
sensors

Article

Completion Time Minimization for Multi-UAV
Information Collection via Trajectory Planning

Zhen Qin 1 , Aijing Li 1, Chao Dong 2,* , Haipeng Dai 3 and Zhengqin Xu 1

1 College of Communications Engineering, Army Engineering University of PLA, Nanjing 210042, China;
qzqzla912@163.com (Z.Q.); lishan_wh@163.com (A.L.); zhengqinxu66@163.com (Z.X.)

2 College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, China

3 Department of Computer Science and Technology, Nanjing University, Nanjing 210023, China;
haipengdai@nju.edu.cn

* Correspondence: dch@nuaa.edu.cn

Received: 5 August 2019; Accepted: 16 September 2019; Published: 18 September 2019
����������
�������

Abstract: Unmanned Aerial Vehicles (UAVs) are widely used as mobile information collectors for
sensors to prolong the network time in Wireless Sensor Networks (WSNs) due to their flexible
deployment, high mobility, and low cost. This paper focuses on the scenario where rotary-wing UAVs
complete information collection mission cooperatively. For the first time, we study the problem of
minimizing the mission completion time for a multi-UAV system in a monitoring scenario when
considering the information collection quality. The mission completion time includes flying time
and hovering time. By optimizing the trajectories of all UAVs, we minimize the mission completion
time while ensuring that the information of each sensor is collected. This problem can be formulated
as a mixed-integer non-convex one which has been proved to be NP-hard. To solve the formulated
problem, we first propose a hovering point selection algorithm to select appropriate hovering points
where the UAVs can sequentially collect the information from multiple sensors. We model this
problem as a BS coverage problem with the information collection quality in consideration. Then,
we use a min-max cycle cover algorithm to assign these hovering points and get the trajectory of
each UAV. Finally, with the obtained UAVs trajectories, we further consider the UAVs can also collect
information when flying and optimize the time allocations. The performance of our algorithm is
verified by simulations, which show that the mission completion time is minimum compared with
state-of-the-art algorithms.

Keywords: wireless sensor networks; unmanned aerial vehicle; mission completion time;
trajectory planning

1. Introduction

Due to their tremendous application potentials in military and civilian related applications,
Wireless Sensor Networks (WSNs) have attracted increasing research interest in many fields, such as
industrial process control, environmental monitoring, and battlefield surveillance [1–4]. Generally,
WSNs are composed of small, battery-limited sensors which cannot transmit over a long distance [5].
There is a great interest recently in utilizing rotary-wing Unmanned Aerial Vehicles (UAVs) as mobile
information collectors in WSNs [6–8]. They can move towards the sensors and establish reliable
connections with them due to their high mobility and flexible deployment [9]. Rotary-wing UAVs
are equipped with propellers that enable them to hover over fixed locations. This advantage makes
them suitable candidates for mobile information collectors as they can hover over sensors to collect
information [10,11]. Nowadays, with the popularity of WSNs, a single UAV cannot meet the demands
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of monitoring missions over larger monitoring areas. Information collection of WSNs with multi-UAV
cooperation is more desired. Currently, there are two types of methods to collect the information from
WSNs with multiple UAVs. The first is to use static UAVs to form a network to cover all sensors,
which is suitable for small area monitoring [12–15]. The second is to use mobile UAVs to cover a larger
area [16–18]. As shown in Figure 1, we mainly focus on the second scenario in this paper.

Sensor Trajectory UAV

A B

Completion Time of UAV 1

Hovering Time  at A
Flying Time  from A to B

Hovering Time  at B

UAV1

UAV2

UAV3

Figure 1. Monitoring scenario.

For many WSNs applications, the timeliness of monitoring information is critical. Therefore,
the mission completion time of multi-UAV cooperative information collection is very important.
For example, in a city security monitoring system, if the control center gets fire information as soon as
possible, the city may avoid serious economic loss and casualties. In traffic monitoring applications,
real-time road information helps cars effectively avoid traffic congestion. In this paper, the mission
completion time includes flying time and hovering time, both of which are related to the trajectory
planning of the UAVs. Therefore, the trajectories need to be carefully planned such that UAVs can
complete theirs missions quickly and satisfy the communication requirements along their entire
trajectory. By optimizing the trajectory of each UAV, we pursue minimizing the mission completion
time of multi-UAV system.

Some works have studied how to minimize a single UAV’s the mission completion
time [16,17,19–21]. However, these works cannot be used for information collection with multi-UAV
directly. In fact, a multi-UAV system requires solving two sub-problems, task assignment and
trajectory optimization. Generally, we cannot address one of problems individually because the
two sub-problems are tightly coupled. If task assignment is not considered in trajectory planning, it
may result in unreasonable task assignment. For example, a UAV may be responsible for too many
tasks, which can lead to longer mission completion time. If trajectory optimization is not considered
in task assignment, it may result in long flying distance, which may also lead to longer mission
completion time. Therefore, we cannot solve the two sub-problems separately. In other words, we
cannot assign tasks first, and then apply the algorithm of a single UAV to solve this problem. Since
we use a multi-UAV system to collect information, the completion time of the entire mission is the
time of all tasks completed by UAVs. In other words, it is the maximum completion time among the
UAVs. The completion time of a UAV is mainly divided into two parts, flying time and hovering time.
As shown in Figure 1, we give a toy example illustrating flying time and hovering time. The flying
time is the time taken for the UAV to fly from point A to point B. The hovering time is the time for
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the UAV staying at the hovering point (A or B) to collect information from sensors. There are two
main differences from previous works. First, some works only consider flying time or only consider
hovering time in UAV-enabled network [22–24]. Second, some works assume that UAVs only collect
information from sensors when hovering [25–30]. If flying time is fully utilized, the mission completion
time can be reduced. Therefore, we consider that the UAVs can collect information when they are
hovering and flying.

