
sensors

Article

Multi-Source Deep Transfer Neural
Network Algorithm

Jingmei Li, Weifei Wu *, Di Xue and Peng Gao

College of Computer Science and Technology, Harbin Engineering University, No.145 Nantong Street,
Harbin 150001, China; lijingmei@hrbeu.edu.cn (J.L.); dixue@hrbeu.edu.cn (D.X.);
gaopeng1979@hrbeu.edu.cn (P.G.)
* Correspondence: wuweifei@hrbeu.edu.cn

Received: 26 August 2019; Accepted: 12 September 2019; Published: 16 September 2019
����������
�������

Abstract: Transfer learning can enhance classification performance of a target domain with insufficient
training data by utilizing knowledge relating to the target domain from source domain. Nowadays,
it is common to see two or more source domains available for knowledge transfer, which can improve
performance of learning tasks in the target domain. However, the classification performance of
the target domain decreases due to mismatching of probability distribution. Recent studies have
shown that deep learning can build deep structures by extracting more effective features to resist
the mismatching. In this paper, we propose a new multi-source deep transfer neural network
algorithm, MultiDTNN, based on convolutional neural network and multi-source transfer learning.
In MultiDTNN, joint probability distribution adaptation (JPDA) is used for reducing the mismatching
between source and target domains to enhance features transferability of the source domain in deep
neural networks. Then, the convolutional neural network is trained by utilizing the datasets of each
source and target domain to obtain a set of classifiers. Finally, the designed selection strategy selects
classifier with the smallest classification error on the target domain from the set to assemble the
MultiDTNN framework. The effectiveness of the proposed MultiDTNN is verified by comparing it
with other state-of-the-art deep transfer learning on three datasets.

Keywords: multi-source transfer learning; deep learning; convolutional neural network; classification

1. Introduction

In the past two decades, machine learning has dramatically progressed, and it has become a
practical technology from laboratory to widespread commercial use [1]. Currently, machine learning is
one of the fastest growing technologies located at the core of artificial intelligence and data science,
which has been widely used in intrusion detection [2,3], speech recognition [4,5], computer vision [6,7],
spam detection [8,9], pattern recognition [10], text classification [11], and other fields. Of course,
it has achieved great results. However, in order to obtain a high accuracy classification model, many
machine learning algorithms need to satisfy the following two basic conditions: (1) the training and
test data come from the same feature space and the same distribution, which satisfy the independent
and identical distribution conditions; (2) enough training samples are available. Nevertheless, these
assumptions are not always met in practical applications [11,12]. Especially in emerging applications
such as text mining, bioinformatics, distributed network sensor networks, and social network research,
the independent and identical distribution conditions cannot be satisfied between training and test
data under the influences of time, environmental changes, or instability of sensor devices. When the
data distribution changes, most of the models need to re-collect the training data, but the previous
training data will not be used again, and this results in wasted data resources. In addition, data sample

Sensors 2019, 19, 3992; doi:10.3390/s19183992 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/18/3992?type=check_update&version=1
http://dx.doi.org/10.3390/s19183992
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 3992 2 of 16

resources in some areas are often scarce, and the cost of collecting data is very expensive or even
impossible. In this case, knowledge transfer between task domains is desirable [12,13].

Transfer learning, also known as domain adaptation, provides an effective means to solve the
above problems. On the one hand, it no longer requires training and test data to satisfy independent
and identical distribution conditions. On the other hand, when the training data in the target domain
is scarce and not enough to obtain a good classifier, the data from the source domain (often containing
a large number of labeling samples) is similar to the target domain and can be used to assist the
learning tasks in the target domain. Transfer learning has achieved remarkable results in resisting this
challenge by transferring knowledge from source to target domains with different distributions [13].
Therefore, transfer learning attracts more and more researcher attention and has made great progress:
Gao et al. [14] proposed a local weighted embedded transfer learning algorithm LWE; a feature-based
space transfer learning method LMPROJ are proposed by Brain et al. [15]; Lu et al. [16] proposed a
selective transfer algorithm STLCF for collaborative filtering; Long et al. [17] proposed an SVM-based
least squares transfer learning framework ARTL; Xie et al. [18] applied transfer learning to incremental
learning and proposed an STIL algorithm; Li et al. [19] proposed a new transfer learning algorithm
TL-DAKELM based on the extreme learning machine; Li et al. [20] proposed a transfer learning
algorithm, RankRE-TL.

The above transfer algorithms can only handle a single source domain, but in many real-world
applications, data from more than one source domain can be collected. Therefore, transfer learning
algorithms with multi-source domains are naturally researched, and the classification effect is better
than that using only one source domain [21]. Recently, machine learning algorithms of transfer learning
with multi-source domains have been proposed. Yao et al. [22] extended the boosting framework
and proposed MultiSource-TrAdaBoost and TaskTrBoost; Sun et al. [23] proposed a two-stage domain
adaptive method that combines weights of data on marginal probability differences (first phase) and
conditional probability differences (second phase) from multiple source and target domains; Duan
et al. [24] proposed a multi-source domains adaptation method DAM; [25] proposed a new online
transfer learning algorithm by using labeling data from multiple source domains to seek to improve
classification performance in target domain; Ding et al. [26] attempted to use the incomplete multi-source
domains to carry out effective knowledge transfer, and proposed an incomplete multi-source transfer
learning to improve knowledge transfer in two directions; In [27], Jun et al. explored two problems of
domain adaptation and proposed the A-SVM algorithm.

No matter multi-source or single-source transfer learning algorithms, although the classification
effect of the above transfer learning algorithms can be accepted, in fact these algorithms belong to a
shallow structure. Therefore, they cannot find deeper and more complex knowledge behind the data,
and then find more common information between domains to further improve the classification effect
in target domain.

With the emergence of deep learning, it has more powerful expression ability than the learning
algorithms of shallow structure, and has gained a lot of attention for the advantage of better
representation features. Consequently, deep learning can generate more domain-invariant features for
knowledge transfer between domains. At present, there are many research works on the combination
of transfer learning and deep learning. Huang et al. [28] proposed a shared hidden layer multilingual
DNN (SHL-MDNN), in which the hidden layer is common in many languages, while the softmax layer
is language dependent. Ding et al. [29] developed a new deep transfer low- rank coding based on a
deep convolutional neural network, which can obtain a multi-layer general dictionary shared across
two domains to bridge domain gaps, so that rich domain invariant knowledge can be captured by
the way of layering. The deep transfer learning framework was proposed by Te et al. [30] extended
marginal distribution adaptation to joint distribution adaptation and uses unambiguous structures
associated with labeled samples of source domain to adjust the conditional distribution of the unlabeled
samples in target domain, which ensures a more accurate distribution matching. [31] proposed a
new deep adaptive network architecture Domain Adaptation Network (DAN), which extended the

Sensors 2019, 19, 3992 3 of 16

deep convolutional neural network to the domain adaptation scenario, the architecture learns the
transferable features through statistical guarantees and can be embedded through the kernel without
bias, and is estimated to perform linear expansion. A CNN framework that utilizes unlabeled or
sparsely labeled data in the target domain is proposed to facilitate transfer by optimizing domain
invariance [32]. Zhang et al. [33] proposed a new method for deep convolutional neural networks,
Deep Convolutional Neural Networks with Wide First layer Kernels (WDCNN) that uses the original
vibration signal as input and wide kernel in the first convolutional layer to extract features and suppress
high frequencies noise. The proposed DHN algorithm aims to seek informational hash coding by
combining deep structure learning with domain alignment [34]. DDC is the first to incorporate domain
aliasing losses into the top layer of AlexNet to transfer drift during domain transfer [35]. But these
algorithms only consider the differences of marginal probabilities distribution in domains and the
knowledge from only the single source domain, and ignore conditional probabilities and intrinsic
information of domains.

In this paper, inspired by previous researches on the combination of deep neural networks and
transfer learning, we propose a new multi-source deep transfer neural network algorithm (MultiDTNN)
based on convolutional neural networks and multi-source transfer learning. The core idea of this work
is as follows: First, to enhance the feature transferability in specific layers in deep neural networks by
reducing the domain differences between each source and target domain with using joint probability
distribution adaptation (JPDA). Then, we train Convolutional Neural Networks (CNN) on each source
and target domain to get a set of classifiers. Finally, for the sake of gaining MultiDTNN, the second
stage of the TaskTrAdaBoost [22] algorithm is applied to design a selection strategy to select the
classifier with the smallest classification error on target domain from the classifier set. To the best of
our knowledge, we are the first to apply multi-source transfer learning and JPDA to the classification
tasks of cross-domain knowledge transfer on deep neural networks.

