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Abstract: In this paper, three-dimensional (3-D) multiple-input multiple-output (MIMO) radar
accurate localization and imaging method with motion parameter estimation is proposed for targets
with complex motions. To characterize the target accurately, a multi-dimensional signal model is
established including the parameters on target 3-D position, translation velocity, and rotating angular
velocity. For simplicity, the signal model is transformed into three-joint two-dimensional (2-D)
parametric models by analyzing the motion characteristics. Then a gridless method based on atomic
norm optimization is proposed to improve precision and simultaneously avoid basis mismatch
in traditional compressive sensing (CS) techniques. Once the covariance matrix is obtained by
solving the corresponding semi-definite program (SDP), estimating signal parameters via rotational
invariance techniques (ESPRIT) can be used to estimate the positions, then motion parameters can
be obtained by Least Square (LS) method, accordingly. Afterwards, pairing correction is carried out
to remove registration errors by setting judgment conditions according to resolution performance
analysis, to improve the accuracy. In this way, high-precision imaging can be realized without
a spectral search process, and any slight changes of target posture can be detected accurately.
Simulation results show that proposed method can realize accurate localization and imaging with
motion parameter estimated efficiently.

Keywords: MIMO radar; 3-D imaging; complex motions; high-precision; basis mismatch; atomic
norm; motion parameter estimation; pairing correction

1. Introduction

Owing to accurate localization and imaging performance, radar is widely applied in many
imaging fields. Unfortunately, the localization errors will increase so the image will be distorted and
worsened when target complex motions are taken into account, particularly for slow time-varying
motions containing translations and rotations [1,2].

Under this circumstance, relevant studies mostly concentrate on synthetic aperture radar (SAR),
inverse synthetic aperture radar (ISAR), and 3-D interference inverse synthetic aperture radar (3-D
InISAR) [3,4]. Nevertheless, the imaging accuracy and real-time performance will be worse if the
synthetic aperture time cannot be optimized reasonably. Following this, some relevant improvements
have been applied, containing optimization of imaging accuracy [5–9], selection of optimal imaging
time [10], improvements of imaging efficiency by CS and sparse sampling techniques [11–13].
However, there are still inevitable defects. On one hand, the platform is usually required to ensure
baselines unchanged during synthetic aperture time, which is impractical in actual. On the other
hand, the geometric models are usually one or two-dimensional which are insufficient to accurately
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characterize the target, and the coordinate coincidence phenomenon will increase imaging errors when
2-D estimation results are directly expanded to 3-D [14]. In addition, the migration through resolution
cell (MTRC) problem caused by the neglect of basis mismatch will further reduce the accuracy of
localization and imaging.

Owing to the multi-transmitting multi-receiving mechanism, MIMO radar has bigger aperture,
more array degrees of freedom and less imaging time [15–17], which determines it is more appropriate
to realize efficient imaging. Therefore, effects of target rotations have been systematically studied with
MIMO radar in relevant research. In [18], MIMO radar is proposed to solve the problems about low
imaging efficiency and poor imaging quality of ISAR, but the method is limited by the computation
complexity of the exhaustive search process. In [19], multi-channel Doppler computing method is
proposed, and a data fitting method is used to extract motion features. However, the fitting error is
large due to the approximate matching process, so the method cannot meet the requirement of high
imaging precision. Based on this, literature [20] improves the estimation accuracy of micro-Doppler
parameters according to a novel space geometric distribution model. For these papers, the performance
of MIMO radar imaging cannot be improved fundamentally because most of them only focus on the
improvements of geometric model or data fitting process, rather than analyzing and optimizing the
imaging or estimation techniques in theory. In contrast, the studies in [21] greatly improve the imaging
quality by combining SAR or ISAR processing techniques with MIMO radar. In this way, two radar
systems can complement each other, improve the imaging efficiency, and reduce the transmitting
power. Following this, Zhao et.al [22] presents a short-term shift orthogonal waveform which is
more effective for parameter estimation. Then a distributed MIMO SAR/ISAR system is designed
and a focusing technique is developed in [23] which can greatly improve the imaging resolution.
In paper [24], the law and period of target motion are obtained by synthesizing rotation axis and
comparing the target coordinates at different sampling times. Nevertheless, the synthetic aperture
time is still needed, or a large number of array elements is required to refine the grids, so the real-time
performance is still difficult to be guaranteed and some problems such as phase wrapping need to be
solved. Moreover, the neglect of basis mismatch further increases the imaging errors and deteriorates
the imaging performance. Although many current methods such as sparse adaptive calibration
recovery via iterative maximum a posteriori (SACR-iMAP) method in [25] and sparsity-cognizant total
least-squares (S-TLS) method in [26] can improve the imaging precision of MIMO radar by solving
basis mismatch problem, the imaging errors cannot be eliminated completely.