In this paper, our objective is to plan the trajectories of all UAVs to minimize the mission
completion time, while ensuring that the information of each sensor is collected. Rotary-wing UAVs
can collect information when they are hovering and flying. This problem can be formulated as a
mixed-integer non-convex problem. Since the problem involves infinitely many variables over time, it
is difficult to optimize trajectories, and hovering and flying communication scheduling at the same
time. To tackle this problem, we propose an improved fly-hover-fly trajectory planning algorithm.
We first propose a hovering point selection algorithm to get hovering points. Then, based on these
hovering points, we plan the trajectory of each UAV. Intuitively, it can use the algorithm of Multiple
Traveling Salesman Problem (MTSP) to plan the trajectories of multi-UAV. However, MTSP’s goal is to
minimize the total completion time of multi-UAV. Different from MTSP, our problem aims to collect
all sensors’ information with multi-UAV such that the maximum completion time among UAVs is
minimized. By using the Base Station (BS) coverage algorithm and min-max cycle cover algorithm,
we select appropriate hovering points where the UAVs can sequentially collect the information from
multiple sensors and get the trajectory of each UAV. Finally, based on the obtained trajectories, we
propose an effective method to optimize UAVs hovering and fly-collection time allocations. The main
contributions of this paper are summarized as follows:

• To the best of our knowledge, this is the first paper to study how to minimize the mission
completion time considering the information collection quality when multiple rotary-wing UAVs
collect information cooperatively in WSNs. We model it as a mixed-integer non-convex problem,
which has been proved to be NP-hard.

• We first propose the FHF algorithm to optimize the hovering points and obtain the trajectories.
We select appropriate hovering points where the UAVs can sequentially collect the information
from multiple sensors. We model this problem as a BS coverage problem with the information
collection quality in consideration. Then, we use a min-max cycle cover algorithm to assign these
hovering points and get the trajectory of each UAV.

• With the obtained UAVs trajectories, we further consider that the UAVs can also collect
information when flying. We propose an effective method to optimize UAVs hovering- and
fly-collection time allocations.

• Extensive simulation results show the mission completion time of the proposed algorithm is
minimum and closer to the optimal scheme compared with other algorithms. Furthermore, we
also verify the performance of the algorithms under different settings.

The rest of this paper is organized as follows. In Section 2, we introduce the related work.
The system model and problem formulation are presented in Section 3. Then, we propose the FHF
algorithm to optimize the hovering points and obtain the trajectories in Section 4. In Section 5,
we optimize the time allocations. Simulation results are provided and analyzed in Section 6. Discussion
is provided in Section 7. Finally, we conclude the paper in Section 8.

2. Related Work

2.1. Single UAV’s Mission Completion Time Problem

There are many studies on minimizing a single UAV’s mission completion time. In [16],
the authors studied a UAV-enabled multicasting system and planned the trajectory of the UAV for
minimizing mission completion time, while ensuring that ground terminals successfully recovered
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files. To reduce the single UAV’s mission completion time and periodic flight duration, Zhang et al. [17]
optimized the trajectory of UAV and communication resource allocation, while satisfying the data
requirement of ground users. Zhang et al. [19] focused on a scenario where a single UAV communicated
with multiple ground base stations. They aimed to minimize the mission completion time by planning
the trajectory of UAV, while the UAV was also subject to practical communication connectivity
constraint with ground base stations. One of the most important reconnaissance missions of the UAV
is to take pictures of interesting targets in a wide area. Under this scenario, Lim et al. [20] proposed
a trajectory generation algorithm for reconnaissance UAV with time constraints. Zhang et al. [21]
proposed sparse A∗ search approach for a single UAV route planning with time constraints. It can be
seen that the above works only discuss a single UAV’s mission completion time in different scenarios.
However, these works cannot be used for information collection with multi-UAV directly. Therefore,
the mission completion time problem of multi-UAV is worth being further studied.

2.2. Multi-UAV’s Mission Completion Time Problem

There are some studies on completing missions by multi-UAV within the specified time.
Pohl et al. [31] studied the routing of multi-UAV, while the trajectories of UAVs met the constraints of
total path cost optimization, total mission time, enemy radar avoidance, and time on target. This work
aimed to minimize the total distance by planning trajectories. Shi et al. [32] proposed a statistical
physics method for UAVs cooperative reconnaissance mission planning, while the trajectories satisfied
the reconnaissance time requirements. However, in many applications, it is more important to complete
the missions as soon as possible. In [23], the authors introduced a geometric path planning method
and proposed a resource allocation algorithm for multi-UAV. However, they only considered the flying
time. Hayat et al. [33] optimized the trajectory of each UAV and synchronized multi-UAV so that the
UAVs can fly to the next task only after all UAVs had completed their previous task. Mousavi et al. [34]
aimed to form UAV coalition formation to reduce the mission completion time. Wang et al. [35]
found the optimal schedule to perform diverse missions of different time windows at various locations
using fixed-wing heterogeneous UAVs. The solutions of minimizing the mission completion time for
multi-UAV system are not directly applicable to our problem.

3. System Model and Problem Formulation

3.1. System Model

As shown in Figure 1, we consider a monitoring scenario where multiple rotary-wing UAVs are
employed to collect information from sensors whose distributions follow the homogeneous Poisson
Point Process. Traditionally, sensors transmit their monitored information to a base station via
multi-hop transmissions. Therefore, a sensor is required to not only transmit its own information,
but also relay the information of other sensors. As a consequence, the sensors battery may drain
quickly and the multi-hop network connection may be lost [22]. By utilizing the UAVs as mobile
information collectors, sensors can directly send monitored information to UAVs. However, as UAVs
have limited on-board battery, it is important to reduce the completion time needed for the information
collection mission. In this paper, we aim to minimize the maximum completion time among all UAVs
by optimizing the trajectories of UAVs to complete the information collection mission as soon as
possible. We assume the UAVs fly at a fixed altitude. The UAV collects information from sensors
via time-division multiple access (TDMA) that means the UAV only communicates with at most one
sensor at each time. Meanwhile, we consider a scenario where ground users are mainly composed of
sensors. The extension to the three-dimensional (3D) trajectory planning and other multiple access
schemes will be left for our future work. For convenience, Table 1 provides major notations used in
this paper.
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Table 1. Major notations .

