas.
Both the receive and transmit arrays are uniform linear arrays with half-wavelength spacing between
the adjoining antennas. Assuming that K point targets of interest are located at {θk}K

k=1, we next
correspondingly generated K transmit simultaneous beams. We also assumed that the kth beam
emitted kth narrow band waveform φk, and that waveform matrix φφφ(t) = [φ1(t), φ2(t), · · · , φK(t)]T

satisfied the following orthogonal condition:∫
Tp

φφφ(t)φφφH(t)dt = IK (1)

where t refers to the time index within the radar pulse, Tp is radar pulse width, and IK is a K × K
identity matrix.

Then, we focused on how to simultaneously generate K transmit beams. We prepared K weight
vectors for K beams or targets, and the kth weight can be given simply by:

wk =
√

αk · a∗t (θk) (2)

where αk (∑K
k=1 αk = 1, αk > 0) is the normalization factor of the assigned power of the kth beam, θk is

the direction of the kth beam, and at(θ) is the transmit steering vector. Therefore, all signals radiating
toward a hypothetical target located at direction θ could be constructed as

s(θ, t) = (aT
t (θ)Wφφφ(t))T (3)

where W = [w1, w2, · · · , wK] is the weight matrix. The waveform transmitted from the antennas can
be expressed as x(t) = Wφφφ(t), which should satisfy practical constraints (such as the constant modulus)
so that nonlinear amplifiers can be used. Note that orthogonal waveform vector φφφ(t) here is just an
ideal hypothetical auxiliary variable, and our ultimate goal was to design transmitted waveform x(t).

Then, the transmit beam pattern, i.e., the distribution of transmitted signal energy in space, is
given by [4,5]
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S(θ) =
∫

Tp
sT(θ, t)s∗(θ, t)dt

= aT
t (θ)W ·

∫
Tp

φφφ(t)φφφH(t)dt ·WHa∗t (θ)

= ‖aT
t (θ)W‖2

=
K

∑
k=1
|aT

t (θ)wk|2 (4)

Note that transmit beam pattern S(θ) is equal to the sum of the K beam patterns.
The baseband representation of the received signal can be modeled as:

y(t) =
K

∑
k=1

rk
√

hkE ar(θk)a
T
t (θk)x(t− τk) + n(t) (5)

where rk is the reflection complex coefficients of the kth target, hk ∝ 1/R4
k is the variation in signal

strength due to path-loss effects (Rk is range between kth target and radar), E denotes the total power
of the radar, ar(θ) is the receive steering vector, τk = 2Rk/c (c denotes speed of light) is time delay, and
n(t) denotes the white Gaussian noise of the sensor array. Using matched filter x∗(−t), we can obtain
an N ×M matrix:

Z(t) = y(t)~ xH(−t)

=
∫

Tp
y(u)xH(u− t)du

=
K

∑
k=1

rk
√

hkE ar(θk)a
T
t (θk)∫

Tp
x(u− τk)x

H(u− t)du + N(t). (6)

Note that matched filter x∗(−t) is actually a set of matched filters [x1
∗(−t), x2

∗(−t), · · · ,
xM
∗(−t)]T . The N ×M receive matrix in the range cell of the kth target (t = τk) can be written as:

Vk = rk
√

hkE ar(θk)a
T
t (θk)∫

Tp
x(u− τk)x

H(u− τk)du + Ñ (7)

where Ñ ∈ CN×M is narrow band Gaussian noise. Then, analog signal x(t) is discretized as X ∈ CM×L,
where L is the length of the discrete signal. Ideal orthogonal waveform φφφ(t) can be discretized as
ΦΦΦ ∈ CK×L, which satisfies

1
L

ΦΦΦΦΦΦH = IK. (8)

We then have
X = WΦΦΦ. (9)

The integral in Equation (7) can be turned into sums:∫
Tp

x(u− τk)x
H(u− τk)du

=⇒X · {XH(XXH)−
1
2 } = (XXH)

1
2 (10)

Here, we used normalized matched filter XH(XXH)−
1
2 instead of XH for range compression [8].