This paper presents an accurate MIMO radar 3-D localization and imaging method with motion
parameter estimation for maneuvering target. A multi-dimensional echo model is first established
to precisely characterize the target, containing all the parameters of position and motion. Then it is
transformed into three two-dimensional (2-D) parametric models for facilitate analysis by simplifying
and analyzing specific motions features. To improve precision and eliminate the basis mismatch
problem, a gridless method is presented based on atomic norm optimization. After constructing the
covariance matrix by solving the SDP, parameters of motion and position can be directly calculated
without spectral search process. In addition, pairing judgment and correction is carried out to remove
registration errors according to resolution analysis, so that accurate imaging can be realized with
precise estimation results. Finally, the simulations show that proposed method can achieve more
accurate imaging with efficient estimation of motion parameters when compared to other methods.

This paper is organized as follows. In Section 2, a multi-dimensional signal model is built and
transformed into joint 2-D models. In Section 3, a gridless method is introduced to achieve efficient
imaging, the resolution performance is analyzed, and pairing disorders are corrected to improve
accuracy. In Section 4, simulation results and discussion are given to illustrate the performance of
proposed method. Finally, Section 5 gives some conclusions.

Notations: In the rest of the paper, small boldface letters denote column vectors and capital
boldface letters denote matrices. ‖·‖A denotes the atomic norm. T (·) denotes Toeplitz matrix.
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⊗ denotes Kronecker product. (·)T, (·)∗, (·)H, (·)−1 and (·)+ denote the transpose, conjugate, conjugate
transpose, inverse, and pseudo-inverse operations, respectively.

2. MIMO Radar Signal Model

2.1. Multi-Dimensional Echo Model

Appropriate array structure is necessary for MIMO radar 3-D imaging and parameter
estimation [17], the layout of array in the paper is shown in Figure 1. The paper chooses a uniform
linear array consists M transmitters along X axis direction, Tm represents the m-th transmitter where
m = 0, 1, · · · , M− 1. Signal sm (t) = pm (t) exp(j2π fct + ϕm) is Hadamard orthogonal-phase encoded
signal of Tm, where pm(t) and fc are envelope and carrier frequency, signal orthogonality is ensured
by adjusting phase ϕm. Then a N × L uniform planar array is designed as the receiving array. Axial
directions of Y and Z are considered to be the array line directions and Rnl is used to represent the
receiver in n-th row, l-th column where n = 0, 1, · · · , N − 1 and l = 0, 1, · · · , L − 1. In this paper,
a large target with translations and rotations is considered in the model, thus all the scattering points
have same motion states. Moreover, they all obey Swerling II distribution and scattering coefficients
remain unchanged in one pulse period.

Figure 1. Geometry of MIMO radar array.

Following the array model, the echo signal at Rnl receiver can be expressed as

dn,l(t) =
K

∑
k=1

M−1

∑
m=0

σk · exp[j2π( fc + fd)(t− τk
m,n,l)] (1)

where σk is scattering coefficient of the k-th scattering point, τk
m,n,l = (Tmk + Rnlk) /c is delay time

and c is propagation speed of electromagnetic signal. Tmk and Rnlk represent the distance from Tm to
the k-th scattering point and the distance from k-th scattering point to Rnl , respectively. fd = 2Vd/λ

is Doppler frequency caused by target motions, λ is signal wavelength and Vd is the synthesis of
translation velocity and rotational angular velocity. After removing carrier, the receiving signal at Rnl
from Tm can be written as

dm,n,l(t)=
K

∑
k

σk · exp[j2π fdt− j2π( fc + fd) · τk
m,n,l)] (2)

Due to Vd � c, the model in (2) can be simplified as

dm,n,l(t) =
K

∑
k

σk · exp(j2π fdt) · exp[−j2π(Tmk + Rnlk)/λ] (3)
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Taking P as the reference center of the region, then the echo dP
m,n,l(t) reflected from P can be used

as reference signal to compensate the target echo signal

Dm,n,l(t) = dm,n,l(t) · dP
m,n,l(t)

∗

=
K
∑
k

σk · exp(j2π fdt) · exp[−j2π(Tmk + Rnlk− TmP− Rnl P)/λ]
(4)

Then according to the geometrical model shown in Fig.1, taking ∆R to represent the range
deviation term in (4) and it can be finally written as following, the proof is shown in Appendix A.1.

∆R ≈ [(
−→
TmP)′ + (

−→
RnlP)′] ·

−→
Pk (5)

where (
−→
TmP)′ and (

−→
RnlP)′ respectively represents the unit direction vector from Tm and Rnl to center P.