Our threefold contributions are highlighted as follows: (1) the deep transfer structures are
constructed based on JPDA and a convolutional neural network which can transfer more features
of data in the source domain to the target domain; (2) more knowledge in multi-source domains are
provided to assist in building the learning model of target domain, so the classification effect of the
model is better; (3) ensemble system of classifiers is more advantageous than a single classifier in terms
of prediction effectiveness and stability.

The remaining parts of the paper are organized as follows: In Section 2, the related works of
multi-source transfer learning, convolutional neural networks, and maximum mean discrepancy
are briefly discussed. The MultiDTNN is proposed and implementation details are also explained
in Section 3. Section 4 verifies the effectiveness of MultiDTNN by comparing with state-of-the-art
benchmark algorithms on three cross domain datasets. The last section summarizes the conclusions of
this paper.

2. Related Works

2.1. Multi-Source Transfer Learning

Transfer learning has been extensively studied for many years since it was proposed in NIPS-95 in
1995 [12]. However, in real-world applications, we can easily collect auxiliary data from multiple source
domains. Therefore, the studies of multi-source domains transfer learning have gradually attracted the
interest of researchers [13–25]. It can transfer knowledge from multiple source domains to learning
tasks of the target domain compared to previous transfer learning algorithms with single domains [26].
In addition, if there is no or weak correlations between target and source domains, transfer learning not
only has no ability to improve the performance of the target domain classifier, but also lead to negative
transfer, on the contrary which will reduce the performance of target domain classifier. Therefore, when
extracting knowledge from two or more source domains, the knowledge of data in source domains with
more closely related to target domain is selected as much as possible to create a prediction model in

Sensors 2019, 19, 3992 4 of 16

target domain [27]. As shown in Figure 1, multi-source transfer learning makes use of the relationships
between multi-source and target domains to improve the prediction performance of the samples in
target domain, and assists in target domains to establish a prediction model.Sensors 2019, 19, x FOR PEER REVIEW 4 of 17

(DT,TT)

(DS1,TS1)

(DS2,TS2)

(DSn,Tsn)

Transfer Learning

System
ft

Figure 1. Framework of Multi-source Transfer Learning.

In Figure 1,
1 1

(,)S SD T ,
2 2

(,)S SD T ,…, (,)
n nS SD T respectively represent source domains and

corresponding learning tasks. Similarly, (,)T TD T is target domain and corresponding learning tasks.

tf denotes classifier that is obtained by the way of training transfer learning system with using the

datasets in target and source domains.

Multi-source transfer learning can be divided into two categories: the boosting-based methods

[22,25] and regularization-based methods [26,27]. The regularization-based methods are the learning

model with the regularization term to solve the optimization problems, and the boosting-based

methods use the boosting algorithm to generate the set of classifiers. In this paper, the proposed

MultiDTNN belongs to the latter. While multiple source domains can provide more knowledge, the

differences of domains also present challenging transfer learning issues. To this end, many methods

for solving the schemes of multi-source domains have been proposed in many practical applications

[22–27].

2.2. Convolutional Neural Network

In the past few years, deep learning has achieved good performance in solving various

problems. CNN has been extensively studied in different types of deep neural networks [36]. In 2006,

Hinton et al. published a paper on Science, which first proposed a convolutional neural network [37].

As one of the most effective deep learning models, CNN has been widely used in image processing

[38,39,40], face recognition [41] and feature extraction [42]. In general, a CNN consists of three parts:

convolutional layers, pooling layers, and fully connected layers. The convolutional layer and the

pooling layer are alternately arranged; that is, one convolutional layer is followed by one pooling

layer, and so on. After the multiple convolutional and pooling layers, one or more fully connected

layers are connected. The first step in CCN convolves the input signal to obtain a feature map through

the use of convolution kernel, and then uses a nonlinear activation function (ReLU) to act on the

feature map. The formal description of the convolution layer operation is as follows:

1ReLU(*)r r r r

n m n nm
c v w b  (1)

In Equation (1),
r

nc is the -n th output of convolutional layer r , n denotes the number of

convolution kernels in convolutional layer r ,
r

nw and
r

nb respectively represent the convolutional

kernel and the deviation,
1r

mv 
is the -m th output of convolutional layer -1r , * is the convolutional

operation. After calculating Equation (1), we can obtain the feature map and then perform average

or maximum feature activation through the pooling layer in areas where the feature map does not

intersect. Finally, the fully connected layer is used for classification. Given a data set 1{ }M

i iX x  , a

CNN optimization learning process with P convolutional layers, a convolution kernel parameter

set 1{ }P

i iW  , a bias set 1{ }k

i ib  and a fully connected layers 1{ }k

i ib  can be defined as:

{ } { } ,
min ((), (,{ } ,{ } ,))
P P

i i i i

P P

j j i i i ijW b U
l Y x f x W b U

，
 (2)

Figure 1. Framework of Multi-source Transfer Learning.

In Figure 1, (DS1 , TS1), (DS2 , TS2), . . . , (DSn , TSn) respectively represent source domains and
corresponding learning tasks. Similarly, (DT, TT) is target domain and corresponding learning tasks.
ft denotes classifier that is obtained by the way of training transfer learning system with using the
datasets in target and source domains.

Multi-source transfer learning can be divided into two categories: the boosting-based
methods [22,25] and regularization-based methods [26,27]. The regularization-based methods are the
learning model with the regularization term to solve the optimization problems, and the boosting-based
methods use the boosting algorithm to generate the set of classifiers. In this paper, the proposed
MultiDTNN belongs to the latter. While multiple source domains can provide more knowledge,
the differences of domains also present challenging transfer learning issues. To this end, many
methods for solving the schemes of multi-source domains have been proposed in many practical
applications [22–27].

2.2. Convolutional Neural Network

In the past few years, deep learning has achieved good performance in solving various problems.
CNN has been extensively studied in different types of deep neural networks [36]. In 2006, Hinton et al.
published a paper on Science, which first proposed a convolutional neural network [37]. As one of the
most effective deep learning models, CNN has been widely used in image processing [38–40], face
recognition [41] and feature extraction [42]. In general, a CNN consists of three parts: convolutional
layers, pooling layers, and fully connected layers. The convolutional layer and the pooling layer are
alternately arranged; that is, one convolutional layer is followed by one pooling layer, and so on.
After the multiple convolutional and pooling layers, one or more fully connected layers are connected.
The first step in CCN convolves the input signal to obtain a feature map through the use of convolution
kernel, and then uses a nonlinear activation function (ReLU) to act on the feature map. The formal
description of the convolution layer operation is as follows:

cr
n = ReLU(

∑
m

vr−1
m ∗wr

n + br
n) (1)

In Equation (1), cr
n is the n− th output of convolutional layer r, n denotes the number of convolution

kernels in convolutional layer r, wr
n and br

n respectively represent the convolutional kernel and the
deviation, vr−1

m is the m− th output of convolutional layer r− 1, ∗ is the convolutional operation. After
calculating Equation (1), we can obtain the feature map and then perform average or maximum feature
activation through the pooling layer in areas where the feature map does not intersect. Finally, the fully
connected layer is used for classification. Given a data set X = {xi}

M
i=1, a CNN optimization learning

Sensors 2019, 19, 3992 5 of 16

process with P convolutional layers, a convolution kernel parameter set {Wi}
P
i=1, a bias set {bi}

k
i=1 and a

fully connected layers {bi}
k
i=1 can be defined as:

min
{Wi}

P
i ,{bi}

P
i ,U

∑
j
l(Y(x j), f (x j, {Wi}

P
i , {bi}

P
i , U)) (2)

where l(·) denotes the loss function to estimate the cost between true label Y(x j) and predicted label by
CNN model f (x j, {Wi}

P
i , {bi}

P
i , U).

2.3. Maximum Mean Discrepancy

Since the proposed MultiDTNN needs to measure the distribution differences between domains,
it is necessary to choose a suitable measurement method of distribution distance. It has recently been
demonstrated that the maximum mean deviation (MMD) in the regenerative kernel Hilbert space
is a valid method for estimating the distance between two distributions [43]. For the convenience
of calculation, the square form of MMD is generally used. The process of estimating the difference
between two domains using MMD is as follows.

Given a labeled dataset in a source domain Ds = (
{
x1, y1

}
, . . . , (xn, yn)), an unlabeled dataset in

target domain Dt = (z1, . . . , zm), the nonlinear mapping function in the regenerative kernel Hilbert
space is φ. The squared form of MMD is defined as follows:

MMD2
H = ||

1
n

∑n

i=1
φ(xi) −

1
m

∑m

i=1
φ(zi)||

2 (3)

In Equation (3), the differences of distribution between two domains is the distance between
the two data distributions. The smaller of MMD value, the closer the two domains are. If the
value is 0, the two domains match. At present, MMD have been widely used in transfer learning
algorithms [15,21,23,24,26,29,30,32], which can be used to construct regularization terms to learn
features in different domains with more similar. In neural network-based transfer learning algorithms,
MMD is often added to the loss function for optimization [30].

