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Abstract: Modern Public Safety Networks (PSNs) are assisted by Unmanned Aerial Vehicles
(UAVs) to provide a resilient communication paradigm during catastrophic events. In this context,
we propose a distributed user-centric risk-aware resource management framework in UAV-assisted
PSNs supported by both a static UAV and a mobile UAV. The mobile UAV is entitled to a larger
portion of the available spectrum due to its capability and flexibility to re-position itself, and therefore
establish better communication channel conditions to the users, compared to the static UAV. However,
the potential over-exploitation of the mobile UAV-based communication by the users may lead to
the mobile UAV’s failure to serve the users due to the increased levels of interference, consequently
introducing risk in the user decisions. To capture this uncertainty, we follow the principles of Prospect
Theory and design a user’s prospect-theoretic utility function that reflects user’s risk-aware behavior
regarding its transmission power investment to the static and/or mobile UAV-based communication
option. A non-cooperative game among the users is formulated, where each user determines its
power investment strategy to the two available communication choices in order to maximize its
expected prospect-theoretic utility. The existence and uniqueness of a Pure Nash Equilibrium (PNE)
is proven and the convergence of the users’ strategies to it is shown. An iterative distributed and
low-complexity algorithm is introduced to determine the PNE. The performance of the proposed
user-centric risk-aware resource management framework in terms of users’ achievable data rate and
spectrum utilization, is achieved via modeling and simulation. Furthermore, its superiority and
benefits are demonstrated, by comparing its performance against other existing approaches with
regards to UAV selection and spectrum utilization.

Keywords: resource management; unmanned aerial vehicles; risk; prospect theory; game theory;
dynamic spectrum management; public safety networks

1. Introduction

Unmanned Aerial Vehicles (UAVs) have attracted great research and commercial interest due
to their unique attributes to establish resilient and reliable communication during public safety
threatening events [1], such as natural disasters and terrorist attacks. The UAVs are characterized
by line-of-sight (LoS) communication links due to their ability to hover above a disaster-struck area,
maneuver and adapt their altitude, as well as by several other additional degrees of freedom due to
their controlled mobility [2]. The UAVs can be deployed in a flexible, fast, effortless and low-cost
manner, while their usage can be dynamically adjusted, e.g., acting as receiver, caching node, mobile
edge computing server, etc. [3]. Compared to other alternative strategies such as the ones that provide
ground movable base stations [4], UAV-based solutions bypass associated deployment inefficiencies
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due to possible physical ground infrastructure damages, while allow for more efficient communication
with the rest of system (i.e., backhauling).

The UAVs salient features to support the Public Safety Networks (PSNs) during a catastrophic
event have already engaged many key industrial vendors to invest on their deployment. Facebook
has launched the Aquila UAV to provide internet access to remote and non-accessible disaster-struck
areas by the first-responders [5]. Google has invested on the Project Loon, where a UAV has provided
emergency Long Term Evolution (LTE) coverage to Puerto Rico in the aftermath of the hurricane
Maria [6]. Traditional PSN architectures that were based on dedicated cellular networks, such as
the narrowband time-division multiple access (TDMA)-based Terrestrial Trunked Radio (TETRA) [7]
and the Project 25 [8], require specialized hardware and offer low data rates [9], and consequently
they are even less used nowadays [10]. On the other hand, in modern PSNs, UAVs are adopted to
improve the wireless connectivity during a disaster, and this new reality motivates and demands
the study of the dynamic spectrum management in UAV public safety networks, where the victims’
communication-related decisions are taken under risk and uncertainty, stemming primarily from the
scarcity of the communication resources and the limited only information availability.

1.1. Related Work

Detailed research efforts have been devoted in the recent literature to the problem of resource
management in UAV assisted PSNs targeting various objectives, such as network energy efficient
operation, prolongation of mobile devices’ battery life [11], efficient bandwidth allocation to improve
users’ achievable data rate, or even addressing simultaneously several of the aforementioned
challenges [12,13].

In particular, in [14], the authors studies a UAV relay system, where the Non-Orthogonal
Multiple Access (NOMA) technique facilitates the users’ communication with the UAV, and their
goal is to maximize the total achievable throughput based on convex optimization while proposing
a low-complexity heuristic algorithm. Following a similar philosophy, a centralized resource allocation
approach is proposed in [15] towards maximizing the users’ total uplink minimum throughput in
a specific time period of the UAV’s flight. The authors considered as additional constraints of the
formulated optimization problem the system’s physical characteristics, such as the users’ devices’
energy availability and the UAV’s maximum speed.