Notation Definition

U UAV set
P Sensor set
ui UAV i
pj Sensor j
k Number of UAVs, or number of trajectories
n Number of sensors
li(t) ui trajectory projected on the ground
·
li(t) Time derivative of li(t)
cj Position of pj

di,j(t) Distance between UAV i and sensor j
vmax Maximum velocity
dmin Minimum inter-UAV distance
h(t) Instantaneous channel power gain
Ri,j(t) Instantaneous channel capacity
R̄j Total amount of data of pj

B Bandwidth
p Transmission power
σ2 White Gaussian noise power
H Altitude of UAV
fi,j(t) Binary variable
r Communication radius
Ti

F Flying time
Ti

H Hovering time
Ti Completion time of ui

T Mission Completion time

The UAV and sensor sets are denoted as U ∆
= {u1, ..., uk} and P ∆

= {p1, ...., pn}, respectively.
Considering a 3D Cartesian coordinate system, sensor pj is fixed at cj = (xj, yj, 0). Denote the
trajectory of UAV ui projected on the ground as li(t) = [xi(t), yi(t)]T ∈ R2×1, where 0 ≤ t ≤ T.
The trajectory of each UAV should satisfy the following constraint

li(0) = li(T), ∀i, (1)

which means that the UAVs need to fly back to their starting location by the end of monitoring mission.
Furthermore, the trajectory of each UAV is subject to the velocity constraints, which can be given by∥∥∥∥ ·li(t)∥∥∥∥ ≤ vmax, ∀i, t ∈ [0, T], (2)

where vmax denotes the maximum velocity of UAVs and
·
li(t) is the time derivative of li(t).

As multi-UAV fly at the constant altitude, the trajectory of each UAV is expected to satisfy the collision
avoidance constraint [36]

‖li(t)− li′(t)‖ ≥ dmin, ∀i 6= i′, t ∈ [0, T], (3)

where dmin is the minimum distance between the UAVs for avoiding collision. In addition,
the time-varying distance between UAV ui and sensor pj can be expressed as

di,j(t) =
√

H2 + (xi(t)− xj)
2 + (yi(t)− yj)

2. (4)
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Due to scattering and ground reflection, the communication channels between UAVs and sensors
include both Line-of-Sight (LoS) and Non-Line-of Sight (NLoS) links [16]. The UAV–ground link
channel is characterized by the presence of strong LoS path. The Rician channel model is an appropriate
choice, as it can effectively reflect the combination of scattering and LoS that exists in the links between
the UAVs and sensors [13]. In this paper, we consider the more practically Rician fading channels
between the UAVs and sensors [13,16,37–39]. The instantaneous channel gains between the UAV ui
and sensor pj can be expressed as [16,37]

hi,j(t) =
√

βi,j(t)gi,j, (5)

where gi,j is the small-scale fading coefficient. βi,j(t) is the average channel power gain, which can be
expressed by [16,37]

βi,j(t) = β0d−α
i,j (t) =

β0[
H2 + (xi(t)− xj)

2 + (yi(t)− yj)
]α/2 , (6)

where α is the path loss exponent and β0 denotes the average channel power gain at the reference
distance d0 = 1m. gi,j is a random variable that corresponds to the effects of the small-scale fading

such that E
[∣∣gi,j

∣∣2] = 1, which can be given by [16,37]

gi,j =

√
KR

KR + 1
g +

√
1

KR + 1
g̃, (7)

where KR is the Rician factors of the channel and g denotes the deterministic LoS channel component
with |g| = 1. g̃ represents the random scattered component which is a zero-mean unit-variance
circularly symmetric complex Gaussian (CSCG) random variable. For Rician fading, the cdf of

∣∣gi,j
∣∣2 is

explicitly represented as [37,38]

F|gi,j|2(x) = 1−Q1(
√

2KR,
√

2(KR + 1)x), (8)

where Q1(a, b) is the standard Marcum-Q function. We assume that p is the transmission power of
sensors. The instantaneous channel capacity is expressed as [36]

Ri,j(t) = Blog2(1 +
p
∣∣hi,j(t)

∣∣2
n
∑

m=1,m 6=j
p
∣∣hi,j(t)

∣∣2xm(t) + σ2
), (9)

where B is the channel bandwidth and σ2 denotes the white Gaussian noise power at the receiver.

The term
n
∑

m=1,m 6=j
p|hi,m(t)|2xm(t) in Equation (9) represents the co-channel interference caused by the

transmissions of other sensors in time t. We denote a binary variable xm(t) to indicate whether sensor
pm transmits information to UAVs at time t, which can be given by

xm(t) =

{
1 pj transmits in f ormation to UAVs
0 otherwise

. (10)

The maximum communication radius projected on the ground is expressed by r, which depends
on the maximum communication distance dmax

U−S and UAV altitude H, which is determined as [15,40]

r =
√

dmax
U−S

2 − H2, (11)
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We assume that the UAVs fly at a determined altitude H when they collect information from
the sensors. Therefore, r mainly depends on the maximum communication distance. To successfully
collect information from sensors, the received power of UAV must be higher than or equal to the
minimum decodable power pU,min [40]. The maximum communication distance between the sensor
and the UAV can be calculated as

dmax
U−S =

√
Gt

S · Gr
U · λ2 · p

(4π)2 · pU,min
, (12)

where Gt
S is the transmit antenna gain of the sensor, Gr

U is the receive antenna gain of the UAV.
λ represents the wavelength of the signal transmitted by a sensor which is calculated by the frequency
of signal. Based on the maximum communication radius r, the communication condition can be
expressed as ∥∥li(t)− cj

′∥∥ ≤ r, (13)

where cj
′ is the coordinate representation of sensor pj on a two-dimensional plane. It is worth noting

that, if UAV ui needs to collect information from sensor pj at time t, in order to ensure reliable
transmission, the distance between them must satisfy Equation (13).