3. Multi-Source Deep Transfer Neural Network

This section describes the multi-source deep transfer neural network algorithm in detail. For
convenience, we only consider the binary classification problem. Given N source domains are defined
as:Ds = {Dsi = (xsi

j , ysi
j)

nsi
j=1

, i = 1, . . . , N}, xsi
j denotes j − th sample of si − th source domain, the

corresponding class label is ysi
j , nsi is the number of sample in si − th source domain, Psi and Qsi

mean marginal and conditional probability distribution. Analogously, target domain is DT = (xi)|
nt
i=1,

marginal and conditional probability distribution are Pt and Qt. Normally, Psi , Pt and Qsi , Qt.
In this paper, the goal of our proposed MultiDTNN is to use knowledge from multi-source domains

to assist learning tasks of target domains to create an efficient classifier model, which can accurately
label unlabeled samples in target domains. In MultiDTNN, knowledge transfer from the source to
target domains is achieved through transfer learning [11]. Transfer learning is a new machine learning
that solves learning problems in different but related domain (target domain) by using knowledge in
existing historical data (source domain) [44,45]. At present, most of the transfer learning techniques
commonly used by researchers are instance-based methods, which select representative instances from
source domain to assist learning tasks in target domain [22]. However, target and source domains
differ greatly in practical applications, if the instance data of source domain that is not related to
target domain are forcibly transferred to target domain, which will not help the learning of target
domains named as negative transfer. The negative transfer has been born with transfer learning, and
it has always been the focus of researchers. In order to avoid negative transfer and better assist the
learning tasks in target domain, it is particularly important to select samples in source domain with
high similarity to target domain [12,13]. MultiDTNN can transfer knowledge from multiple source

Sensors 2019, 19, 3992 6 of 16

domains into the target domain, so as to improve the classifier effect, and we must fully consider the
difference between each source and target domains, maximizing the knowledge transfer from source
domains similar to target domains to avoid negative transfer. The composition strategy, the knowledge
transfer from multi-source domains, and the classifier training process in the MultiDTNN model are
described in detail below.

3.1. Joint Probability Distribution Adaptation

In practical applications, each source and target domains are not only different in marginal
probability, but also have significant differences in conditional probability. If only the marginal
probability between the source and target domains is considered, the negative transfer phenomenon
may occur, and the better classification performance cannot be achieved in transfer learning. Therefore,
in order to make the proposed MultiDTNN a better classification effect, we simultaneously consider
both the marginal and conditional probability. Literature [30,46] points out that minimizing the
differences of marginal and conditional distributions can effectively avoid negative transfer and
improve the classification performance of transfer learning algorithms.

minDi f f (Psi(φ(x
si)), Pt(φ(xt))) (4)

minDi f f (Qsi(y
si
∣∣∣(xsi)), Qt(yt

∣∣∣φ(xt))) (5)

In Equations (4) and (5), φ(·) represents a feature mapping to a regenerating kernel Hilbert space,
xsi is sample vector and ysi is label vector in si − th source domain. xt is sample vector and yt is label
vector in target domain. Di f f represents a function that calculates the differences between the source
and target domains.

Equation (4) is to minimize the data distribution distance between the target and source domains.
We apply MMD (Equation (3)) to calculate Equation (4):

MMD2
H(Psi , Pt) = ||

1
nsi

∑nsi

j=1
φ(xsi

i) −
1
nt

∑nt

j=1
φ(xt

i)||
2
H (6)

The conditional distribution in (5) is intractable because of unknown yt. We rewrite it into the
following Equation (7):

minD(
Qsi(φ(x

si)
∣∣∣ysi) · Psi(φ(x

si))

Psi(ysi)
,

Qt(φ(xt)
∣∣∣yt) · Pt(φ(xt))

P(yt)
) (7)

In order to solve the problems of the unknown sample label of the target domain, the
literature [30,31] proposed a circuitous way: Equation (7) is processed by using the pseudo labels
of data in the target domain. That is, by means of the pre-training model on labeled source data,
pseudo labels in target domain will be obtained. The calculation method of samples pseudo-label in
target domain is as follows: the similarity weight of samples in source and target domain is preferably
calculated by using the MMD method, then the CNN classifier is trained by using the samples in the
source domain and corresponding weight information, and finally the samples pseudo-label in target
domain are labeled by the classifier. Supposing a total of C categories in target domain, c ∈ {1, . . . , C}.
We utilize Equation (3) to measure the mismatch of conditional distributions with Qsi(x

si
∣∣∣ysi = c) and

Qt(xt
∣∣∣yt = c) :

MMD2
H(Q

(c)
si

, Q(c)
t) = ||

1

n(c)
si

∑
x

si
j ∈D

(c)
si

φ(xsi
j)−

1

n(c)
t

∑
xt

j∈D
(c)
t
φ(xt

j)||
2
H (8)

Sensors 2019, 19, 3992 7 of 16

where D(c)
si

= {xsi
j : xsi

j ∈ Dsi ∧ y(xsi
j) = c}, y(xsi

j) is the true label, and n(c)
s = |D(c)

s |, D(c)
t = {xt

j : xt
j ∈

Dt ∧ y(xt
j) = c}, y(xsi

j) is the pseudo label and n(c)
t = |D(c)

t |. There are certainly many errors in the
initial pseudo labels of target data, but we can iteratively update the pseudo labels in subsequent
model optimization stages until the best prediction accuracy is obtained.

DH(Jsi , Jt) = MMD2
H(Psi , Pt) +

∑C

c=1
MMD2

H(Q
(c)
si

, Q(c)
t), (9)

In Equation (9), Jsi and Jt is the JPDA of si − th source domain Dsi and target domain Dt.
The minimization of Equation (9) ensures the match in marginal and conditional distributions with
sufficient statics.

3.2. Construction of MultiDTNN

Based on JPDA in Section 3.1, we use convolutional neural network to establish a multi-source
deep transfer neural network framework. The framework of MultiDTNN is shown in Figure 2.

Sensors 2019, 19, x FOR PEER REVIEW 7 of 17

2 2 () ()

1
(,) (,) (,)

i i i

C c c

H s t H s t H s tc
D J J MMD P P MMD Q Q


  , (9)

In Equation (9),
is

J and tJ is the JPDA of -is th source domain
is

D and target domain tD . The

minimization of Equation (9) ensures the match in marginal and conditional distributions with

sufficient statics.

3.2. Construction of MultiDTNN

Based on JPDA in Section 3.1, we use convolutional neural network to establish a multi-source

deep transfer neural network framework. The framework of MultiDTNN is shown in Figure 2.

DS1 Target

TCNN1

DSN Target

TCNNN

DS2 Target

TCNN2

Selection&Ensemble

MultiDTNN

Figure 2. Framework of MultiDTNN.

From Figure 2, we divide the MultiDTNN into two parts: a set of classifier which contains N

classifiers
is

TCNN is obtained by training on CNN with JPDA using source domain
is

D and a target

domain; we implement a selectin strategy similar to that in [22] to choose ensemble of classifier, which

composes the model of MultiDTNN. Ensemble is the system that uses multiple predictors,

statistically independent to some extent, in order to attain an aggregated prediction [47]. Such

systems usually perform better than a single predictor, and their stability is better. The two parts are

described in detail below.

A. Construction of
is

TCNN

The structure of
is

TCNN is shown in Figure 3. In general, we can train the CNN model on

sufficient data in source domain from scratch by using the optimization task defined in Equation (2).

When applying the pre-trained CNN model to the target domain, we integrate JPDA and as a loss

function regularization term, redefining the new objective function as:

() (,)
ic H s tL l D J J   (10)

1{ , }i i l

iW b  is the parameter set of a CNN with l layers and  is non-negative

regularization term. For CNN, as the number of layers increases, the features will change from

general to specific. The upper layer tends to represent more abstract features, which will lead to larger

domain differences. Therefore, we deploy regularization operations on the fully connected layer.

Labled

samples

Unlabeled

samples

Dsi

DT

Conovolution

blocks

Fully-connected

layer

lc

Lable tartet

samples

Pseudo

Labels

JPDA

Figure 2. Framework of MultiDTNN.

From Figure 2, we divide the MultiDTNN into two parts: a set of classifier which contains N
classifiers TCNNsi is obtained by training on CNN with JPDA using source domain Dsi and a target
domain; we implement a selectin strategy similar to that in [22] to choose ensemble of classifier, which
composes the model of MultiDTNN. Ensemble is the system that uses multiple predictors, statistically
independent to some extent, in order to attain an aggregated prediction [47]. Such systems usually
perform better than a single predictor, and their stability is better. The two parts are described in
detail below.