Then, in order to intuitively describe the echo, we set (PX, PY, PZ) and (PX + xk, PY + yk, PZ + zk) as
the coordinates of P and point k, dX is internal spacing of transmitting array, dY and dZ respectively
denote the row and column spacing inside the receiving array. Considering the coordinates of
T0 transmitter is (rX, 0, 0), the coordinates of R00 receiver is (0, rY, rZ), thus the coordinates of Tm

and Rnl are (rX + mdX, 0, 0) and (0, rY + ndY, rZ + ldZ), respectively. Following this, we can get
(
−→
TmP)′ ≈ (PX − rX −mdX , PY, PZ)

/
R0 and (

−→
RnlP)′ ≈ (PX , PY − rY − ndY, PZ − rZ − ldZ)

/
R0, where

R0 is the reference distance from P to coordinate center O. A pulse transmitted by radar is divided
into Q samplings, tq = q · Tp/Q(q = 0, 1, . . . , Q− 1) is the sampling time and Tp is pulse width. Thus,
the echo model can be written as

D =
K

∑
k=1

σk·(a f ⊗ ak
x ⊗ ak

y ⊗ ak
z) (6)

where

a f =
[

a f (0) a f (1) · · · a f (Q− 1)
]T

, a f (q) = exp(j2π fdtq)

ak
x =

[
ak

x(0) ak
x(1) · · · ak

x(M− 1)
]T

, ak
x(m) = exp[j2π

2PX−(rX+mdX)
λ·R0

· xk]

ak
y =

[
ak

y(0) ak
y(1) · · · ak

y(N − 1)
]T

, ak
y(n) = exp[j2π

2PY−(rY+ndY)
λ·R0

· yk]

ak
z =

[
ak

z(0) ak
z(1) · · · ak

z(L− 1)
]T

, ak
z(l) = exp[j2π

2PZ−(rZ+ldZ)
λ·R0

· zk]

(7)

However, it is difficult to directly extract parameters from the model in (6) due to the large
dimension. Moreover, Vd is also hard to be dealt because it is the synthesis of translation velocity and
3-D rotation velocity. Therefore, we transform this model into 2-D parametric models for simplicity.

2.2. Joint 2-D Parameter Models

Due to fdtq = 2Vdtq/λ = 2Rq/λ, the range term produced by target motions can be expressed as
following, with translation velocity V and 3-D rotating angular velocities ωx, ωy, ωz are considered

∆R = Vd · tq

∆RX = ∆R · PX
R0

= (V · tq + ∆Rω) · PX
R0

= V · tq · PX
R0

+ ∆x
∆RY = ∆R · PY

R0
= (V · tq + ∆Rω) · PY

R0
= V · tq · PY

R0
+ ∆y

∆RZ = ∆R · PZ
R0

= (V · tq + ∆Rω) · PZ
R0

= V · tq · PZ
R0

+ ∆z

(8)

where ∆Rω is caused by target rotations and its projections are ∆x, ∆y and ∆z, respectively. ∆RX , ∆RY
and ∆RZ are the projections of ∆R in three dimensions. Obviously, these deviation terms are only
related to their own dimensions and do not affect each other.
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It is noted that the velocity parameters are considered invariable due to the short processing
interval of MIMO radar, i.e., V, ωx, ωy and ωz are all constant during Q samplings in one pulse. As for
the roll, pitch, and yaw rotations of target shown in Figure 1, the following rotation matrices are
supported by basic navigation theory

roll(θr(t)) =

 1 0 0
0 cos θr(t) − sin θr(t)
0 sin θr(t) cos θr(t)


pitch(θp(t)) =

 cos θp(t) 0 sin θp(t)
0 1 0

− sin θp(t) 0 cos θp(t)


yaw(θy(t)) =

 cos θy(t) − sin θy(t) 0
sin θy(t) cos θy(t) 0

0 0 1


(9)

where θr(t), θp(t) and θy(t) represent the time-varying angles caused by roll, pitch, and yaw rotations.
Based on this, ∆x, ∆y and ∆z in Equation (8) can be final expressed as following, the proof is presented
in Appendix A.2.

∆x(tq) = ωz · yk · tq −ωy · zk · tq

∆y(tq) = ωz · xk · tq −ωx · zk · tq

∆z(tq) = ωy · xk · tq −ωx · yk · tq

(10)

Finally, the model in (6) can be transformed into following joint three 2-D parametric models based
on Equations (8) and (10), with partial complex variables represented by new parameters αk, βk, γk

Dx =
K
∑

k=1
σk·(ak

x ⊗ ak
α), ak

α =
[

ak
α(0) ak

α(1) · · · ak
α(Q− 1)

]T

Dy =
K
∑

k=1
σk·(ak

y ⊗ ak
β), ak

β =
[

ak
β(0) ak

β(1) · · · ak
β(Q− 1)

]T

Dz =
K
∑

k=1
σk·(ak

z ⊗ ak
γ), ak

γ =
[

ak
γ(0) ak

γ(1) · · · ak
γ(Q− 1)

]T
(11)

where
ak

α(q) = exp(j2π
2αk ·tq

λ ), αk = ωy · zk −ωz · yk + V · PX
R0

ak
β(q) = exp(j2π

2βk ·tq
λ ), βk = ωx · zk −ωz · xk + V · PY

R0

ak
γ(q) = exp(j2π

2γk ·tq
λ ), γk = ωx · yk −ωy · xk + V · PZ

R0

(12)

Hence, we can get the parameter models of X, Y, and Z in low-dimensional space through above
decoupling process of Doppler shift term. Compared with the impossibility of estimating motion
parameters directly from the Doppler frequency in (6), it becomes feasible to obtain the estimation
results of target location and motion parameters from the models in (11). Simultaneously, the problem
of large complexity caused by large dimension can also be solved. Then according to the consistency
of three models in (11), the processing in X direction will be taken as an example.