We define a binary variable fi,j(t), and it indicates whether sensor pj is served by UAV ui at time t

fi,j(t) =

{
1 ui collect in f ormation f rom pj
0 otherwise

. (14)

The binary variables specify not only the communication scheduling across the different time,
but also the association between UAVs and sensors. In this paper, the UAV collects information from
sensors via TDMA that means the UAV only communicates with at most one sensor at each time.
Meanwhile, each sensor is served by only one UAV at a time instance, but can be served by different
UAVs over different time slots. These constraints can be expressed as

n

∑
j=1

fi,j(t) ≤ 1, ∀i, j, (15)

k

∑
i=1

fi,j(t) ≤ 1, ∀i, j, (16)

Furthermore, the total amount of data R̄j transmitted from sensor pj to UAV ui is a function of
UAV trajectory li(t), which is expressed as

R̄j(li(t)) =
T∫

0

Blog2(1 +
p
∣∣hi,j(t)

∣∣2
n
∑

m=1,m 6=j
p
∣∣hi,j(t)

∣∣2xm(t) + σ2
) fi,j(t)dt. (17)

3.2. Problem Formulation

The throughput requirement corresponding to sensor pj is assumed to be Cj bits. By optimizing
the trajectories of UAVs, our objective is to minimize mission completion time, while ensuring that the
information of sensors is collected. The mission completion time refers to the time taken by all UAVs
to complete respective tasks. The completion time of a UAV is mainly divided into two parts, flying
time and hovering time. Therefore, the completion time of a single UAV can be represented as

Ti = Ti
F + Ti

H , (18)

where Ti
F represents the flying time and Ti

H represents the hovering time.
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We denote F = { fi,j(t), ∀i, j, t} and L = {li(t), ∀i, t}. Assuming the sensors’ locations are given,
we aim to minimize the mission completion time by jointly optimizing the UAVs’ trajectories (i.e., L),
communication scheduling and association (i.e., F). Define T(F, L) = max

1≤i≤k
Ti as the mission completion

time which is a function of F and L. The optimization problem can be formulated as

min
F,L,{TH},{TF}

T (19)

s.t. li(0) = li(T), ∀i, (20)

R̄j ≥ Cj, ∀j, (21)
k

∑
i=1

fi,j(t) ≤ 1, ∀i, j, t ∈ [0, T], (22)

n

∑
j=1

fi,j(t) ≤ 1, ∀i, j, t ∈ [0, T], (23)∥∥∥∥ ·li(t)∥∥∥∥ ≤ vmax, ∀i, t ∈ [0, T], (24)

‖li(t)− li′(t)‖ ≥ dmin, ∀i 6= i′, t ∈ [0, T], (25)

0 ≤
∥∥li(t)− cj

′∥∥ fi,j(t) ≤ r, ∀i, j, t ∈ [0, T]. (26)

This problem is challenging to be solved due to three main reasons. First, the problem needs to
optimize continuous functions F and L, which essentially involve an infinite number of optimization
variables that are closely coupled with each other. Second, since the optimization variables F for
UAV–sensor association and communication scheduling are binary, the formulated problem is a
non-convex problem. Third, it is difficult to optimize trajectories, hovering and flying communication
scheduling at the same time. To solve this problem, we propose an improved fly-hover-fly trajectory
planning algorithm (FLY), in which the UAVs successively hover at a finite number of hovering points
each for an optimized hovering duration. Different from other traditional fly-hover-fly trajectory
designs [25–30], UAVs can collect information from sensors not only in hovering, but also in flying.
First, we propose the FHF algorithm to optimize the hovering points and obtain the trajectories
in Section 4. Then, under the obtained trajectories, we further consider the UAVs can also collect
information when flying and optimize the time allocations in Section 5.

4. FHF Trajectory Planning Algorithm

As shown in Figure 2, we propose FHF algorithm which includes two steps. First, we propose
a hovering point selection algorithm to select appropriate hovering points with considering the
information collection quality. Red dots represent sensors and blue dots represent optimized hovering
points. The number of hovering points is less than that of ground sensors. Not stopping above
each sensor node, we select appropriate hovering points where the UAVs can sequentially collect the
information from multiple sensors. By hovering at different points, which are close to different subsets
of sensors, the UAVs can obtain better wireless communication links and decrease the flying time
compared with the policy of hovering above each sensor. Moreover, the policy of hovering above each
sensor was used as a comparison algorithm in our simulations.

Second, we use min-max cycle cover algorithm to assign these hovering points and get the
trajectory of each UAV. Based on the hovering points optimized in the first step, we use Traveling
Salesman Problem (TSP) algorithm to calculate a cycle covering all hovering points. Then, we use a
novel k-cycles algorithm for getting the trajectory of each UAV, which can minimize the maximum
time of the cycles including flying time and hovering time.
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k-cycles Algorithm

TSP Algorithm
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Planning Algorithm

Step 1: Hovering Point Selection Step 2: Min-max Cycle Cover

Figure 2. FHF trajectory planning algorithm.

4.1. Hovering Point Selection

For a given SNR threshold, it is unnecessary for UAVs to fly over all sensors in general. We
model hovering point selection problem as a BS coverage problem [15]. Specifically, given sensors’
locations and UAV’s communication radius, the hovering point selection problem’s objective is to
obtain a minimum number of hovering points and respective locations, while ensuring that all sensors
are covered by at least one hovering point. As shown in Algorithm 1, we use the min-max location
algorithm as sub-algorithm to solve this problem. Meanwhile, major notations used in Algorithm 1 are
provided in Table 2.

Algorithm 1 Hovering point selection algorithm.

Input: r, sensor set P with known locations {cj}pj∈P.
Output: Hovering point set V, with optimized locations {hm}vm∈V .

1: Initialize X ← ∅, Y ← P, V ← ∅, m← 1;
2: while |X| < n do

3: Calculate boundary sensor set Ybo ⊆ Y, update inner sensor set Yin ← Y\Ybo;
4: Randomly select a sensor b0 ∈ Ybo. Denote ρ← {b | ‖b0 − b‖ ≤ 2r, b ∈ Ybo};
5: Use the min-max location algorithm to find hovering point’s location hm to cover ρ. Denote the

maximum distance is d;
6: while d > r do

7: ρ← ρ\ arg max
b∈ρ
‖b− hm‖. Repeat step 5;

8: end while
9: ρ← ρ ∪ {b | ‖b− hm‖ ≤ r,b ∈ Yin};

10: θ ← {b |r < ‖b− hm‖ ≤ 2r,b ∈ Yin};
11: while θ 6= ∅ do

12: Find a sensor b′ ∈ θ which has the shortest distance to hm;
13: Remove (add) b′ from (to) θ (ρ) if b′ is covered by changing hm via using min-max location

algorithm. Stop otherwise;
14: end while
15: X ← X ∪ ρ;
16: Y ← Y\ρ;
17: V ← V ∪ {vm}, m← m + 1.
18: end while
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Table 2. Major notations in Algorithm 1.