A. Construction of TCNNsi

The structure of TCNNsi is shown in Figure 3. In general, we can train the CNN model on
sufficient data in source domain from scratch by using the optimization task defined in Equation (2).
When applying the pre-trained CNN model to the target domain, we integrate JPDA and as a loss
function regularization term, redefining the new objective function as:

L(θ) = lc + λDH(Jsi , Jt) (10)

θ =
{
Wi, bi

}l

i=1
is the parameter set of a CNN with l layers and λ is non-negative regularization

term. For CNN, as the number of layers increases, the features will change from general to specific.
The upper layer tends to represent more abstract features, which will lead to larger domain differences.
Therefore, we deploy regularization operations on the fully connected layer.

Sensors 2019, 19, 3992 8 of 16

Sensors 2019, 19, x FOR PEER REVIEW 7 of 17

2 2 () ()

1
(,) (,) (,)

i i i

C c c

H s t H s t H s tc
D J J MMD P P MMD Q Q


  , (9)

In Equation (9),
is

J and tJ is the JPDA of -is th source domain
is

D and target domain tD . The

minimization of Equation (9) ensures the match in marginal and conditional distributions with

sufficient statics.

3.2. Construction of MultiDTNN

Based on JPDA in Section 3.1, we use convolutional neural network to establish a multi-source

deep transfer neural network framework. The framework of MultiDTNN is shown in Figure 2.

DS1 Target

TCNN1

DSN Target

TCNNN

DS2 Target

TCNN2

Selection&Ensemble

MultiDTNN

Figure 2. Framework of MultiDTNN.

From Figure 2, we divide the MultiDTNN into two parts: a set of classifier which contains N

classifiers
is

TCNN is obtained by training on CNN with JPDA using source domain
is

D and a target

domain; we implement a selectin strategy similar to that in [22] to choose ensemble of classifier, which

composes the model of MultiDTNN. Ensemble is the system that uses multiple predictors,

statistically independent to some extent, in order to attain an aggregated prediction [47]. Such

systems usually perform better than a single predictor, and their stability is better. The two parts are

described in detail below.

A. Construction of
is

TCNN

The structure of
is

TCNN is shown in Figure 3. In general, we can train the CNN model on

sufficient data in source domain from scratch by using the optimization task defined in Equation (2).

When applying the pre-trained CNN model to the target domain, we integrate JPDA and as a loss

function regularization term, redefining the new objective function as:

() (,)
ic H s tL l D J J   (10)

1{ , }i i l

iW b  is the parameter set of a CNN with l layers and  is non-negative

regularization term. For CNN, as the number of layers increases, the features will change from

general to specific. The upper layer tends to represent more abstract features, which will lead to larger

domain differences. Therefore, we deploy regularization operations on the fully connected layer.

Labled

samples

Unlabeled

samples

Dsi

DT

Conovolution

blocks

Fully-connected

layer

lc

Lable tartet

samples

Pseudo

Labels

JPDA

Figure 3. Structure of TCNNsi .

By minimizing Equation (10), we can adapt the pre-trained CNN to the classification task of the
target domain. We use a mini-batch stochastic gradient (SGD) [29,30] and a backpropagation algorithm
for the optimization of CNN networks. The gradient of Equation (10) for network parameters is
as follows:

∇θl =
∂lc
∂θl

+ λ(∇DH(Jsi , Jt))
T(
∂φ(x)
∂θl

) (11)

The detailed formations of ∇DH(Jsi , Jt) are described as:

∇DH(Jsi , Jt) = ∇MMD2
H(Psi , Pt) +

∑C

c=1
∇MMD2

H(Q
(c)
si

, Q(c)
t) (12)

∇MMD2
H(Psi , Pt) =


2

nsi
(1

nsi

∑nsi
j=1 φ(x

si
j)−

1
nt

∑nt
j=1 φ(x

t
j)), x ∈ Dsi

2
nt
(1

nt

∑nt
j=1 φ(x

t
j)−

1
nsi

∑nsi
i=1 φ(x

si
i)), x ∈ Dt

(13)

∇MMD2
H(Q

(c)
si

, Q(c)
t) =


2

n(c)si

(1
n(c)si

∑
x

si
j ∈D

(c)
si

φ(xsi
j) −

1
nc

t

∑
xt

j∈D
(c)
t
φ(xt

j)), x ∈ Dsi

2
n(c)t

(1
nc

t

∑
xt

j∈D
(c)
t
φ(xt

j) −
1

n(c)si

∑
x

si
j ∈D

(c)
si

φ(xsi
j)), x ∈ Dt

(14)

The training procedure mainly consists of two subprocesses: (1) pre-trained CNN on each labeled
source domain data; (2) network adaptation in target domain using labeled data of source domain
data and unlabeled data of target data by training CNN classification of (1). Therefore, we can get a
collection of classifiers H ∈ {TCNNi}

N
i=1 on N source domains. The detailed procedure is shown Step 1

in Table 1. When the size of data in source domain becomes large, the calculation of CNN requires
the support of high-performance computers, which is also the need for deep learning in the future.
Therefore, in order to better record the performance indicators during the operation to provide support
for optimizing CNN, various performance tuning tools are used.

B. Strategy of selection
In order to get a powerful set of classifiers, we are inspired by [22] to implement an efficient

strategy of selection. The strategy is as follows: the AdaBoost algorithm is cyclically executed on
dataset of target domain, and a classifier is selected from each of the classifier sets in each iteration,
and the classifier is trained on target domain; ensure that the knowledge of source domain is more
closely related to the target task is transferred, calculate the error rate of the classifier on target domain
dataset, and select the classifier which the error rate meets the requirements, else discard the classifier;
in addition, the weight of the sample of target domain is updated for the next iteration. The detailed
selection process is shown Step 2 ~Step 13 in Table 1. In the end, we will get a set of classifiers with
better classification performance on target domain, which is our proposed MultiDTNN model.

3.3. Training Strategy of MultiDTNN

According to Sections 3.1–3.3, the training process of proposed MultiDTNN is summarized and
described in Table 1.

Sensors 2019, 19, 3992 9 of 16

Table 1. Training Strategy of MultiDTNN.

Training Procedure of MultiDTNN

Input: N labeled source domains DS = {DSi = (xsi
j , ysi

j)
nsi

j=1
, i = 1, . . . , N}, the number of sample in si is nsi .

An unlabeled training dataset DT = (xi)i=1,...,nt
in target domain, the architecture of deep neural network, the

trade-off parameter λ, the maximum number of iterations M.
Output: f̂T
Training:
Step 1. Pre-train a set of classifier H ∈ {TCNN1, TCNN2, . . . , TCNNN} on DT ∪DS;

H← ∅
for i← 0 to N do

Train base deep network CNNi on Dsi

Predict the pseudo labels Ŷ0 = (yt
k)

nt

k=1
on DT by using CNNi

Repeat
j = j + 1
Compute the regularization term JPDA according to Equation (9)
Obtain TCNNi by optimizing CNNi with Equation (10)
Update the pseudo labels Ŷ j with optimized network TCNNi

Until convergence or Ŷ j = Ŷ j−1,
H← H ∪ TCNNi

Step 2. Initialize the weight vector wT = (wT
1 , wT

2 , . . . , wT
nt
)

for t← 0 to M do
Step 3. The weight vector wT are normalized to 1
Step 4. Empty the current weak classifier set F← ∅

for t← 0 to N do
Step 5. Compute the error εt of hk

∈ H on DT
εt ←

∑
j

wT
j [y

T
j , hk(xT

j)]

if εt > 1/2 then
Step 6. hk

← −hk

Step 7. Update by compute εt ←
∑
j

wT
j [y

T
j , hk(xT

j)]

Step 8. F← F∪ (hk, εt)
Step 9. Find the weak classifier ht : x→ y

(ht, εt) = arg minεt
(hk ,εt)∈F

Step 10. H← H − ht

Step 11. Set αt =
1
2 ln 1−εt

εt

Step 12. Update the weight wT
i ← wT

i e−αt yT
i hk

t (x
T
i)

Step 13. Return f̂T= sign(
∑

t αtht(x))

4. Experimental Results

In this section, in order to analyze the effectiveness of the proposed MultiDTNN, we evaluate it
on three cross-domain standard datasets. First, the experimental setup is introduced in Section 4.1.
Then, Section 4.2 describes the three cross-domain datasets in detail. Finally, in Section 4.3 we compare
the proposed MultiDTNN with several state-of-the-art deep transfer learning algorithms.