3. Accurate Imaging and Motion Estimations

3.1. 2-D Parameters Estimation without Basis Mismatch

For radar imaging, traditional sparse recovery method such as Orthogonal Matching Pursuit
(OMP) will result in basis mismatch due to the construction of sparse dictionary, which depends on
the discretization process of continuous variable. In view of this, it is a feasible method to avoid
this phenomenon by taking SVD decomposition of echo covariance matrix and then extracting the
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eigenvalues from the signal subspace accordingly. However, it should be noted that it is impractical
to extract all K-column eigenvectors to construct the signal subspace because the echo in (11) is
one-dimensional. Therefore, to solve this problem and avoid basis mismatch, a gridless method based
on atomic norm optimization is proposed in this section.

As a penalty function for convex optimization problem, atomic norm shows its convenience
in solving underdetermined linear inverse problems [27–30]. For X dimension echo model in (11),
we define atoms

a(x, α) = exp[j2π
2PX−(rX+m̄dX)

λ·R0
· x]⊗ exp[j2π

2q̄
λ · α] (13)

where a(x, α) ∈ CMQ×1, m̄ =
[

0 1 · · · M− 1
]T

and q̄ =
[

t0 t1 · · · tQ−1

]T
. So, the model

can be written as

Dx =
K

∑
k

σk · a(xk, αk) (14)

Then the atomic set is defined as A = {a(x, α), x ∈ [xmin, xmax] , α ∈ [αmin, αmax]} where
[xmin, xmax] and [αmin, αmax] represent the range of x and α. Obviously, the basic components in
A construct the full echo Dx. In this model, A and σ are considered continuous. Therefore, the atomic
norm of the echo can be expressed as

‖Dx‖A = inf

{
K

∑
k=1
|σk| : Dx =

K

∑
k

σk · a(xk, αk)

}
(15)

where σk = |σk| ejφk , σk and φk are amplitude and initial phase. However, it is impractical to directly
construct the covariance matrix of the echo because it is not Toeplitz. Considering this, the dimension
of echo is extended: Λ = EσσH = diag(|σ1|2, · · · , |σK|2), so that σ can be replaced by an equivalent
diagonal matrix. Thus, we can get the rank-K matrix

R = EDxDH
x = A(x, α)ΛA(x, α)H =

K
∑
k
|σk|2·a(xk, αk)a(xk, αk)

H (16)

where A(x, α) = [a(xmin, αmin), · · · , a(xmax, αmax)] and it is obviously a Vandermonde matrix with
infinite columns. Then, with Gaussian noise considered in Dx, the covariance matrix can be construct
based on the optimization problem

D̂ = arg min
µ

1
2
‖µ−Dx‖2

F +
ρ

2
‖µ‖A (17)

where µ is denoised truth echo and ρ is the regularization coefficient. Accordingly, this atomic norm
minimization problem can be transformed into an approximate semi-definite program (SDP) as

minimize 1
2 ‖µ−Dx‖2

F +
ρ
2 [

1
MQ trace(T (s)) + ξ]

subjectto

[
T (s) µ

µ ξ

]
≥ 0

(18)

where s =
K
∑
k
|σk|2·a(xk, αk), ξ =

K
∑

k=1
|σk|2, T (s) denotes the Toeplitz covariance matrix and its first

column is s. Furthermore, it has been proved that the noise can be efficiently suppressed by the
optimization condition, i.e., the obtained s mainly includes the scattered sampling data even at
low SNR.

According to the Toeplitz covariance matrix T (s), the estimation of parameters can be realized
based on ESPRIT algorithm. K large singular values can be found and relevant signal subspace Us
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can be obtained by taking singular value decomposition of T (s), then two subspace of Us can be
obtained as

Us1 = W1 ·Us

Us2 = W2 ·Us
(19)

where W1 = [ I(M−1)×(M−1) 0(M−1)×1 ] and W2 = [ 0(M−1)×1 I(M−1)×(M−1) ]. Following this,
we can get

Ψ = U+
s1
·Us2 (20)

Then the parameters x and α can be directly obtained according to (13) with the K eigenvalues
extracted from Ψ by eigenvalue decomposition. Following the results, scattering coefficients
distributions of the points in X-α plane can be expressed as

σx = (AH
0 A0)

−1AH
0 Dx (21)

where A0 ∈ CMQ×K is constructed by selecting corresponding columns in A(x, α), according to the
parameters extraction results

[
x1 x2 · · · xK

]
and

[
α1 α2 · · · αK

]
from (20).