Then, Equation (7) can be vectorized as:
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vk = rk
√

hkE ar(θk)⊗ ((XXH)
1
2 at(θk)) + n

= rk
√

hkE c(θk) + n (11)

where MN × 1 vector

c(θ) = ar(θ)⊗ ((XXH)
1
2 at(θ)) (12)

is the virtual steering vector, and n is the MN× 1 noise term whose covariance is given by Rn = σ2IMN ,
where σ2 is the noise power. The covariance matrix of the noise is detailed in [8] (Equation (7)).

3. Simultaneous Multiple Transmit-Beam Design

In a MIMO radar, we can dynamically design transmitted beams with prior target information.
Our aim was to ensure that each target could be covered by enough energy and be detected with high
detection probability. In this paper, we took false-alarm probability PFA and detection probability PD

as the evaluation criterion of the transmitted beam design. It is well known that the SNR critically
influences PFA and PD. Therefore, in this section, the target SNR was first investigated. Then, we
propose two optimization problems to realize the transmitted beam design.

3.1. SNR Analysis

For the kth target, we used conventional nonadaptive beam former wd = c(θk) and obtained the
corresponding SNR:

SNRk
4
=
|wH

d c(θk)|2

wH
d Rnwd

= γ2
k Ehk

cH(θk)c(θk)

cH(θk)Rnc(θk)

=
γ2

k Ehk

σ2
|aH

r (θk)ar(θk)|2|aH
t (θk)(XXH)at(θk)|2

|aH
r (θk)ar(θk)||aH

t (θk)(XXH)at(θk)|

=
γ2

k
σ2 Ehk NL|aH

t (θk)(XXH)at(θk)| (13)

where γ2
k = E{r2

k} is the variance of the kth target refection coefficient.
A conventional MIMO radar transmits orthogonal waveforms, i.e., XXH = I. In such cases,

output SNR can be rewritten as:

SNRO−MIMOk =
γ2

k
σ2 Ehk NML. (14)

In this paper, the transmitted waveform was correlated, whose covariance matrix is described as:

XXH = WΦΦΦΦΦΦHWH

= L ·WWH . (15)

Substituting Equation (15) in Equation (13), the corresponding output SNR can be expressed as:

SNRC−MIMOk =
γ2

σ2 Ehk NL|aH
t (θk)(WWH)at(θk)|

=
γ2

σ2 Ehk NL
K

∑
i=1
|aT

t (θk)wi|2

' γ2

σ2 Ehk NM2Lαk (16)
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In Formula (16), we assumed that targets were widely separated. Thus, ∑K
i=1|aT

t (θk)wi|2 was
approximately equal to |aT

t (θk)wk|2. By comparing Equations (14) and (16), it could be found that the
MIMO radar with a correlated waveform in this paper focused energy on targets, while the MIMO radar
with a uniform transmit beam pattern spreads energy evenly throughout the space. From Formula (16),
the SNRs of targets could be adjusted by changing the normalization factor of assigned power αk.

Consider a special case in which only one beam (K = 1) points to the only target. Then, the MIMO
system is simplified to a phased array radar that maximizes the SNR at a given focal point over the
class of possible active arrays [24].

3.2. Transmit-Beam Design Based on Robust Energy Allocation

In radar detection, detection probability PD can be expressed as a function of several related
variables [25]:

PD = f (PFA, SNR, Np, type, NC) (17)

where Np denotes integration number, type denotes the various target RCS fluctuation model, and NC
denotes the noncoherent integration or coherent integration.

Our goal here was to design W so that each target could be detected with the greatest probability.
We maximized the worst-case PD of targets, and the corresponding optimization problem could be
formulated as:

max
W

min
k=1,··· ,K

PD(k) (18)

Due to the structure of W in (2), optimization variables could be replaced by {αk}K
k=1 when

prior information is known. Substituting Equation (16) into Equation (17), the objective function of
Equation (18) can be rewritten as:

PD(k) = fk(αk) (19)

where PFA, Np, NC are predefined, and fk(αk) denotes the nonlinear function for calculating the
probability of detection of the kth target [25]. Thus, optimization Problem (18) can be reformulated as:

min
αk(k=1,··· ,K)

−t

s.t. fk(αk) ≥ t (k = 1, · · · , K)
K

∑
k=1

αk = 1. (20)

Note that Equation (20) is nonlinear constraint optimization problem due to nonlinearity of
function (19). Usually, it is difficult to take derivative of PD with respect to SNR or αk. Therefore, we
could not directly obtain the solution of Problem (20).