4.1. Experimental Setting

The following state-of-the-art transfer learning methods are chosen as benchmark algorithms for
comparison with MultiDTNN: ARTL [12], STLCF [16], TaskTrBoost [22], FastDAM [24], IMTL [26],
DTLC [29], DAN [31], SDT [32], DHN [34], DDC [35], CNN [38], and Deep CORAL [40]. Among these
benchmark algorithms, CNN is a non-transfer learning algorithm, TaskTrBoost, FastDAM, and IMTL
are transfer learning algorithms that can utilize knowledge in multiple source domains, STLCF and
ARTL are non-deep transfer learning. For baseline methods, we adopt the standard procedures for
model as described in their respective works to our paper. We implement the proposed MultiDTNN
using TensorFlow and train with Stochastic Gradient Descent (SGD). The initial learning rate is set

Sensors 2019, 19, 3992 10 of 16

as 10−3, and momentum is 0.9 in SGD. The parameters λ is searched in the range from 0.01 to 100.
Actually, MultiDTNN model can easily adopt other CNN structures, e.g., VGGNet, ResNet, and
GoogleNet. Deeper CNN structures would improve the performance somehow. Since we are focusing
on the specific layers, we only evaluate the AlexNet structure in this paper. We primarily follow an
unsupervised standard evaluation protocol to adopt and use all labeled samples of source domain and
unlabeled samples of target domain. For the fairness of experiments, a 5-fold cross-validation strategy
is selected for all experiments, and we repeat the strategy twice as the final comparison results. In the
experiments we will run 10 times, the average value of classification accuracy, with their standard
deviations are recorded. The representation of classification accuracy is as follows:

Accuracy =

∣∣∣x : x ∈ Dt ∧ f (x) = y(x)
∣∣∣

|x : x ∈ Dt|
× 100%

where the dataset of target domain is Dt, y(x) represents the truth class label of x, f (x) is the class label
of x predicted by the classifiers.

4.2. Datasets

Office-31, Office-10+Caltech-10 and Office+Home [30–32] are commonly well-known cross-domain
standard datasets in transfer learning applications, so all experiments in this paper are performed on
these datasets. The datasets are described in detail below.

Office-31 is a standard dataset that contains 4,652 images from the domains Amazon (A), Webcam
(W), and DSLR (D). These images can be divided into 31 categories. Among them, the samples in
Amazon are from www.amazon.com, and the samples in Webcam and DSLR are obtained through
web cameras and digital SLR cameras in different environments. We construct six cross-domain
tasks A->D, A->W, W->A, W->D, D->A, and D->W from source to target domains. On each of the
above-mentioned cross-domain, the proposed multi-source MultiDTNN algorithm uses A, W, and D
as the source domain.

Office-10+Caltech-10 contains 10 common objects shared by Office-31 and Caltech-256 (C)2

datasets, which have been widely used in domain adaptation methods. As with the method of
constructing cross-domain tasks on Office-31, we construct 12 cross-domain tasks. The number of
source domain is 4 in MultiDTNN.

Office+Home collects objects from 4 domains: Art (Ar, artistic drawing object), Clipart (Cl,
images collected from www.clipart.com), Product (Pr, similar to Amazon’s sample with almost clean
background) and Real-World (Re, object images taken with regular camera). The dataset has 65 objects
with15500 image samples. Similarly, we constructed 12 cross-domain tasks in a similar way to Office-31,
with MultiDTNN using 4 source domains simultaneously on each task.

4.3. Analysis of Experimental Results

In this section, the experimental results of MultiDTNN algorithm and 12 benchmark algorithms on
real datasets are analyzed and compared. We compare the average accuracy rate after 10 experiments
on the three datasets. Table 2 shows the results of six cross-domain tasks on Office-31. The results of
12 cross-domain tasks on Office-10+Caltech-10 are shown in Table 3. Table 4 shows the results on 12
cross-domain tasks of Office+Home.

Table 2. Average accuracy rate (%) with absolute value of standard variation on Office-31 dataset.

Algorithms A->W D->W A->D W->D D->A W->A

CNN [38] 60.15
(0.45)

94.33
(0.35)

63.16
(0.46)

98.23
(0.19)

50.98
(0.58)

50.01
(0.38)

DTLC [29] 70.78
(0.31)

97.11
(0.56)

68.67
(0.52)

99.23
(0.36)

55.56
(0.32)

54.11
(0.56)

STLCF [16] 58.11
(0.39)

92.26
(0.41)

60.87
(0.36)

96.14
(0.26)

48.98
(0.45)

48.87
(0.43)

www.amazon.com
www.clipart.com

Sensors 2019, 19, 3992 11 of 16

Table 2. Cont.

Algorithms A->W D->W A->D W->D D->A W->A

DAN [31] 69.52
(0.43)

95.96
(0.34)

67.14
(0.42)

99.01
(0.21)

54.23
(0.37)

53.23
(0.34)

SDT [32] 67.78
(0.32)

96.12
(0.43)

66.57
(0.52)

98.86
(0.38)

54.45
(0.23)

54.12
(0.37)

DHN [34] 68.27
(0.43)

96.15
(0.23)

66.55
(0.28)

98.56
(0.33)

55.97
(0.27)

52.65
(0.23)

ARTL [12] 57.27
(0.51)

93.57
(0.37)

59.31
(0.45)

95.45
(0.22)

49.14
(0.43)

47.36
(0.33)

D-CORAL [40] 67.24
(0.37)

95.68
(0.35)

66.87
(0.58)

99.23
(0.26)

52.35
(0.34)

51.26
(0.32)

DDC [35] 62.02
(0.46)

95.02
(0.53)

65.23
(0.39)

98.43
(0.41)

52.13
(0.67)

51.98
(0.46)

{A,W,D}->W {A,W,D}->D {A,W,D}->A

TaskTrBoost
[22]

66.67
(0.42)

94.67
(0.48)

64.76
(0.35)

95.67
(0.43)

51.34
(0.38)

50.24
(0.34)

FastDAM
[24]

68.34
(0.37)

95.86
(0.46)

65.32
(0.38)

98.43
(0.35)

52.72
(0.42)

52.36
(0.32)

IMTL
[26]

70.45
(0.35)

96.98
(0.51)

66.15
(0.43)

99.11
(0.36)

53.98
(0.53)

53.65
(0.41)

MultiDTNN 73.65
(0.29)

98.13
(0.52)

70.01
(0.43)

99.56
(0.38)

57.11
(0.54)

56.98
(0.35)

Table 3. Average accuracy rate (%) with absolute value of standard variation on Office-10+Caltech-10
dataset.

Algorithms A->C D->C W->C A->W C->W D->W A->D C->D W->D C->A D->A W->A

CNN [38] 83.76
(0.33)

81.23
(0.43)

75.89
(0.55)

83.24
(0.29)

82.87
(0.35)

97.53
(0.24)

88.65
(0.36)

89.34
(0.31)

98.14
(0.27)

91.01
(0.23)

89.23
(0.28)

83.25
(0.32)

DTLC [29] 88.76
(0.65)

83.23
(0.34)

82.45
(0.41)

93.56
(0.48)

93.01
(0.58)

99.54
(0.31)

93.77
(0.43)

91.39
(0.36)

99.47
(0.13)

93.46
(0.62)

93.18
(0.52)

94.12
(0.59)

STLCF [16] 82.25
(0.43)

80.56
(0.56)

74.32
(0.58)

82.11
(0.53)

81.22
(0.51)

96.34
(0.52)

87.34
(0.42)

88.34
(0.48)

97.21
(0.24)

89.53
(0.43)

88.43
(0.51)

82.13
(0.47)

DAN [31] 86.01
(0.28)

82.56
(0.38)

81.62
(0.36)

93.88
(0.43)

92.12
(0.37)

99.11
(0.22)

92.16
(0.29)

90.83
(0.27)

99.12
(0.11)

91.87
(0.31)

92.11
(0.48)

92.46
(0.35)

SDT [32] 85.24
(0.32)

81.98
(0.45)

80.87
(0.36)

93.67
(0.34)

92.11
(0.54)

99.26
(0.41)

91.58
(0.46)

90.45
(0.37)

99.32
(0.18)

91.12
(0.31)

91.34
(0.43)

91.42
(0.48)

DHN [34] 86.35
(0.26)

82.12
(0.42)

81.23
(0.32)

93.32
(0.25)

92.45
(0.21)

99.15
(0.37)

89.57
(0.31)

90.11
(0.35)

99.26
(0.19)

92.11
(0.28)

91.68
(0.36)

91.63
(0.34)

ARTL [12] 81.46
(0.43)

79.26
(0.43)

73.87
(0.49)

81.87
(0.55)

80.87
(0.52)

95.23
(0.56)

86.32
(0.48)

87.96
(0.47)

98.43
(0.28)

88.41
(0.38)

88.01
(0.44)

81.97
(0.54)

D-CORAL
[40]

85.87
(0.37)

82.45
(0.28)

81.34
(0.22)

92.59
(0.32)