Following this, all estimation results of three models in (11) can be obtained without any spectral
search process

FX =


x1

x2
...

xK

α1

α2
...

αK

σx1

σx2

...
σxK

 , FY =


y1

y2
...

yK

β1

β2
...

βK

σy1

σy2

...
σyK

 , FZ =


z1

z2
...

zK

γ1

γ2
...

γK

σz1

σz2

...
σzK

 (22)

3.2. Target 3-D Imaging with Motion Parameters Estimated

According to (22), FX, FY and FZ only represent the distributions of scattering points in X-α, Y-β
and Z-γ planes, but the orders of the points are different in these matrices. For example, the k-th
point may locates on the a-th row in FX, but the b-th row in FY and the c-th row in FZ, where a, b, c
are different because it maybe not one-to-one with the rows among FX, FY and FZ. So the true 3-D
imaging result cannot be obtained unless the coordinates in FX, FY and FZ are paired accurately. Based
on this, a set is constructed by combining all of X, Y and Z coordinates in (22), which surely contains
the coordinates of K true scattering points.{

Γ = [g0,0,0, · · · , gς,ε,ζ , · · · , gK,K,K]
∣∣∣gς,ε,ζ = aς

x ⊗ aε
y ⊗ aζ

z ,

ς = 1, 2, · · · , K, ε = 1, 2, · · · , K, ζ = 1, 2, · · · , K}
(23)

where
aς

x =
[

exp(j2π 2PX−rX
λ·R0

· xς) · · · exp(j2π
2PX−rX−(M−1)·dX

λ·R0
· xς)

]T

aε
y =

[
exp(j2π 2PY−rY

λ·R0
· yε) · · · exp(j2π

2PY−rY−(N−1)·dY
λ·R0

· yε )
]T

aζ
z =

[
exp(j2π 2PZ−rZ

λ·R0
· zζ) · · · exp(j2π

2PZ−rZ−(L−1)·dZ
λ·R0

· zζ )
]T

(24)

Then a set is defined as χ = [σ0,0,0, · · · , σς,ε,ζ , · · · , σK,K,K]. As for the elements in σς,ε,ζ , σς0,ε0,ζ0 =

(σxς+σyε+σzζ
)
/

3 only if ς0 = ς, ε0 = ε and ζ0 = ζ, otherwise σς0,ε0,ζ0 = 0. Then the true positions can
be obtained by following optimization problem

min
∥∥D− Γ · σς,ε,ζ

∥∥2
2 , σς,ε,ζ ∈ χ (25)
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where D = [D1,1,1(t1), · · · , DM,N,L(t1)]
T. All the parameters are all known in this problem, so it is

actually a process of finding K minimum values from a finite set consists of K3 elements. Therefore,
3-D imaging result is obtained

T = [ X̂ Ŷ Ẑ σ̂ ] (26)

where T ∈ CK×4, each row of T denotes the 3-D positions and scattering coefficients of every
scattering point. X̂ = J1 × X, Ŷ = J2 × Y and Ẑ = J3 × Z, where X = [ x1 x2 · · · xK ]T,
Y = [ y1 y2 · · · yK ]T, Z = [ z1 z2 · · · zK ]T, J1, J2, J3 can be regarded as position selection
matrices according to the results of (25).

Nevertheless, the obtained results are not the most accurate because the effects of Doppler
frequency shift are ignored. For this paper, accurate motion estimation plays a significant role in
position compensation and target identification. Thus, efficient estimation of the motion parameters is
carried out according to the relationships among the parameters in (11) and (26), we can get

ϕ = ω ·Φ,ϕ =
[

α̂T β̂
T

γ̂T
]
∈ C1×3K, ω =

[
ωx ωy ωz V

]
∈ C1×4

Φ =


0

ẐT

−Ŷ
T

Θ1

ẐT

0

−X̂
T

Θ2

Ŷ
T

−X̂
T

0
Θ3

 ∈ C4×3K
(27)

where α̂ = J1α, β̂ = J2β, γ̂ = J3γ, α, β, γ are the second column in FX, FY, FZ, and

Θ1 =
[

PX
R0

PX
R0
· · · PX

R0

]
∈ C1×K

Θ2 =
[

PY
R0

PY
R0
· · · PY

R0

]
∈ C1×K

Θ3 =
[

PZ
R0

PZ
R0
· · · PZ

R0

]
∈ C1×K

(28)

Therefore, Least Square (LS) method can be directly used to solve the problem in (27), then motion
parameter vector can be estimated

ω = ϕΦH(ΦΦH)−1 (29)

3.3. Pairing Correction

The estimation precision of the motion parameters is mostly determined by (27), so it must be
guaranteed that the results of (22) and (26) are correct. However, the existence of model errors will lead
to the failure of parameter estimation. After pairing, the coordinates of two points in one resolution
cell may be disorder. For example, (xa, ya, za) and (xb, yb, zb) are coordinates of point a and point b
in same X resolution cell, with ya, za far away from yb, zb and xa close to xb. In this way, it is hard to
distinguish them in the pairing process due to the strong coherence between them. So the final pairing
result maybe (xb, ya, za) or (xa, yb, zb), which will break the structure of J1. As a result, the estimation
of ωy and ωz in (29) will be inaccurate due to α̂ = J1α in (27). Similarly, when y or z coordinates are
difficult to distinguish, the estimation of motion parameters will also be affected. Therefore, pairing
correction is carried out in this section to remove this registration error and improve the accuracy of
the method, particularly the estimation accuracy of motion parameters.