Notation Definition

V Hovering point set
X Covered sensor set
Y Uncovered sensor set
hm Hovering point’s location
Ybo Boundary sensor set
Yin Inner sensor set
bo A boundary sensor
d The farthest distance to hm

Now, we describe the hovering point selection algorithm in detail. First, we define Y as the set
of uncovered sensors, which is initialized to be equal to P; X as the set of covered sensor, which is
initialized to an empty set; and V as the set of hovering points, which is initialized to empty set (Line 1).
We utilize the convex hull to define boundary sensors, whereas other boundary sensors definitions can
also be used to produce similar results. In this algorithm, to reduce the occurrence of outlier sensors,
which require one hovering point to cover it, we give higher priority to the boundary sensors so that
boundary sensors are guaranteed to be covered firstly. The boundary sensors exist in Ybo and the inner
sensors exist in Yin (Line 3). We randomly choose a boundary sensor b0 that exists in Ybo. The sensors
that are less than 2r away from b0 are put in ρ (Line 4).

At this time, it can be converted into the min-max location problem to find the position of the
hovering point. In operations research of facilities location type, the min-max location problem is
a classical combinatorial optimization problem. The problem can be described as follows: given a
function to calculate the cost between demand points and a facility, a space of feasible locations of
a facility, and a set of n demand points, find the facility’s location which minimizes the maximum
facility-demand point cost [41,42]. The simple special case when the demand points and feasible
locations are in the plane with Euclidean distance as cost, it is also known as the smallest circle
problem [43]. Our goal is to minimize the maximum sensor-hovering point distance. Therefore, we use
the min-max location algorithm to find hovering point’s location hm to cover all sensors in ρ [44]
(Line 5). This algorithm minimizes the maximum distance from sensors to hm. The farthest distance is
defined as d.

If the value of d exceeds r, ρ needs to be rebuilt until the farthest distance is less than r. In each
iteration, the sensor which is the farthest away from hm is deleted (Lines 6–8). Update ρ by adding
sensors which satisfy the distance conditions (Line 9). This check reduces the execution times of the
min-max location algorithm in the next step. The sensors in Yin whose distance to hm are in the range
of (r, 2r) are put in θ (Line 10). We find a sensor b′ ∈ θ which is the closest to hm. Remove (add) b′

from (to) θ (ρ) if b′ is covered by changing hm via using min-max location algorithm. When θ is empty
or new hm is not found, the mth hovering point’s location hm is determined (Line 11–14). X, Y and V
are updated based on the results we got (Line 15–17). When all sensors are covered, the algorithm
will stop. In Figure 3, we show an example of Algorithm 1. There are seventy sensors in a square area
of 5 km × 5 km and r equals 500 m. By utilizing Algorithm 1, we obtain twenty hovering points and
respective locations.
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Sensor Hovering point Communication range

Figure 3. Hovering points.

For hovering point selection algorithm, the convex hull algorithm of n points to find boundary
sensors has complexity O(n log n) [15,45]. In addition, each hovering point executes the min-max
location algorithm for up to O(n) times. Meanwhile, the complexity of the min-max location algorithm
is O(n2) [44]. Since the number of hovering points is at most O(n), the overall complexity of the
hovering point selection algorithm is upper-bounded by O(n[n log n + n3]). To sum up, the complexity
of the hovering point selection algorithm is upper-bounded by O(n4).

4.2. Min-Max Cycle Cover

The multi-UAV system is modeled as a complete undirected graph G = (V, E), where vertices
in V represent hovering points for UAV and edges in E represent flying paths of the UAV. For each
edge e(vm, vm+1) ∈ E, vm, vm+1 ∈ V, an edge weight w(vm, vm+1) is given to represent the flying time.
For each vertex vm, a vertex weight h(vm) is given to represent the hovering time to collect information.
Since we use a multi-UAV system to collect information, the completion time of the entire mission
is the time of tasks completed by all UAVs. In other words, it is the maximum completion time of
UAVs. The minimum mission completion time problem aims to cover hovering points with multi-UAV
such that the maximum weight of the cycles including flying time and hovering time is minimized.
To tackle this problem, we formulate it as a min-max cycle cover problem. The min-max cycle cover
problem is an extension of the classical TSP. Since the TSP is NP-hard when k = 1, the min-max cycle
cover problem is also NP-hard for any k ≥ 1 [46].

The heuristic algorithm we propose includes two steps to plan the trajectory of each UAV. Firstly,
the ant colony algorithm is used for obtaining a cycle C covering all hovering points. As a global
searching algorithm, the ant colony algorithm can solve TSP problems [47]. Then, we use a novel
k-cycles algorithm for getting the trajectory of each UAV [48]. This algorithm mainly decomposes cycle
C into k segments.

The k-cycles algorithm for obtaining k trajectories of UAVs is shown as Figure 4. This algorithm
takes the number of UAVs, cycle C and the complete undirected graph G = (V, E) as input. In k-cycles
algorithm, to decompose cycle C into k trajectories of UAVs, we first compute the bound vector
Q = (Q1, ..., Qi, ..., Qk). Qi can be calculated on the basis of the total weight of cycle C, Qi =

i
k W(C),

for all 1 ≤ i ≤ k, where W(C) = h(C) + w(C). h(C) and w(C) represent the weight of all vertices
and the weight of all edges in cycle C, respectively. Second, along the cycle, we build a mixed set of
edges and vertices containing 2 |V|+ 1 elements, denoting it as VE = (ve0 = v0, ve1 = e(v0, v1), ve2 =

v1, ve3 = e(v1, v2), ..., ve2|V|+1 = v0). wh(ve0, ..., vem) represents the sum weight of vertices and edges.
Compared with Author1 [49], the weight of vertices, which represents the hovering time, is calculated
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one time in k-cycles algorithm. By constructing a mixed set of vertices and edges, the weight of vertices
can be taken into account in the cycle splitting. Next, from ve0, we aim to find an element vem(i) along
cycle C such that the weight of segment wh(veo, ve1, ..., vem(i)) satisfies wh(veo, ve1, ..., vem(i)) ≤ Qi,
for each i, 1 ≤ i ≤ k. There are two possibilities for the demarcation point vem(i).