91.37
(0.38)

99.34
(0.31)

89.26
(0.35)

89.98
(0.42)

99.56
(0.15)

92.43
(0.33)

91.76
(0.37)

91.64
(0.24)

DDC [35] 84.23
(0.52)

81.26
(0.37)

78.13
(0.53)

86.54
(0.41)

82.15
(0.43)

98.26
(0.38)

89.11
(0.38)

89.74
(0.45)

99.67
(0.21)

92.21
(0.35)

90.12
(0.42)

85.15
(0.47)

{A,D,W,C}->C {A,D,W,C}->W {A,D,W,C}->D {A,D,W,C}->A

TaskTrBoost
[22]

83.56
(0.41)

81.64
(0.34)

80.26
(0.53)

88.34
(0.52)

87.45
(0.47)

97.33
(0.46)

88.35
(0.51)

89.56
(0.43)

97.78
(0.24)

91.25
(0.33)

89.23
(0.38)

88.67
(0.36)

FastDAM
[24]

84.32
(0.35)

82.11
(0.45)

81.23
(0.47)

90.32
(0.48)

89.21
(0.43)

98.32
(0.49)

89.35
(0.46)

90.65
(0.39)

98.34
(0.29)

92.56
(0.29)

92.27
(0.42)

92.35
(0.48)

IMTL
[26]

85.77
(0.43)

83.43
(0.36)

82.15
(0.52)

92.61
(0.46)

91.23
(0.53)

99.65
(0.44)

92.36
(0.51)

91.01
(0.36)

99.45
(0.27)

93.79
(2.31)

93.44
(0.45)

94.86
(0.52)

MultiDTNN 89.34
(0.53)

85.64
(0.31)

84.58
(0.43)

94.78
(0.42)

94.55
(0.44)

99.96
(0.37)

94.38
(0.46)

92.24
(0.32)

99.98
(0.14)

94.15
(0.27)

95.01
(0.48)

95.28
(0.53)

Table 4. Average accuracy rate (%) with absolute value of standard variation on Office+Home dataset.

Algorithms Ar->Cl Pr->Cl Rw->Cl Ar->Pr Rw->Pr Cl->Pr Ar->Rw Cl->R Pr->Rw Cl->Ar Pr->Ar Rw->Ar

CNN [38] 30.11
(0.56)

34.56
(0.37)

38.72
(0.38)

39.23
(0.54)

60.32
(0.33)

46.76
(0.46)

50.23
(0.45)

49.54
(0.39)

54.32
(0.46)

32.25
(0.53)

28.45
(0.41)

42.54
(0.65)

DTLC [29] 35.53
(0.65)

41.57
(0.36)

44.62
(0.43)

43.76
(0.45)

66.11
(0.32)

52.89
(0.69)

56.32
(0.54)

53.54
(0.35)

61.56
(0.51)

36.79
(0.53)

32.35
(0.48)

45.75
(0.33)

Sensors 2019, 19, 3992 12 of 16

Table 4. Cont.

Algorithms Ar->Cl Pr->Cl Rw->Cl Ar->Pr Rw->Pr Cl->Pr Ar->Rw Cl->R Pr->Rw Cl->Ar Pr->Ar Rw->Ar

STLCF [16] 29.43
(0.47)

33.67
(0.43)

37.65
(0.34)

38.55
(0.51)

59.87
(0.43)

45.78
(0.55)

49.45
(0.53)

48.43
(0.47)

53.76
(0.48)

31.34
(0.42)

27.54
(0.54)

41.65
(0.53)

DAN [31] 30.32
(0.54)

34.16
(0.32)

38.45
(0.42)

42.56
(0.51)

62.76
(0.28)

47.65
(0.55)

54.27
(0.58)

50.12
(0.33)

56.82
(0.45)

32.67
(0.49)

30.11
(0.45)

43.67
(0.31)

SDT [32] 32.65
(0.42)

35.87
(0.54)

42.55
(0.34)

41.32
(0.48)

64.45
(0.33)

49.56
(0.46)

52.77
(0.53)

50.56
(0.35)

54.82
(0.48)

33.67
(0.34)

30.67
(0.43)

43.45
(0.29)

DHN [34] 31.75
(0.44)

40.13
(0.37)

45.23
(0.41)

40.85
(0.56)

62.89
(0.36)

52.01
(0.58)

51.75
(0.55)

52.82
(0.46)

61.23
(0.53)

34.78
(0.35)

31.24
(0.43)

45.23
(0.38)

ARTL [12] 28.23
(0.57)

32.74
(0.53)

36.66
(0.38)

37.12
(0.41)

58.58
(0.47)

44.27
(0.42)

48.87
(0.54)

47.84
(0.56)

52.57
(0.44)

30.13
(0.52)

26.62
(0.51)

40.54
(0.43)

D-CORAL
[40]

30.85
(0.43)

34.28
(0.38)

40.35
(0.39)

42.34
(0.53)

62.56
(0.45)

47.26
(0.61)

54.56
(0.52)

48.87
(0.41)

55.67
(0.48)

32.67
(0.46)

28.75
(0.44)

43.81
(0.42)

DDC [35] 31.25
(0.56)

36.52
(0.31)

39.65
(0.37)

41.87
(0.43)

63.65
(0.53)

48.54
(0.55)

53.56
(0.48)

51.67
(0.32)

57.31
(0.44)

31.82
(0.36)

29.67
(0.46)

44.78
(0.38)

{Ar,Pr,Rw,Cl}->Cl {Ar,Pr,Rw,Cl}->Pr {Ar,Pr,Rw,Cl}->Rw {Ar,Pr,Rw,Cl}->Ar

TaskTrBoost
[22]

30.32
(0.46)

34.26
(0.34)

38.46
(0.43)

39.35
(0.46)

61.88
(0.37)

49.87
(0.51)

51.86
(0.55)

49.56
(0.39)

56.43
(0.51)

32.65
(0.31)

29.54
(0.53)

42.34
(0.32)

FastDAM
[24]

31.54
(0.43)

35.65
(0.37)

41.87
(0.39)

41.23
(0.42)

62.44
(0.41)

50.54
(0.48)

53.25
(0.57)

51.28
(0.36)

59.53
(0.53)

34.43
(0.44)

30.23
(0.58)

43.11
(0.36)

IMTL
[26]

32.24
(0.47)

36.54
(0.33)

43.32
(0.48)

43.45
(0.38)

64.56
(0.45)

52.37
(0.52)

55.11
(0.49)

52.21
(0.34)

61.88
(0.55)

35.98
(0.46)

32.11
(0.51)

45.21
(0.43)

MultiDTNN 36.88
(0.44)

41.34
(0.28)

46.21
(0.45)

45.45
(0.42)

68.65
(0.43)

53.56
(0.54)

57.63
(0.51)

55.32
(0.37)

63.27
(0.57)

38.23
(0.34)

34.24
(0.56)

46.34
(0.44)

From the results in Tables 2–4, we can draw the following conclusions:
(1) On the cross-domain tasks of three datasets, the average accuracy rate of the based deep

learning methods outperform the common transfer learning algorithms ARTL and STLCF, which shows
that the based deep learning methods are obviously superior to the shallow transfer learning algorithm.

(2) CNN-based deep transfer learning algorithms (e.g., DAN, DTN, SDT, D-COREL, DTLC, and
DHN) can use the knowledge of source domain to assist in learning tasks in target domain, so their
classification performance is better than standard deep learning method (CNN). This indicates that the
data in source domain can be used to improve the learning task of target domain with unlabeled data on
the deep neural network model combined with transfer learning, so their experimental results are better.

(3) In the benchmark algorithms, TaskTrBoost, FastDAM, and IMTL can utilize the sample features
of multiple source domains to help learning tasks of target domain create classifier models, so their
classification effect is better than ARTL and STCF, which are non-deep single source domain transfer
learning algorithms, and even are obviously superior to CNN-based deep transfer learning algorithms
in some cases.

(4) Comparing with Office-31 and Office-10+Caltech-10, Office+Home contains more categories
and the distribution between categories is larger, so all algorithms cannot achieve promising
performance. However, from the experimental results we could notice that our proposed model
obtain better performance in most cases. Especially in Office+Home, MultiDTNN can achieve better
performance than the benchmark algorithms.

(5) Comparing with the benchmark algorithms, our proposed MultiDTNN model can transfer
knowledge from more than one source domain, so it can help the learning tasks of the target domain
to build a more efficient classifier model. For example, for cross-domain task A->W of the dataset
Office-31, the transfer deep neural network algorithms DTLC, DAN, SDT, DHN, D-CORAL, and DDC
of the benchmark algorithms can only transfer the knowledge of one source domain A to the target
domain W. Nevertheless, the proposed MultiDTNN can simultaneously use the knowledge of three
source domains A, W, and D for the learning task of the target domain. Similarly, the number of source
domains that MultiDTNN can utilize on the Office-10+Caltech-10 and Office+Home datasets is 4. We
carefully analyzed all the experimental results on the three datasets, and see that MultiDTNN works
best. In addition, the experimental results fully demonstrate that in deep neural networks, multi-source
transfer can effectively compensate for the lack of single-source transfer.