First, the imaging resolution performance of the model is studied by analyzing the point spread
function theoretically. Here we define the point spread function of the X model as

Ps f (k, k0) =
1
κ

∣∣〈a(xk, αk), a(xk0 , αk0)
〉∣∣ (30)
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where κ is a normalized parameter to ensure the maximum value of Ps f (k, k0) is 1. Following this,
we take the mathematical simplification

Ps f (k, k0)

= 1
κ

∣∣∣∣∣ M
∑

m=1

Q
∑

q=1
exp[j2π

2PX−(rX+mdX)
λ·R0

· (xk − xk0 )] · exp(j2π
2Tp ·q
λ·Q (αk − αk0 ))

∣∣∣
= 1

κ

∣∣∣exp(j2π 2PX−rX
λ·R0

· (xk − xk0 )) ·
M
∑

m=1
exp(j2π mdX

λ·R0·M · (xk − xk0 )) ·
Q
∑

q=1
exp(j2π

2Tp ·q
λ·Q (αk − αk0 ))

∣∣∣∣∣
= 1

κ

∣∣∣∣∣ sin(π MdX
λ·R0
·(xk−xk0 ))

sin(π dX
λ·R0
·(xk−xk0 ))

· sin(2π
Tp
λ (αk−αk0 ))

sin(2π
Tp

λ·Q (αk−αk0 ))

∣∣∣∣∣
≈ sin c( MdX

λ·R0
· (xk − xk0 )) · sin(2 Tp

λ (αk − αk0 ))

(31)

where Tp = Q× tq is pulse width. Then the limit resolution in X-α plane is

ρx =
λ · R0

MdX
ρα =

λ

2Tp
(32)

that is, when the distance between two points in X direction is less than ρx, the main lobes of them
will overlap and makes their X coordinates difficult to be distinguished. As a result, the estimation of
motion parameters will be inaccurate.

In a similar way, the resolutions of Y-β plane and Z-γ plane can also be obtained

ρy =
λ · R0

NdY
ρβ =

λ

2Tp
ρz =

λ · R0

LdZ
ργ =

λ

2Tp
(33)

In the following, a rough estimation is developed by judging and removing the points in the
same cell. First, we need to determine whether there are points difficult to be distinguished. Taking X
dimension as example, for any point a and point b, a judging condition is set as

‖xa − xb‖ ≥ ρx (34)

if it does not meet the condition, there must be more than one point in one cell, then these points
are taken out from the pairing result. Therefore, it is actually a process of constantly eliminating
indistinguishable target points by pairing judgment. The convergence condition of this process is that
all the remaining target points satisfy the judgment condition in (34). Then, the parametric coarse
estimation is developed with the target points satisfying (34)

ϕ′ = ω′ ·Φ′ (35)

where ϕ′ ∈ C1×K′ , ω′ ∈ C1×4, Φ′ ∈ C4×K′ , K′ denotes the number of the points satisfying (34).
With the process of pairing judgment and correction in (34) and (35), the coordinates between

these points in same cell can be distinguished according to the coarse estimation of ω′. Then the
position selection matrix J1 can be corrected and Equations (26) and (27) are updated. Accordingly,
Equation (29) will be carried out based on the corrected results. In this way, the registration error can
be removed, and the high accuracy of localization and motion parameter estimation can be guaranteed.

As a summary, the flow chart of the whole method is shown in Figure 2.
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Figure 2. The flow chart of proposed method.

It is noted that the main computational load of the algorithm includes three parts. The first
one is caused by the SDPT3 or ADMM [29] when the atomic norm optimization problem is solved.
The second one is caused by singular value decomposition and eigenvalue decomposition when
ESPRIT algorithm is used to calculate the target positions, which is O(2(M3 + N3 + L3)Q3 + 6K3).
The third one is brought by the process of pairing and motion parameter estimation, which is
O(MNLK3). Thus, the computational complexity of the algorithm is mainly affected by the number of
antennas, samplings, and targets.

The method is applicable for many scenarios such as ships, airplanes, and accurate imaging can
be realized with stable application environment. However, the performance will be deteriorated once
the application environment becomes worse, such as the sea surface full of clutters and sea waves,
which will be further studied in future research.