• If vem(i) is a path, we would delete this path when we decompose the cycle. Then, we define
vem(i)−1 as the ending point of this segment, vem(i)+1 as the starting point of the next segment.

• If vem(i) is a hovering point, we would define it as the starting point of the next segment
(i.e., ve′m(i) = vem(i)). Then, we take vem(i)−2 as the end of this segment.

Then, we obtain k segments of cycle C (i.e., {C1, ..., Ci, ..., Ck}). Finally, the segments add the
starting location to build the closed trajectory for each UAV.

 Input:

Compute 

                     Construct a set 

      Denote 

      Find           ,

    Get the segment 

The segments join the initial location

 Output:     trajectories of UAVs

Yes No

Figure 4. k-cycles algorithm.

The complexity of the ant colony algorithm is related to the number of ants, the number of
hovering points and the number of iterations. The number of hovering points cannot exceed n.
Thus, the complexity of the ant colony algorithm is upper-bounded by O(iter · A · n2), where iter
is the number of iterations and A is the number of ants. Furthermore, the complexity of k-cycles
algorithm depends on the number of sensors. Since k-cycles algorithm is a polynomial-time algorithm,
its complexity is O(n). In addition, the complexity of the hovering point selection algorithm is
upper-bounded by O(n4). To sum up, the complexity of the hover-collection UAV trajectory planning
algorithm is upper-bounded by O(n2[n2 + iter · A]).
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5. Time Allocation

With the obtained UAVs trajectories, we further consider the UAVs can also collect information
when flying. We propose an effective method to optimize UAVs fly-collection and hovering
time allocations.

We define T̃H,m ≥ 0 as the new allocated time for the UAVs to collect information when hovering
at location vm. Since UAVs can collect information when flying, we can obtain a constraint T̃H,m ≤
TH,m, ∀m. The time allocation problem is challenging to be solved due to three main reasons. First,
the time allocation problem needs to optimize continuous functions F, which essentially involves
an infinite number of optimization variables. Second, the mission completion time is unknown.
Therefore, the time allocation problem cannot be solved by widely time discretization method. Third,
the UAV–sensor association and communication scheduling are binary, thus the formulated problem
is a non-convex problem. To tackle this problem, we use a new discretization method, called path
discretization [50,51].

With the UAVs’ trajectories UT and hovering points V given, UAV’s trajectory UTi can be
discretized into Zi line segments, which are represented by the Zi sampling points {qzi}. The length
of the zith line segment can be expressed as µzi =

∥∥qzi+1 − qzi
∥∥. Note that Zi needs to be chosen to

be sufficiently large so that µzi ≤ µi
max . µi

max is an appropriately chosen value so that the distance
between each sensor and UAV ui is approximately unchanged under each line segment. Furthermore,
we assume the time for flying in the zith line segment is πzi . Meanwhile, λzi is defined as the allocated
information collection time when ui flies on the zith line segment, where λzi ≤ πzi . When information
collection occurs in the mobile state, the UAV sends an activation signal to a sensor which satisfies
SNR conditions. Then, the UAV collects information from the activated sensor.

The formulated problem reduces to optimizing the communication scheduling F, the hovering
time

{
T̃H
}

and fly-collection time {λzi}. Therefore, we can obtain

min
F,{T̃H},{λzi }

T (27)

s.t. R̄j ≥ Cj, ∀j, (28)
k

∑
i=1

fi,j(t) ≤ 1, ∀i, j, t ∈ [0, T], (29)

n

∑
j=1

fi,j(t) ≤ 1, ∀i, j, t ∈ [0, T], (30)

0 ≤
∥∥li(t)− cj

′∥∥ fi,j(t) ≤ r, ∀i, j, t ∈ [0, T], (31)

T̃H,m ≤ TH,m, ∀m, (32)

λzi ≤ πzi , ∀z, i. (33)

With the given trajectories, since the velocity of UAVs remains unchanged, the new hovering
time cannot exceed the initial value. The new formulated problem is an integer programming
problem, which can use the existing software toolbox such as CVX to be efficiently solved. Therefore,
under the given trajectories, we can get fly-collection and hovering time allocations. Furthermore, joint
optimization of multi-UAV trajectories, communication scheduling and time allocation will be left for
our future works.

6. Simulation Results

In this section, we present the simulation results to validate the proposed FLY algorithm, which
mainly includes the FHF algorithm and time allocations.
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6.1. Simulation Setup

We assumed that the size of the monitoring area was 5 km × 5 km. The total bandwidth was
1 MHz, and the average channel power gain at 1 m was −50 dBm [52]. The maximum velocity of a
UAV was set to 50 m/s. Furthermore, the minimum distance between UAVs was set to 100 m [36]
and UAVs flew at a constant altitude of 50 m. We assumed that the transmission power equaled
10 dBm [16]. The white Gaussian noise power was equal to −110 dBm [16]. Following the authors
of [15,40], the communication radius was 500 m, which was calculated by the altitude and maximum
communication radius. As stated in [36], the Rician channel model can be utilized for estimating
the link performance for UAV-to-ground links. Simulations were conducted using the parameters
specified in Table 3.

Table 3. Simulation parameters.