Sensors 2019, 19, 3992 13 of 16

From Table 1, we see that our proposed MultiDTNN model is an iterative algorithm with a key
parameter λ, so it is necessary to analyze its convergence and the influence of λ on the model. Below
we analyze the convergence and the impact of parameters λ of MultiDTNN.

A. Convergence analysis
The training process of MulDTNN in Table 1 shows that the proposed algorithm consists of two

sub-iterative processes: the first is that CNN is trained on source and target domains to obtain a set
of classifier, and the other is to select classifiers from the set of classifier to compose an ensemble
of classifier. Therefore, it is theoretically challenging to prove its convergence. So, we follow the
researchers’ experience to obtain the convergence curve of our model as shown in Figure 4. As can be
seen from Figure 4, our model has good convergence.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 17

researchers' experience to obtain the convergence curve of our model as shown in Figure 4. As can

be seen from Figure 4, our model has good convergence.

B. Parameter analysis

The parameter  indicates the regularization coefficient in the objective function of MultiDTNN,

which greatly affects the correlations between source and target domains. Therefore, we evaluate the

influence of  on model. Figure 5 gives a description of the classification performance over a range

of three cross-domain tasks. We can see that MultiDTNN is a bell-shaped curve and can achieve better

performance when the value is around 0.5. This also confirms that a good compromise between

features of deep learning and distribution difference adaptation can enhance the transferability of

features.

Figure 4. Converge curves of MultiDTNN on three datasets.

Figure 5. Influence of parameter  on MultiDTNN on three datasets.

5. Conclusions

In this paper, we design a new deep transfer neural network framework: a multi-source deep

transfer neural network, which integrates multi-source transfer learning, CNN, and JPDA into an

optimization program. Multi-source transfer can provide more knowledge that is transferred into the

target domain by using knowledge from multiple source domains, and the classification models of

the target domain are built; CNN extracts more complex features of the dataset; JPDA is used to

Figure 4. Converge curves of MultiDTNN on three datasets.

B. Parameter analysis
The parameter λ indicates the regularization coefficient in the objective function of MultiDTNN,

which greatly affects the correlations between source and target domains. Therefore, we evaluate the
influence of λ on model. Figure 5 gives a description of the classification performance over a range of
three cross-domain tasks. We can see that MultiDTNN is a bell-shaped curve and can achieve better
performance when the value is around 0.5. This also confirms that a good compromise between features
of deep learning and distribution difference adaptation can enhance the transferability of features.

Sensors 2019, 19, x FOR PEER REVIEW 14 of 17

researchers' experience to obtain the convergence curve of our model as shown in Figure 4. As can

be seen from Figure 4, our model has good convergence.

B. Parameter analysis

The parameter  indicates the regularization coefficient in the objective function of MultiDTNN,

which greatly affects the correlations between source and target domains. Therefore, we evaluate the

influence of  on model. Figure 5 gives a description of the classification performance over a range

of three cross-domain tasks. We can see that MultiDTNN is a bell-shaped curve and can achieve better

performance when the value is around 0.5. This also confirms that a good compromise between

features of deep learning and distribution difference adaptation can enhance the transferability of

features.

Figure 4. Converge curves of MultiDTNN on three datasets.

Figure 5. Influence of parameter  on MultiDTNN on three datasets.

5. Conclusions

In this paper, we design a new deep transfer neural network framework: a multi-source deep

transfer neural network, which integrates multi-source transfer learning, CNN, and JPDA into an

optimization program. Multi-source transfer can provide more knowledge that is transferred into the

target domain by using knowledge from multiple source domains, and the classification models of

the target domain are built; CNN extracts more complex features of the dataset; JPDA is used to

Figure 5. Influence of parameter λ on MultiDTNN on three datasets.

Sensors 2019, 19, 3992 14 of 16

5. Conclusions

In this paper, we design a new deep transfer neural network framework: a multi-source deep
transfer neural network, which integrates multi-source transfer learning, CNN, and JPDA into an
optimization program. Multi-source transfer can provide more knowledge that is transferred into
the target domain by using knowledge from multiple source domains, and the classification models
of the target domain are built; CNN extracts more complex features of the dataset; JPDA is used to
reduce the difference of probability distribution between domains and increases the transferability of
features in source domains. Specifically, for the purpose of enhancing the transferability of features
in deep neural networks, MultiDTNN utilizes JPDA to reduce the difference of domain probability
distribution between each source and target domains. Then, on each source and target domains, we
train CNN to obtain a set of deep learning classifiers. Finally, in order to select the classifier with the
smallest classification error in the target domain from the classifier set, inspired by TaskTrAdaBoost
a selection strategy is designed to obtain the MultiDTNN framework. The experimental results on
the three cross-domain benchmark datasets demonstrate the effectiveness of our proposed model and
have certain advantages over the benchmark algorithms. Although the experimental results show that
the MultiDTNN has better classification performance than the benchmark algorithms, it still needs to
work in the following aspects: further improve the convergence efficiency of the MultiDTNN model; in
addition, it is also an interesting challenge to increase the number of source domains to more than 10.

Author Contributions: The idea of paper was conceived by J.L. and W.W. W.W. designed the experiments. P.G.
and D.X. performed the experiments. W.W. analyzed the experimental data.

Funding: This work was supported by National Key Research and Development Plan of China (2016YFB0801004).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and prospects. Science 2015, 349,
255–260. [CrossRef]

2. Ashfaq, R.A.R.; Wang, X.Z.; Huang, J.Z.; Abbas, H.; He, Y.L. Fuzziness based semi-supervised learning
approach for Intrusion Detection System. Inf. Sci. 2016, 378, 484–497. [CrossRef]

3. Cavusoglu, U. A new hybrid approach for intrusion detection using machine learning methods. Appl. Intell.
2019, 49, 2735–2761. [CrossRef]

4. Abdelhamid, O.; Mohamed, A.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional Neural Networks for
Speech Recognition. IEEE Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [CrossRef]

5. Agarwalla, S.; Sarma, K.K. Machine learning based sample extraction for automatic speech recognition using
dialectal Assamese speech. Neural Netw. 2016, 78, 97–111. [CrossRef] [PubMed]

6. Athanasios, V.; Nikolaos, D.; Anastasios, D.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief
Review. Comput. Intell. Neurosci. 2018, 1–13. [CrossRef]

7. Vodrahalli, K.; Bhowmik, A.K. 3D computer vision based on machine learning with deep neural networks:
A review. J. Soc. Inf. Disp. 2017, 25, 676–694. [CrossRef]

8. Kumari, K.R.V.; Kavitha, C.R. Spam Detection Using Machine Learning in R. In Proceedings of the
International Conference on Computer Networks and Communication Technologies, Coimbatore, India,
26–27 April 2018.

9. Olatunji, O.S. Improved email spam detection model based on support vector machines. Neural Comput.
Appl. 2017, 31, 691–699. [CrossRef]

10. Chen, C.L.P. Deep learning for pattern learning and recognition. In Proceedings of the 10th IEEE Jubilee
International Symposium on Applied Computational Intelligence & Informatics, Timisora, Romania, 21–23
May 2015.

11. Weiss, K.; Khoshgoftaar, T.M.; Wang, D.D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]

http://dx.doi.org/10.1126/science.aaa8415
http://dx.doi.org/10.1016/j.ins.2016.04.019
http://dx.doi.org/10.1007/s10489-018-01408-x
http://dx.doi.org/10.1109/TASLP.2014.2339736
http://dx.doi.org/10.1016/j.neunet.2015.12.010
http://www.ncbi.nlm.nih.gov/pubmed/26783204
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1002/jsid.617
http://dx.doi.org/10.1007/s00521-017-3100-y
http://dx.doi.org/10.1186/s40537-016-0043-6

Sensors 2019, 19, 3992 15 of 16

12. Pan, S.J.; Qiang, Y. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.
[CrossRef]

13. Day, O.; Khoshgoftaar, T.M. A survey on heterogeneous transfer learning. J. Big Data 2017, 4, 29. [CrossRef]
14. Gao, J.; Fan, W.; Jiang, J.; Han, J. Knowledge transfer via multiple model local structure mapping.