4. Simulation Results and Discussion

In this section, relevant simulation results are shown to verify that proposed method can realize
accurate imaging and motion estimation for target with complex motions. In the simulations, a ship
target with radial translation and 3-D rotations is taken into account. Scattering points are set on the
ship hull shown in Figure 3 and scattering coefficients are all set to 1. Following this, imaging results
and motion estimation results are shown in Figures 4–9.

Figure 3. Distribution of scattering Points on the ship hull.
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First, in order to verify the feasibility of proposed method, ship target are imaged at two moments
tA and tB with different motion parameters, meanwhile radar parameters are set as Table 1 and motion
parameters of tA and tB are set as Table 2.

Table 1. Parameters for MIMO radar imaging.

Parameters Values

Transmitting elements number 10
Receiving elements number 10 × 10

Internal spacing of transmitting array 3 m
Internal spacing in row and column of receiving array 4 m

Coordinate of T0 (1 m, 0 m, 0 m)
Coordinate of R00 (0 m, 0.5 m, 0.5 m)
Carrier frequency 35 GHz
Sampling times 30

Pulse width 600 µs
X distance 5 km
Y distance 6 km
Z distance 7 km

Table 2. Motion parameters for target at different times.

Values of Motion Values of Motion
Parameters at tA Parameters at tB

Radial translation velocity (m/s) 4.8 8.7
Angular velocity of pitch rotation (rad/s) 0.1 0.3
Angular velocity of roll rotation (rad/s) 0.2 0.4
Angular velocity of yaw rotation (rad/s) 0.3 0.5
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Figure 4. 3-D MIMO Radar Imaging Results. (a) is imaging result at tA; (b) is imaging result at tB.
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Figure 5. 2-D projections of MIMO radar 3-D imaging results at tA. (a) is projection in XY plane; (b) is
projection in XZ plane. (c) is projection in YZ plane.
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Figure 6. 2-D projections of MIMO radar 3-D imaging results at tB. (a) is projection in XY plane; (b) is
projection in XZ plane; (c) is projection in YZ plane.

Figure 4 shows the 3-D imaging results by proposed method with SNR = 0 dB, Figures 5 and
6 show their 2-D projections. In these figures, accurate localization and imaging can be intuitively
presented. The deviation between true scattering points and the estimation results are small and some
coincidence points appear in the figures when the estimated results of these points are more close to the
real situation, which proves the feasibility and high accuracy of proposed method. Moreover, Table 3
shows the motion estimation results at tA and tB. High estimation accuracy of proposed method can
be verified by comparing Table 3 with Table 2, which indicates that any slight changes of target posture
can be efficiently detected with the proposed imaging method.

Table 3. Motion parameters estimation results.

Estimation Results Estimation Results
of Motion of Motion

Parameters at tA Parameters at tB

Radial translation velocity (m/s) 4.8252 8.6541
Angular velocity of pitch rotation (rad/s) 0.1136 0.2879
Angular velocity of roll rotation (rad/s) 0.2087 0.3897
Angular velocity of yaw rotation (rad/s) 0.3201 0.5221

Tables 4–6 show the time performance with different M, Q, and L which represent the number
of transmitters, samplings, and targets, respectively. For simplicity, the effects caused by receivers
are ignored because they are similar to the transmitters according to the computation analysis, so the
number N, L of receivers are set as constant as shown in Table 1. Then, the rest of the parameters
follow the settings in Table 1. As is shown in the tables, with the increase of M, Q, and L, the
running time of the algorithm increases obviously. Therefore, the time efficiency decreases accordingly,
which coincides with the computation analysis of the method.

Table 4. Time performance with different number of transmitters.

The Number of Transmitters 5 10 15 20 25 30

Running Time (s) 0.98 1.07 1.21 1.69 2.36 3.30

Table 5. Time performance with different number of samplings.

The Number of Samplings 5 10 15 20 25 30

Running Time (s) 0.84 0.96 1.17 1.50 2.19 2.98

Table 6. Time performance with different number of targets.

The Number of Targets 1 2 3 4 5 6 7 8 9 10

Running Time (s) 0.72 0.80 0.84 0.90 0.94 1.02 1.05 1.14 1.30 1.52
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Figure 7. Error performance of 3-D imaging. (a) is the comparison with MIMO-ISAR method and
modified OMP method; (b) is the comparison with SACR-iMAP method and S-TLS method.

Figure 7 shows the relationship between the imaging error performance and SNR. In
simulation Figure 7a, we take MIMO-ISAR method [21] and modified OMP method [13] for comparison.
Apparently, our method has minimum imaging errors in the figure, which verifies its high accuracy
over other imaging methods. In simulation Figure 7b, the SACR-iMAP method [25] and S-TLS
method [26] are simulated for references. It is obvious that these methods cannot further improve
the imaging accuracy because they only focus on the improvement of 2-D resolution and the basis
mismatch errors cannot be completely removed. In contrast, proposed method has higher precision.
On one hand, it benefits from the denoising performance of SDP. On the other hand, target positions
can be directly calculated without any spectral search process, which can avoid basis mismatch.
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Figure 8. Error performance of motion estimation results. (a) is the comparison of roll angular velocity;
(b) is the comparison of pitch angular velocity; (c) is the comparison of yaw angular velocity.