Definition Parameters Values

Monitoring area size D 5 km× 5 km
Altitude of UAV H 50 m
Maximum velocity vmax 50 m/s
Minimum inter-UAV distance dmin 100 m
Path loss α 2.6
Bandwidth B 1 MHz
Transmission power p 10 dBm
Unit channel power gain β0 −50 dBm
White Gaussian noise power σ2 −110 dBm
Rician factor KR 2
Minimum decodable power pU,min −84 dBm
Frequency of signal fλ 2.4 GHz
Transmit antenna gain Gt

S 1
Receive antenna gain Gr

U 1

6.2. Baseline Setup

To demonstrate the performance of the proposed information-collection UAV trajectory planning
algorithm (FLY), we compared and implemented the following six benchmark schemes:

• FHF algorithm: It is the subalgorithm of the FLY algorithm. This algorithm only considers the
UAVs collecting information when they are hovering.

• Hovering above each sensor (SHP): The feasible trajectory of the UAV needs to ensure the
throughput requirement of each sensor is satisfied. One straightforward approach is to let the
UAVs sequentially visit all sensors. First, SHP algorithm calculates a cycle which covers all sensors
using TSP algorithm. Then, it uses k-cycles algorithm to obtain the trajectories of UAVs.

• Sensor balanced algorithm (PB): This algorithm first calculates a cycle by using TSP algorithm.
Then, it decomposes the cycle into k trajectories that contain the same number of sensors.

• KTSP-based algorithm (KTSP): This algorithm designs the trajectories of multi-UAV by using
K-Traveling Salesman Problem (KTSP) algorithm [53].

• Kmeans-based algorithm (KMEAN): This algorithm uses kmeans algorithm to obtain hovering
points. Then, it uses the min-max cycle cover algorithm to obtain the trajectories of UAVs [54].

• Optimal scheme (OPT): To evaluate how the proposed algorithms approach the optimal
performance, we use brute-force searching method to obtain the optimal scheme that minimizes
the mission completion time.
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6.3. Different Number of Sensors

In this simulation, with different number of sensors, the number of UAVs was fixed at three
and the seven algorithms were compared. As the number of sensors changes, the trend of mission
completion time is shown in Figure 5. It was observed that the algorithms we proposed significantly
outperformed four other algorithms. FHF and FLY algorithms were the closest to the optimal solution
compared with four other algorithms. FLY algorithm achieved almost the same performance with the
optimal scheme when n < 20, and the mission completion time difference was less than 6%. When
the number of sensors was greater than 20, FLY algorithm was also closer to the optimal scheme than
five other algorithms. For example, when n = 120, FLY algorithm was 119% of the optimal solution,
which was the biggest gap between FLY algorithm and the optimal scheme in this simulation. It was
also observed that the completion time of mission conducted only in static case cOULD not be smaller
than in both static and mobile cases. FLY algorithm was reduced by 7.0–14.1% compared with FHF
algorithm. That was expected; since UAVs utilized the flying phase to collect information, the hovering
time was reduced. Meanwhile, we found that our subalgorithm (FHF) performed better than the other
compared algorithms. FHF algorithm was reduced by 3.5–46.9% compared with four other algorithms.
When the number of sensors was 10, FHF algorithm was reduced by 3.5% compared with KMEAN
algorithm. When the number of sensors was 120, FHF algorithm was reduced by 46.9% compared with
KTSP algorithm. By hovering at a point where it could communicate with multiple sensors, the UAV
could decrease the flying time compared with SHP algorithm, PB algorithm and KTSP algorithm.
In particular, when the number of sensors increased, the UAV could communicate with more sensors
at one hovering point. Therefore, our algorithms performed better when the number of sensors was
large. Moreover, SHP algorithm and PB algorithm use the same TSP algorithm, thus the performance
was relatively close. Meanwhile, KMEAN algorithm selected hovering points without considering the
information collection quality of UAVs. There was retransmission in the actual transmission, which
increased the information collection time and KMEAN algorithm did not reach the effect of selecting
the hovering points. Therefore, KMEAN algorithm was close to SHP algorithm and PB algorithm.
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Figure 5. Different number of sensors.

6.4. Different Number of UAVs

Under different number of UAVs, the number of sensors was set to be 100 and we compared the
seven algorithms. As the number of UAVs changes, the trend of mission completion time is shown in
Figure 6. Obviously, increasing the number of UAVs could improve the speed of monitoring, and the
mission could be completed in less time. However, increasing the number of UAVs also brought some
overhead and economic pressure. As shown in Figure 6, from one UAV to four UAVs, the mission
completion time dropped significantly. When the number of UAVs exceeded five, the changes in
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mission completion time tended to be flat. It was obvious that more UAVs could share the monitoring
mission to reduce mission completion time. However, some sensors were far from the initial location,
and the UAV might take too much time going back and forth. Therefore, the maximum completion time
of UAVs had a lower bound, and it was impossible to keep falling as the number of UAVs increased.
Compared with four other algorithms, our algorithms were closer to optimal scheme. As shown
in Figure 6, the gap between our algorithms and the optimal solution decreased as the number of
UAVs increased. When k = 1, FHF algorithm was 86.7% higher than the optimal scheme and FLY
algorithm was 52.4% higher than it. When k = 10, FHF algorithm was 12% higher than the optimal
scheme and FLY algorithm was 3.1% higher than it. As the number of UAVs changed, FLY algorithm
was reduced by 8.0–18.1% compared with FHF algorithm. Such results demonstrate the flying and
hovering information collection solution is better than hovering information collection solution.
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Figure 6. Different number of UAVs.

6.5. Different Communication Radius

Under different communication radius, we set the number of UAVs at 3 and the number of
sensors at 120, and compared the seven algorithms. Figure 7 shows the trend of mission completion
time as the communication radius changes. Under different communication radius, our algorithms
were closer to the optimal scheme than four other algorithms. As the communication radius
increased, our algorithms had obvious advantages. When the communication radius was 100 m,
FLY algorithm was 145% of the optimal algorithm, and FHF algorithm was 169% of the optimal
algorithm. However, when the communication radius was 800 m, FLY algorithm was 116% of the
optimal algorithm, and FHF algorithm was 130% of the optimal algorithm. As shown in Figure 7,
the mission completion time of our algorithms and KMEAN algorithm gradually decreased as the
communication radius increased, and other algorithms’ change trends were relatively small. The reason
is that the change in communication radius mainly affected the hovering point selection algorithm,
which is an important difference between three algorithms and three other algorithms. Since we
considered the information collection quality in hovering point selection algorithm, our algorithms
had a higher performance improvement compared with KMEAN algorithm. Of course, in practical
applications, the communication range of the UAV is related to the altitude and the communication
equipment of the UAV.
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Figure 7. Different communication radius.