Targeting at the users’ devices’ battery saving and the energy-efficient operation of the
UAV-assisted PSN, the theory of minority games is used in [16] to form coalitions among the users
residing in the PSN by exploiting their physical characteristics, e.g., distance from the UAV, energy
availability, and determine their optimal transmission power to communicate with the UAV. Following
the same pattern of creating users’ transmission coalitions to improve the energy efficiency of the PSN,
a cluster formation mechanism is proposed in [17] based on the Chinese Restaurant Process and the
users’ socio-physical characteristics. Given the users’ clusters, the authors introduced a non-cooperative
power control problem to determine each user’s optimal transmission power in a distributed manner.
Furthermore, in [18], the device-to-device communication is jointly exploited with the UAV networks
to improve the users’ connectivity and the system’s energy-efficiency by targeting at optimally
placing the mobile UAV. In [19], the problem of determining the optimal UAV’s position, the energy
harvesting levels of the users from the UAV and each user’s optimal transmission power is studied via
a game-theoretic approach, while a reinforcement learning mechanism is introduced to build users’
coalitions in the PSN.

More complex resource management problems in the UAV-assisted PSNs have also been examined
in the recent literature. In [20], the authors formulated and solved a non-convex multi-variable
optimization problem towards optimizing the users’ achievable data rate, their uplink transmission
power, the network’s bandwidth usage, and the UAV’s position. In this examined problem, a UAV
coexists with a Macro Base Station (MBS), while the UAV acts as a relay node to facilitate the
communication of the users with the MBS. Moreover, the joint optimization problem of the users’
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achievable uplink data rate and energy-efficiency is studied in [21], where the authors optimized
the UAV system’s parameters related to its flight towards achieving the aforementioned goal.
In [22], the authors determined the users’ optimal transmission power and time slots allocation
in a UAV network via decomposing the joint total users’ rate optimization problem into the individual
sub-problems of power allocation and transmission time slots allocation. The latter two optimization
problems are solved sequentially and the one provides input to the other.

Although significant research efforts have been devoted to the resource management problem in
UAV-assisted public safety networks, all the aforementioned research works implicitly or explicitly
assume that the users in a PSN, i.e., victims and first responders, make decisions regarding their
communication in a rational and risk-neutral utility-maximizing manner aiming at maximizing
their perceived Quality of Service (QoS). However, in real-life, users are requested to make
communication-related decisions based on uncertainty and risk, which,as mentioned above, stems from
the resource-constrained communication environment and the partial only information availability.
It should be clarified that, in this paper, the term user is utilized in a broader sense, practically
representing an agent or algorithm located on the user’s mobile device, emulating a risk-aware
behavior and making the corresponding communication decisions on behalf of a human. For
the sake of simplicity of language and presentation, the term user is used throughout the paper
to represent these entities when referring to making risk-aware decisions. Moreover, the current
literature assumes that the users in a UAV-assisted PSN communicate exclusively either only with
the UAV or the MBS, if the latter is still available in the disaster-struck area, without exploiting the
potential of joint communication with both the UAV and the MBS, through their multi-communication
interface devices. It is noted that advanced devices have already become available in the market in
recent years [23,24], which can opportunistically access and utilize bandwidth resources even from
distinct cells or providers. Such a multi-communication interface environment immensely modifies
the flexibility enjoyed by the users who are not restricted in selecting only one receiver but can
proportionally split their invested transmission power to multiple ones.