However, we could see that the essence of optimization Problem (20) was that each target obtained
equal and maximum probability of detection. For solving Problem (20), we defined:

αk = hk(Pd) = f (−1)
k (Pd) (21)

α = g(Pd) =
K

∑
k=1

αk =
K

∑
k=1

hk(Pd) (22)

where f (−1)
k is the inverse function of fk, and Pd is the common probability of detection of K

targets. Because Pd increases with the increasing SNRk (or αk) [25], fk(αk), hk(Pd), and g(Pd) were all
monotone increasing functions. Therefore, optimization Problem (20) could be equivalent to solve the
following equations:
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g(Pd) = 1 (23)

αk = hk(Pd) (k = 1, · · · , K) (24)

Benefitting from the monotonicity of g(Pd), we propose a binary-search algorithm that can be
expressed as Algorithm 1.

Algorithm 1 Binary-search algorithm for Pd

Initialization: Find arbitrary two values Pdl and Pdr that satisfy g(Pdl) < 1 and g(Pdr) > 1. Let

Pdm = (Pdl + Pdr)/2, µ = 10−4.
Output: Pdm

while |g(Pdm)− 1| > µ do

if g(Pdm) > 1 then

Pdr = Pdm.
else

Pdl = Pdm.
end if
Pdm = (Pdl + Pdr)/2

end while

In Algorithm 1, the evaluation of function g(Pd) can be divided into K parts, as described in
Equation (22). For each evaluation part, it was difficult to describe function hk(Pd) with a specific form.
For a given Pd, it is difficult to obtain αk. However, given αk, it is easy to calculate Pd by function fk(αk)

(Equation (19)). Therefore, we could also calculate hk(Pd) through the binary-search algorithm, which
is described in Algorithm 2.

Algorithm 2 Binary-search algorithm for αk

Initialization: Given Pd. Find arbitrary two value αkl and αkr, which satisfy fk(αkl) < Pd and fk(αkr) >

Pd. And Let αkm = (αkl + αkr)/2, µ = 10−4.
Output: αkm

while | fk(αkm)− Pd| > µ do

if fk(αkm) > Pd then

αkr = αkm.
else

αkl = αkm.
end if
αkm = (αkr + αkl)/2

end while

If all K targets belong to the same Swerling target, the detection probabilities of targets under the
same SNR are identical. We could replace detection probability PD by the SNR in the optimization
problem. Corresponding optimization Problem (20) could be simplified as:

min
αk(k=1,··· ,K)

−t

s.t. SNRk(αk) ≥ t (k = 1, · · · , K)
K

∑
k=1

αk = 1. (25)

Problem (25) is clearly a linear-programming (LP) problem, and corresponding Solution
αk(k = 1, · · · , K) could be directly obtained:
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αk =
ξk

∑K
k=1 ξk

(k = 1, · · · , K) (26)

where ξk = 1/(γ2
k Ehk NM2L/σ2).

3.3. Transmit-Beam Design Based on Minimum-Energy Allocation

Sometimes, for the purpose of low intercept probability, we aim for the radar to transmit as
little energy as possible in case that the probability of target detection meets predefined probabilities.
Consequently, a mathematical formulation of the problem can be written as follows:

min
αk

K

∑
k=1

αk

s.t. fk(αk) ≥ tk (k = 1, · · · , K) (27)

where tk is the predefined detection probability of the kth target.
We converted optimization Problem (27) into K minimization problems:{

min αk

s.t. fk(αk) ≥ tk
(k = 1, · · · , K). (28)

Because fk(αk) is a monotone increasing function, the solution of the kth minimization problem
can be given directly as:

αk = f (−1)
k (tK). (29)

Again, we used Algorithm 2 to calculate f (−1)
k (tK).