6.6. Different Monitoring Area Size

Under different monitoring area size, we set the number of UAVs at 3 and the number of sensors
at 100 and compared the seven algorithms. Figure 8 shows the trend of mission completion time as
the monitoring area size changes. It was observed that FHF and FLY algorithms were closer to the
optimal solution than four other algorithms. The gap between FHF algorithm and the optimal solution
increased as the monitoring area expanded, from 21.6% to 67.7%. The gap between FLY algorithm
and the optimal solution increased as the monitoring area expanded, from 10.3% to 41.3%. As the
monitoring area became larger, the advantage of FLY algorithm was more obvious. FLY algorithm was
reduced by 6–15.6% compared with FHF algorithm. That was expected; since the larger area caused a
long flying time, the UAVs could obtain more time to collect information when flying. Furthermore,
FHF algorithm was reduced by 9.7–40.2% compared with four other algorithms. As the monitoring
area size increased, the flying scope of the UAV became larger, and the flying time became longer,
resulting in longer mission completion time. As shown in Figure 8, FLY algorithm performed the best
under different monitoring area size. Since it fully considers the information collection quality and
the positions of sensors, the algorithm can be applied to different monitoring area size. Based on the
simulation results in the previous subsection, if the communication range of UAVs is appropriately
changed, the mission completion time will be shorter.
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Figure 8. Different monitoring area size.
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7. Discussion

7.1. Trade-Offs in Communication and Trajectory Design

There are some new and interesting trade-offs among the energy, delay and throughput
in UAV communication and trajectory design which are different from traditional terrestrial
communication [55]. In this section, we mainly discuss the trade-offs of UAVs when they are used as
mobile information collectors. First, there is a trade-off between delay and throughput in UAV-enabled
wireless network. To maximize throughput, UAVs always fly sufficiently close to the sensors to
improve the link capacity. Although this method improves the throughput, it also brings delay due to
the movement of the UAV. Second, there is also an interesting trade-off between energy consumption
and throughput in UAVs. To gain higher throughput, UAVs generally fly close to sensors which
consume more energy to move. Third, the above two trade-offs naturally imply an energy-delay
trade-off. To reduce the delay in UAV–sensor communication, UAVs need to move faster to sensors
,which brings more energy consumption. In fact, by planning the trajectory of UAV, the energy, delay
and throughput can be traded off among each other. Finally, there is a trade-off between sensors
and UAVs [9]. The sensors have limited battery and lower power. To prolong the lifetime of sensors,
UAVs can move close to sensors to collect their information with minimum transmit power. However,
UAVs will consume more energy to move. In this paper, we mainly focus on minimizing mission
completion time on the premise of achieving throughput requirements. In the future, we will consider
these trade-offs in trajectory design.

7.2. Multiple Access Schemes

In this paper, we consider that the UAVs collect information from sensors via time-division
multiple access (TDMA) that means only one sensor is scheduled for information collection at each
time [36,37,39,55]. There are some works using other multiple access schemes [25,52]. For example,
the authors considered a scenario that a UAV is dispatched as the mobile BS to provide service for
ground users via orthogonal frequency division multiple access (OFDMA) [52]. Besides orthogonal
multiple access schemes such as TDMA considered above, non-orthogonal multiple access schemes
also are considered in UAV-enabled wireless networks. To further improve the capacity limits, Wu et al.
found that non-orthogonal multiple access schemes based on superposition coding (SC) can be
jointly designed with the UAV trajectory [25]. The authors considered a two-user broadcast channel.
To achieve the capacity region, they proposed a practical fly-hover-fly trajectory with SC. However,
they only considered two users. In the future, for the next-generation wireless networks with massive
connectivities, we will study designing the efficient trajectory algorithm joint with other multiple
access schemes.

7.3. The Case of a Large Number of Sensors

In practical application, there may be many sensors deployed in the monitoring area.
The complexity of hovering point selection problem becomes extremely high when the number
of points n is very large. Therefore, the application scope of the proposed algorithm will be limited.
To expand the application scope of the algorithm, we propose an efficient method. When the number
of sensors is large, the monitoring area can be divided into some subareas. In other words, ground
sensors can be partitioned into M disjoint sets, P1, P2,. . . , PM with each set corresponding to the sensors
in its subarea. Then, the hovering point selection algorithm can be implemented for sensors in each
subarea. By dividing the monitoring area, the complexity of trajectory planning problem can be
reduced, and the application scope of the proposed algorithm can be improved.

8. Conclusions

In this paper, we aim to minimize the mission completion time of multi-UAV by optimizing
the trajectories of UAVs to complete the mission as soon as possible. We formulate this problem
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as a mixed-integer non-convex problem. It is difficult to optimize trajectories, hovering and flying
communication scheduling at the same time. To tackle the formulated problem, we propose an
improved fly-hover-fly trajectory planning algorithm, which includes two steps. First, we propose
the FHF algorithm to optimize the hovering points and obtain the trajectories. Second, with the
obtained UAVs trajectories, we further consider that the UAVs can also collect information when
flying. We propose an effective method to optimize UAVs fly-collection and hovering time allocations.
The simulation results show that the mission completion time of our algorithm is minimum compared
with other algorithms.

Since we add some constraints in the model, there are some limitations in practical application.
For example, we assume that the UAVs fly at a fixed altitude. In fact, UAV’s altitude will directly
affect Rician factor and information transmission rate. It is also worthwhile to optimize UAV’s altitude.
In the future, we will exploit the vertical trajectory of the UAV and present a new design framework of
3D UAV trajectory to further improve the performance of multi-UAV information collection system.
In addition, for the next-generation wireless networks with massive connectivities, we will study
designing the efficient trajectory algorithm joint with other multiple access schemes. In our future
works, other practical constraints on UAV’s trajectory will be considered, such as the maximum
acceleration, the maximum instantaneous output power of the engine and the maximum turning angle.
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