1.2. Contributions and Outline

Our paper aims at exactly filling these research gaps by proposing a holistic distributed approach
to address the uplink energy-efficient resource management problem in UAV-assisted PSNs considering
users’ risk-aware behavior in terms of communicating over a mobile UAV and/or a static UAV that
hovers above the disaster-struck area. The static UAV hovers above an area in a specific altitude,
i.e., 1000 m acting as a flying base station. Examples of static UAVs are the Boeing Insitu ScanEagle [25]
and the Aerovel Flexrotor [26]. The mobile UAV also flies in a specific altitude, but closer to the
end-users, i.e., 360 m. Examples of mobile UAVs are the AeroVironment RQ-11 Raven [27] and WASP
AE Micro Air Vehicle [28]. The users exploit their devices’ dual communication interface to transmit
their data to the two available receivers, i.e., the static and mobile UAVs, thus realizing a dynamic
spectrum management. The static UAV hovers above the disaster area having a smaller portion of
the total spectrum available to serve the users’ QoS requirements compared to the mobile UAV, based
on the spectrum allocation that the Emergency Control Center (ECC) has planned. A representative
high-level topology of the considered UAV-assisted PSN is presented in Figure 1. The aforementioned
spectrum allocation is motivated by the fact that the mobile UAV has greater probability to fly closer to
the users compared to the static UAV, thus the greater portion of allocated spectrum enables the mobile
UAV to better serve the users, who have improved channel conditions communicating with the mobile
UAV compared to the static UAV. In this setting, the mobile UAV is characterized as a Common Pool
of Resources (CPR), where all the users are keen on opportunistically exploiting the communication
with it enjoying the superior communication channel conditions and the greater portion of available
bandwidth. However, if the users over-exploit their communication opportunities through the mobile
UAV, then the mobile UAV will fail to serve the users’ QoS requests due to the increased interference
observed. Specifically, if the users demonstrate risk-seeking behavior regarding their communication
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with the mobile UAV, they tend to increase their uplink transmission power levels to achieve a higher
data rate and send more data through the mobile UAV. The latter phenomenon results in increased
probability of failure of the mobile UAV due to the increased interference sensed at its receiver. Thus,
at the point that the mobile UAV’s receiver cannot decode the users’ received signals, the probability
of failure is considered equal to one, and the mobile UAV fails to serve the users. This consideration
sets the physical limits of the mobile UAV’s failure. On the other hand, the static UAV is characterized
as a safe resource, as the users receive a guaranteed QoS due to the low levels of interference in their
communication with it and the static channel conditions, as the users are considered static in the
disaster-struck area (Section 2).

Static UAV

Mobile UAV

Emergency 

Control Center

Figure 1. UAV-assisted public safety network topology.

The users demonstrate a risk-aware behavior towards deciding their power investment in their
transmission to the static and/or the mobile UAV. Their risk-aware behavior stems from the uncertainty
due to the finite available spectrum, and the probability of the mobile UAV failing to serve the
opportunistic users due to the increased interference levels, as an outcome of the users’ over-exploiting
their communication with the mobile UAV. The users’ risk-aware behavior in the considered uplink
resource management and dynamic spectrum management problem is captured in appropriately
designed prospect-theoretic utility functions following the paradigm of Prospect Theory (Section 3).
A resource management framework is formulated as a maximization problem of each user’s expected
prospect-theoretic utility function, and is addressed as a non-cooperative game among the users.
The existence and uniqueness of a Pure Nash Equilibrium (PNE) regarding users’ power investment
to the communication with the static and the mobile UAV is proven (Section 4). It is noted that the
communication channel conditions among the users and the mobile UAV are superior compared to
those with the static UAV. If the users demonstrate risk-averse behavior, they become more conservative
in communicating with the mobile UAV (which is a shared communication resource among the users,
i.e., Common Pool of Resources), thus they keep their uplink transmission power in low levels towards
communicating with the mobile UAV [29]. Therefore, the interference introduced at the mobile UAV
receiver is low, and the corresponding probability of failure of the mobile UAV is low. On the other
hand, if the users demonstrate risk-seeking behavior, they tend to opportunistically and selfishly
over-exploit their communication with the mobile UAV, resulting in high transmission power levels
in their corresponding communication, which causes high levels of interference, and high values
of the probability of failure, as the mobile UAV cannot decode their received signals due to the
excessive interference.
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An iterative distributed and low-complexity algorithm is introduced to determine the PNE,
while its convergence to the PNE is shown (Section 5). A set of detailed simulations is presented to
evaluate the performance of the proposed user-centric risk-aware resource management framework in
UAV-assisted PSNs, in terms of achievable data rate, spectrum utilization, and superior performance
compared to other approaches (Section 6). Finally, Section 7 concludes the paper.