3.4. Constant-Waveform Design

With W or {αk}K
k=1 obtained in the previous optimization problem, our goal was to find a

constant-modulus waveform matrix X, which satisfies condition X = WΦΦΦ. However, equation X = WΦΦΦ
is usually inconsistent. Thus, we obtained a closed-form solution by solving the corresponding
least-squares problem:

min
X,ΦΦΦ,η
‖WΦΦΦ− ηX‖2

F

s.t. |xm,l | = 1, (m = 1, · · · , M l = 1, · · · , L)

η > 0
1
L

ΦΦΦΦΦΦH = IK (30)

where xm,l is the (m, l)th element of X, η is a scaling factor, and the waveform modulus was set to 1.
Note that there are three variables in the nonconvex minimization Problem (30). Inspired by [6],

we used a cyclic (iterative) minimization algorithm for solving Problem (30).
For given X and η, the object function in Problem (30) could be rewritten as:

‖WΦΦΦ− ηX‖2
F = tr(WΦΦΦΦΦΦHWH) + η2tr(XXH)

− 2η · Re{tr(ΦΦΦHWHX)}
= L · tr(WWH) + η2tr(XXH)

− 2η · Re{tr(ΦΦΦHWHX)}
= const− 2η · Re{tr(ΦΦΦHWHX)}. (31)
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Let

WHX = ŪΛΛΛŨH (32)

denote singular value decomposition, where Ū is a K × K unitary matrix, Ũ is a L× K semiunitary
matrix, and ΛΛΛ is a K × K diagonal matrix. We minimized Problem (31), and solution ΦΦΦ could be
expressed as [7]:

ΦΦΦ = ŪŨH (33)

Let X̂ = WΦΦΦ. For a given ΦΦΦ, the solution of Problem (30) under the constant-modulus criterion
could be directly given by:

xm,l = exp{arg(x̂m,l)} (34)

η =
Re{tr(XHX̂)}

tr(XHX)
(35)

where x̂m,l is the (m, l)th element of X̂.
We summarized the steps of the cyclic minimization algorithm as follows:

• Step 0: Obtain desired matrix W in the previous optimization problem. Element xm,l in X was set
to {exp(j2πψm,l)}, where {ψm,l} were independent random variables uniformly distributed in
[0, 2π].

• Step 1: Obtain ΦΦΦ according to Equation (33).
• Step 2: Obtain X and η according to Equations (34) and (35).
• Iteration: Repeat Steps 1 and 2 until prespecified stop criterion is satisfied, e.g., ‖Φ(i + 1) −

Φ(i)‖2
F ≤ µ , where Φ(i) denotes the orthogonal waveform matrix at ith iteration, and µ is a

predefined threshold.

It is worth noting that both Equations (33) and (34) are irrelevant to scale factor η. Thus, it was
not necessary to calculate the η during the iterative process.

4. Simulation and Discussion

To illustrate the effectiveness of the proposed method, we present simulation results in this section.
Throughout our simulations, we assumed that the transmitter and receiver shared uniform linearity
of M = N = 32 antennas with half-wavelength interelement spacing, waveform length L was 128,
total transmit power was set as 10 kilowatts, the power of noise σ2 was set as 10−8 watts, false-alarm
probability PFA was set as 10−8, and the number of samples noncoherently integrated Np was set as
10. In the simulation, it was assumed that there were three targets, whose tracks with respect to the
radar system are shown in Figure 1. We chose 10 moments during tracking to analyze two proposed
methods of beam design. The time interval between two moments was 10 s, and tracking duration
was 100 s. For convenience, the RCSs of three targets were set as 6 m2.
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Figure 1. Paths of targets with Radar Cross-Sections (RCSs) = {6m2, 6m2, 6m2}. Time interval between
two adjacent moments was 10 s.