Figure 8 shows the comparison results of motion estimation accuracy, with MIMO-ISAR method
and modified OMP method for comparison. It can be seen that proposed method has more precise
motion estimation performance. In fact, the high precision is guaranteed by the gridless method
and the pairing correction, where the former avoids the basis mismatch and the latter removes
registration errors.

In addition, to further show the performance of proposed method under basis mismatch
circumstance, Figure 9 presents the error curve of localization and motion estimation in more detail.
Take 500 Monte Carlo experiments and 6 random scattering points with random motion parameters,
then SNR step size is set to 1dB from −10 dB to 14 dB in the simulations. As a result, the high precision
of the method can be efficiently illustrated from the simulation results Figure 9a,b.
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Figure 9. Error performance of proposed method with 500 Monte Carlo experiments. (a) is the error
curve of 3-D localization; (b) is the error curve of motion parameters estimation.

5. Conclusions

In this paper, we have presented a 3-D MIMO radar imaging method with motion parameter
estimation for target with complex motions. The method can reduce process difficulty by building
joint 2-D parameter models. Then efficient imaging and accurate motion parameter estimation can be
guaranteed by the gridless method and pairing correction process, which can eliminate basis mismatch
and remove registration errors. Simulation results show that proposed method is more suitable for
accurate localization and imaging of the target with complex motions.
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Appendix A

Appendix A.1. Proof of (5)

As is shown, ∆R represents the range deviation term in (4), so it can be further processed as

∆R =
∣∣∣−→Tmk

∣∣∣+ ∣∣∣−→Rnlk
∣∣∣− (

∣∣∣−→TmP
∣∣∣+ ∣∣∣−→RnlP

∣∣∣)
= (
∣∣∣−→Tmk

∣∣∣− ∣∣∣−→TmP
∣∣∣) + (

∣∣∣−→Rnlk
∣∣∣− ∣∣∣−→RnlP

∣∣∣) (A1)

In the formula, the modulus values of the vectors
−→
Tmk,

−→
Rnlk,

−→
TmP and

−→
RnlP are used to represent

the corresponding range terms, then we can get following approximations∣∣∣−→Tmk
∣∣∣− ∣∣∣−→TmP

∣∣∣ = ∣∣∣−→TmP +
−→
Pk
∣∣∣− ∣∣∣−→TmP

∣∣∣ ≈ (
−→
TmP)′ ·

−→
Pk∣∣∣−→Rnlk

∣∣∣− ∣∣∣−→RnlP
∣∣∣ = ∣∣∣−→RnlP +

−→
Pk
∣∣∣− ∣∣∣−→RnlP

∣∣∣ ≈ (
−→
RnlP)′ ·

−→
Pk

(A2)

where (
−→
TmP)′ and (

−→
RnlP)′ respectively represents the unit direction vector from Tm and Rnl to center

P, then Equation (A1) can be expressed as

∆R ≈ [(
−→
TmP)′ + (

−→
RnlP)′] ·

−→
Pk (A3)
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Appendix A.2. Proof of (10)

According to the rotation matrices, the time-varying characteristics of ∆x, ∆y and ∆z in
Equation (8) can be expressed as  ∆x(t)

∆y(t)
∆z(t)

 = Ω ·

 xk
yk
zk

 (A4)

where Ω = roll(θr(t)) · pitch(θp(t)) · yaw(θy(t))− I3×3, so that we can obtain the processing results

xk + ∆x(tq) = xk · cos θp(tq) · cos θy(tq) + yk · cos θp(tq) · sin θy(tq) + zk · sin θp(tq)

yk + ∆y(tq) = yk · cos θy(tq) · cos θr(tq) + zk · cos θy(tq) · sin θr(tq) + xk · sin θy(tq)

zk + ∆z(tq) = zk · cos θr(tq) · cos θp(tq) + xk · cos θr(tq) · sin θp(tq) + yk · sin θr(tq)

(A5)

Because rotational velocities are invariable due to the short processing interval of MIMO radar,
i.e., ωx, ωy, ωz are all constant during Q samplings in one pulse. Following this, the instantaneous
angle is θi(tq) = ωi · tq(i = r, p, y). Moreover, it is supposed that sin θi(tq) ≈ θi(tq) = ωi · tq and

cos θi(tq) ≈ 1− θi
2(tq)

/
2 = 1− ωi

2 · t2
q

/
2, then we can get the following results with higher-order

terms ignored.

∆x(tq) = ωz · yk · tq −ωy · zk · tq

∆y(tq) = ωz · xk · tq −ωx · zk · tq

∆z(tq) = ωy · xk · tq −ωx · yk · tq

(A6)
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