In Proceedings of the 14th ACM SIGKDD international conference, Las Vegas, NV, USA, 21–23 August 2008.
15. Quanz, B.; Huan, J. Large margin transductive transfer learning. In Proceedings of the 18th ACM Conference

on Information and Knowledge Management, CIKM 2009, Hong Kong, China, 2–6 November 2009.
16. Lu, Z.; Zhong, E.; Zhao, L.; Xiang, E.W.; Pan, W.; Yang, Q. Selective Transfer Learning for Cross Domain

Recommendation. In Proceedings of the Proceedings of the 2013 SIAM International Conference on Data
Mining, Austin, TX, USA, 2–4 May 2013.

17. Long, M.; Wang, J.; Ding, G.; Pan, S.J.; Philip, S.Y. Adaptation Regularization: A General Framework for
Transfer Learning. IEEE Trans. Knowl. Data Eng. 2014, 26, 1076–1089. [CrossRef]

18. Xie, G.; Sun, Y.; Lin, M.; Tang, K. A Selective Transfer Learning Method for Concept Drift Adaptation.
In Proceedings of the 14th International Symposium on Neural Networks (ISNN), Sapporo, Japan,
21–26 June 2017.

19. Li, X.; Mao, W.; Jiang, W. Extreme learning machine based transfer learning for data classification.
Neurocomputing 2016, 174, 203–210. [CrossRef]

20. Li, M.; Dai, Q. A novel knowledge-leverage-based transfer learning algorithm. Appl. Intell. 2018, 48,
2355–2372. [CrossRef]

21. Sun, S.; Shi, H.; Wu, Y. A survey of multi-source domain adaptation. Inf. Fusion 2015, 24, 84–92. [CrossRef]
22. Yao, Y.; Doretto, G. Boosting for transfer learning with multiple sources. In Proceedings of the 23rd IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13–18 June 2010.
23. Sun, Q.; Chattopadhyay, R.; Panchanathan, S.; Ye, J. A Two-Stage Weighting Framework for Multi-Source

Domain Adaptation. In Proceedings of the Advances in neural information processing system, Granada,
Spain, 12–14 December 2011; pp. 505–513.

24. Duan, L.; Xu, D.; Tsang, I.W. Domain Adaptation From Multiple Sources: A Domain-Dependent
Regularization Approach. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 504–518. [CrossRef] [PubMed]

25. Wu, Q.; Zhou, X.; Yan, Y.; Wu, H.; Min, H. Online transfer learning by leveraging multiple source domains.
Knowl. Inf. Syst. 2017, 52, 687–707. [CrossRef]

26. Ding, Z.; Shao, M.; Fu, Y. Incomplete Multisource Transfer Learning. IEEE Trans. Neural Netw. Learn. Syst.
2018, 29, 310–323. [CrossRef] [PubMed]

27. Yang, J.; Yan, R.; Hauptmann, A.G. Cross-domain video concept detection using adaptive SVMs.
In Proceedings of the 15th International Conference on Multimedia, Augsburg, Germany, 24–29
September 2007.

28. Huang, J.T.; Li, J.; Yu, D.; Deng, L.; Gong, Y. Cross-language knowledge transfer using multilingual deep
neural network with shared hidden layers. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), Vancouver, BC, Canada, 26–31 May 2013.

29. Ding, Z.; Fu, Y. Deep Transfer Low-Rank Coding for Cross-Domain Learning. IEEE Trans. Neural Netw.
Learn. Syst. 2019, 30, 1–12. [CrossRef] [PubMed]

30. Han, T.; Liu, C.; Yang, W.; Jiang, D. Deep Transfer Network with Joint Distribution Adaptation: A New
Intelligent Fault Diagnosis Framework for Industry Application. ISA Trans. 2019. [CrossRef]

31. Long, M.; Cao, Y.; Wang, J.; Jordan, M.I. Learning Transferable Features with Deep Adaptation Networks.
arXiv 2015, arXiv:1502.02791.

32. Tzeng, E.; Hoffman, J.; Darrell, T.; Saenko, K. Simultaneous Deep Transfer Across Domains and Tasks.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 11–18 December
2015; pp. 4068–4076.

33. Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A New Deep Learning Model for Fault Diagnosis with Good
Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals. Sensors 2017, 17, 425. [CrossRef]
[PubMed]

34. Venkateswara, H.; Eusebio, J.; Chakraborty, S.; Panchanathan, S. Deep hashing network for unsupervised
domain adaptation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 5018–5027.

http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1186/s40537-017-0089-0
http://dx.doi.org/10.1109/TKDE.2013.111
http://dx.doi.org/10.1016/j.neucom.2015.01.096
http://dx.doi.org/10.1007/s10489-017-1084-z
http://dx.doi.org/10.1016/j.inffus.2014.12.003
http://dx.doi.org/10.1109/TNNLS.2011.2178556
http://www.ncbi.nlm.nih.gov/pubmed/24808555
http://dx.doi.org/10.1007/s10115-016-1021-1
http://dx.doi.org/10.1109/TNNLS.2016.2618765
http://www.ncbi.nlm.nih.gov/pubmed/28113958
http://dx.doi.org/10.1109/TNNLS.2018.2874567
http://www.ncbi.nlm.nih.gov/pubmed/30371396
http://dx.doi.org/10.1016/j.isatra.2019.08.012
http://dx.doi.org/10.3390/s17020425
http://www.ncbi.nlm.nih.gov/pubmed/28241451

Sensors 2019, 19, 3992 16 of 16

35. Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; Darrell, T. Deep domain confusion: Maximizing for domain
invariance. arxiv 2014, arXiv:1412.3474.

36. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, L.; Wang, G.; et al. Recent
Advances in Convolutional Neural Networks. Pattern Recognit. 2015, 77, 354–377. [CrossRef]

37. Hinton, G.; Salakhutdinov, R.R. Reducing the dimensionality of data with neura1 networks. Science 2006,
313, 504–507. [CrossRef] [PubMed]

38. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks.
Commun. ACM 2017, 60, 84–90. [CrossRef]

39. Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Employing a Spatial-Spectral
Deep Residual Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2018, 57, 1205–1218.
[CrossRef]

40. Sun, B.; Saenko, K. Deep CORAL: Correlation alignment for deep domain adaptation. In Proceedings of the
European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 2016; pp. 443–450.

41. Ding, C.; Tao, D. Trunk-Branch Ensemble Convolutional Neural Networks for Video-based Face Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 1002–1014. [CrossRef] [PubMed]

42. Wiatowski, T.; Bolcskei, H. A Mathematical Theory of Deep Convolutional Neural Networks for Feature
Extraction. IEEE Trans. Inf. Theory 2017, 64, 1845–1866. [CrossRef]

43. Gretton, A.; Borgwardt, K.; Rasch, M.J.; Schölkopf, B.; Smola, A.J. A Kernel Method for the Two-Sample
Problem. In Advance in NIPS 19; MIP Press: Cambridge, MA, USA, 2017.

44. Li, J.; Wu, W.; Xue, D. Appl Intell (2019). Available online: https://doi.org/10.1007/s10489-019-01512-6
(accessed on 14 September 2019).

45. Ding, Z.; Shao, M.; Fu, Y. Deep Low-Rank Coding for Transfer Learning. In Proceedings of the 1st International
Workshop on Social Influence Analysis/24th International Joint Conference on Artificial Intelligence (IJCAI),
Buenos Aires, Argentin, 25–31 July 2015.

46. Pan, S.J.; Tsang, I.W.; Kwok, J.T.; Yang, Q. Domain Adaptation via Transfer Component Analysis. IEEE Trans.
Inf. Theory 2011, 22, 199–210. [CrossRef] [PubMed]

47. Christodoulidis, S.; Anthimopous, M.; Ebner, L.; Christe, A.; Mouqiakakou, S. Multi-source Transfer Learning
with Convolutional Neural Networks for Lung Pattern Analysis. IEEE J. Biomed. Health Inform. 2016, 21,
76–84. [CrossRef] [PubMed]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.patcog.2017.10.013
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TGRS.2018.2865197
http://dx.doi.org/10.1109/TPAMI.2017.2700390
http://www.ncbi.nlm.nih.gov/pubmed/28475048
http://dx.doi.org/10.1109/TIT.2017.2776228
https://doi.org/10.1007/s10489-019-01512-6
http://dx.doi.org/10.1109/TNN.2010.2091281
http://www.ncbi.nlm.nih.gov/pubmed/21095864
http://dx.doi.org/10.1109/JBHI.2016.2636929
http://www.ncbi.nlm.nih.gov/pubmed/28114048
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Multi-Source Transfer Learning
	Convolutional Neural Network
	Maximum Mean Discrepancy

	Multi-Source Deep Transfer Neural Network
	Joint Probability Distribution Adaptation
	Construction of MultiDTNN
	Training Strategy of MultiDTNN

	Experimental Results
	Experimental Setting
	Datasets
	Analysis of Experimental Results

	Conclusions
	References