4.1. Transmit-Beam Design Based on Robust Energy Allocation

In this case, we assumed that the RCS fluctuation models of three targets were Swerling 1, 2, and 3.
Figure 2 shows a plot of the corresponding detection probabilities as a function of SNR for Np = 10
and PFA = 10−8.
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Figure 2. Probability of detection versus Signal-to-Noise Ratio (SNR) using noncoherent integration of
10 pulses (Np = 10) and false-alarm probability PFA = 10−8.

We solved optimization Problem (20) (optimization was based on prior information), and solutions
in 10 moments are shown in Figure 3.
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Figure 3. Energy-allocation results using robust energy-allocation method. α = α1 + α2 + α3. (Target 1:
Swerling 1, Target 2: Swerling 2, Target 3: Swerling 3).

Figure 4 compares the single-pulse SNR of three targets at various time points. According to
Equation (17), the corresponding probabilities of detection are given in Figure 5. In the initial state,
the single-pulse SNR of the nearest target (i.e., Target 1) was highest. Thus, the lowest energy was
assigned to Target 1 (Target 1: 0.1, Target 2: 0.51, Target 3: 0.39). Over time, Targets 2 and 3 came closer
to the radar system, and the distance between Target 1 and radar was nearly unchanged. In the case of
constant transmit power, the single-pulse SNRs of three targets gradually increased. From Figure 2,
we can see that Target 2 (Swerling 2) could achieve a given probability detection at the lowest SNR,
and that Target 1 required the highest SNR for a given Pd. Therefore, in the end, the farthest target
(Target 3) did not need the highest energy, while Target 1 (Swerling 1) was assigned the highest energy,
as shown in Figure 3.

time (s)
0 20 40 60 80 100

S
N

R
 (

dB
)

0

2

4

6

8

10

12

14

16

18

20

target1
target2
target3

Figure 4. Variations of SNRk using robust energy-allocation method. (Target 1: Swerling 1, Target 2:
Swerling 2, Target 3: Swerling 3).
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Figure 5. Variation of Pd using robust energy-allocation method. (Target 1: Swerling 1, Target 2:
Swerling 2, Target 3: Swerling 3).

Consequently, Figure 5 shows the designed detection probabilities of the three targets. Note that
all targets had the same detection probabilities, which was in good agreement with previous theoretical
analysis. After obtaining allocation coefficient {αk}K

k=1, the constant-modulus waveforms could be
designed through the cyclic algorithm. Figure 6 shows the beam patterns in different times whose
peak amplitudes were consistent with {αk}K

k=1.
tim

e 
(s

)

100

50

0

50
θ/(°)
0-50

0.4

0.6

0

0.2

B
ea

m
pa

tte
rn

Figure 6. Beam patterns at different times using robust-energy allocation method. (Target 1: Swerling
1, Target 2: Swerling 2, Target 3: Swerling 3).

4.2. Transmit-Beam Design Based on Minimum-Energy Allocation

When the power of the radar system was enough to detect targets with a high detection probability,
we minimized the total transmit power to reduce the probability of being intercepted by a hostile
radar system.

In this case, we assumed that three targets were all Swerling 2 targets, whose detection
performance was the same as Target 2 in Figure 2. Figure 7 shows the results of energy allocation in
the constraint in which predefined detection probabilities were all set to 0.9. We can see that α, the
sum of energy-allocation coefficients, decreased from 1 to 0.2. In the end, total transmit power was
one-fifth of what is was.
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Figure 7. Results of energy allocation using minimum-energy-allocation method (all targets were
Swerling 2 targets).

Figure 8 shows comparative Pd for the three targets with the four methods. It can be seen that our
proposed method, the robust energy-allocation method described in Equation (25), performed as well
as the method in [23]. For another proposed method, the minimum-energy-allocation method described
in Equation (28), the detection probabilities of three targets were maintained at 0.9. Because transmitted
energy with the conventional orthogonal waveform (OW) design method is distributed uniformly
in space, most energy is not focused on the targets. Thus, detection probabilities using conventional
orthogonal waveforms are the lowest. Figure 9 shows the transmit power of the four methods. It can be
seen from this figure that the robust energy-allocation method, the method in [23], and the conventional
orthogonal waveforms design method had full transmit power, while the minimum-energy-allocation
method had decreasing transmit power over time.
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Figure 8. Comparison of Pd for three targets with different methods (Equation (25) denotes robust
energy-allocation method, Equation (28) denotes minimum-energy-allocation method with predefined
detection probabilities {tk = 0.9}, [23] denotes method in [23], and OW denotes orthogonal waveforms.
All targets were Swerling 2 targets.)
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Figure 9. Comparison of transmit power with different methods (Equation (25) denotes robust
energy allocation method, Equation (28) denotes minimum-energy-allocation method with predefined
detection probabilities {tk = 0.9}, [23] denotes the method in [23], and OW denotes orthogonal
waveforms. All targets were Swerling 2 targets.)

4.3. Beam-Pattern Comparison

Figure 10 shows four beam patterns with different methods. To implement the method in [23] in a
manner fit for comparison, we supplied the exact same prior information instead of statistical prior
information. In this example, we assumed that three Swerling 1 targets were located at (9 km,−50◦),
(10 km, 0◦) and (8 km, 20◦), respectively. Other parameters were consistent with the previous
parameters. The beam pattern for the proposed method (ideal) was generated by weight matrix
W, while the beam pattern for the proposed method (real) was generated by constant waveforms X.
Except for the omnidirectional beam pattern for orthogonal waveforms, the others all exactly pointed
to the targets. It was verified that the transmit beam pattern with designed constant waveforms could
approximate the desired transmit beam pattern.
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Figure 10. Comparison of beam patterns with different methods.

Figure 11 shows the beam patterns achieved by the constant-modulus waveforms of the first 10
iterations in the cyclic algorithm. The dotted line represents the ideal transmit beam pattern. Except
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for the beam pattern achieved by the randomly initialized waveforms being omnidirectional, the beam
patterns after the first iteration all pointed to the targets well. As the number of iterations increased,
the sidelobe of the beam pattern also further decreased. After 10 iterations, the beam pattern was
already a good approximation of the ideal beam pattern.
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Figure 11. Beam patterns in ten first iterations.

Compared with the method in [23], the proposed method has two advantages: (1) low
computational complexity and (2) constant waveforms. With regard to the former, weight matrix W or
energy coefficients {αk}K

k=1 could easily be obtained by a binary-search algorithm while the covariance
matrix of the transmitted waveforms was obtained by solving an SDP problem. Under the assumption
that all targets were the same kind of Swerling target (various target RCS fluctuation models were not
considered in [23]), {αk}K

k=1 could be obtained by solving an LP problem. For another advantage, the
weight matrix in [23] could not ensure that the waveform transmitted by each antenna was constant,
which prevents nonlinear amplifiers from being used in the radar system.

5. Conclusions

We propose a constant-modulus waveform design method especially for multiple-target detection
in MIMO radars. First, we presented a novel ideal signal model in which the beam pattern for each
target was controlled by a weight vector and an orthogonal waveform. Based on this ideal signal model,
two energy-allocation methods were proposed for two practical scenes (constant transmit power and
minimum power). For practical purposes, we used a cyclic algorithm to obtain the constant-modulus
waveform, which was the approximate form of the ideal transmitted waveform (by multiplying the
ideal orthogonal waveforms by the ideal weight matrix). Finally, numerical examples indicated that
the proposed method could achieve better performance than the method in [23]. Furthermore, an
easier optimization problem and constant waveforms help the proposed method be more practical
in engineering.

However, exact prior information was considered in this paper, which is helpful to analyze
the problem of waveform design, but is too ideal. Thus, future work will focus on investigating
the influence of the parameter-estimation error, and finding a parameter-estimation method with
historical information.
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Abbreviations

The following abbreviations are used in this manuscript:

MIMO Multiple-input multiple-output
RCS Radar Cross-Section
DOF Degrees of Freedom
CA Cyclic algorithm
PAR Peak to Average power Ratio
SNR Signal-to-Noise Ratio
BCRB Bayesian Cramér-Rao bound
RMB Reuven–Messer bound
SDP Semidefinite Programming
OW Orthogonal waveforms
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