2. System Model

A PSN is considered consisting of a static UAV s that hovers in a fixed position above the
disaster-struck area, and a mobile UAV m that moves over the disaster area to better serve the
users, i.e., victims and first responders. The disaster area has dimensions L × L[m2] and the set
of users is denoted as U = {1, . . . , u, . . . , |U|}. Each user is assumed to be equipped with dual
communication interface devices capable of transmitting data to the two available receivers (i.e.,
mobile and static UAV) simultaneously, if needed. The Emergency Control Center (ECC) allocates
a portion y (where 0 ≤ y ≤ 1) of the overall available spectrum W to the static UAV, while the rest of
the available spectrum for the public safety operations is allocated to the communication through
the mobile UAV, i.e., (1− y)W. Typically a larger portion of spectrum is allocated to the mobile UAV
compared to the static one, since, given the capability and flexibility of movement, the mobile UAV
has better chances to be closer to the users compared to the static UAV. Noting that the mobile UAV
flies at a lower altitude compared to the static UAV, the users are expected to experience superior
channel conditions by communicating with the mobile UAV. The latter in combination with the greater
available spectrum allocated to the mobile UAV, will result in improved QoS for the users that will
be associated with the mobile UAV. Given this setting, the mobile UAV acts as a Common Pool of
Resources (CPR) since all the users will be keen on communicating through it. Therefore, the mobile
UAV may fail to serve users due to the increased levels of interference, if the users over-exploit their
communication through the mobile UAV. On the other hand, the static UAV acts as a “safe resource”
providing more predictable rewards to the users due to the lower levels of interference, as the users
tend to invest low levels of transmission power to communicate with it due to the limited rewards
(i.e., data rate) that they can achieve through this type of communication, and due to the fact that the
channel conditions remain almost the same over the time given that both the UAV and the trapped
users in the disaster area are static. A representative example is the Tham Luang Nang Non cave
disaster event in Chiang Rai Province, Thailand, where a junior football team was trapped in a disaster
area [30].

Each user u located in the disaster area has a distance du,i[m], where i, i ∈ {s, m}, from the
static UAV s and the mobile UAV m. The channel gain between the user u and the receiver i is
defined as Gu,i = k

d2
u,i

, where k is a positive constant that expresses the channel fading for a time

slot t (i.e., t = 0.5 ms). The non-orthogonal multiple access (NOMA) technique is adopted for the
communication with the static and the mobile UAV. The NOMA technique is considered as a major
candidate for the upcoming 5G network deployments due to its high degree of bandwidth allocation
flexibility and its compatibility with other access technologies and wireless systems. Under the NOMA
technique, the users can access the network’s spectrum in each entirety instead of having a single and
bandwidth-constrained resource block as in Orthogonal Multiple Access schemes, e.g., OFDMA. Thus,
the users are able to dynamically exploit the bandwidth which is necessary for their transmission,
hence offering superior spectral capacity since no part of the bandwidth remains idle [31]. Accordingly,
the receivers perform the Successive Interference Cancellation (SIC) technique at the reception of the
users’ signals. Without loss of generality and mainly for presentation purposes, the users’ channel
gains are sorted as G|U|,i ≤ · · · ≤ Gu,i ≤ . . . G1,i and the corresponding sensed interference from

the user u is denoted as Iu = (P−u,i) = ∑
|U|
u′≥u+1 Gu′ ,iPu′ + I0, where I0 is the background noise and

P−u,i is the transmission power vector of all the users communicating with the receiver i except for
user u. It is noted that the users communicating with the static UAV do not sense the interference
from the transmissions to the mobile UAV, as the static and the mobile UAV are considered to
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operate in different frequency bands of the spectrum, as explained above. Therefore, the user’s
u signal-to-interference-plus-noise-ratio (SINR) as it is measured at the receiver i, i ∈ {s, m} is given
as follows.

γu,i(Pu,i, P−u,i) =
Gu,iPu,i

Iu
(1)

Given that each user u has a total uplink transmission power PMax
u , its goal is to determine the

power investment portion (i.e., distribution) that will be allocated for the communication with the
static and the mobile UAV. Letting xu, xu ∈ [0, 1] denote the percentage of user’s power investment
to the communication with the mobile UAV, then its corresponding transmission power is xuPMax

u ,
and consequently the corresponding transmission power for the communication with the static UAV
is (1− xu)PMax

u . At this point, it should be clarified that the problem of optimally positioning the
mobile UAV is not part of our study, as much work has already been devoted to the optimal UAV
positioning [2,3]. At each time slot t, the mobile UAV changes position, and its coordinates are
considered to be known in the following analysis.

3. Capturing User’s Behavior via Prospect Theory

The problem of users’/victims’ risk-aware decision making during disaster events has been
extensively studied in the literature of Public Safety Systems. Current research on Public Safety
Systems dealing with dynamically evolving disaster scenarios focuses mostly on the crowd evacuation
dynamics. While macroscopic models treat the crowd as a flowing continuum based on the physical
features of liquid flow [32], microscopic models based on the cellular automata model [33] and social
force model [34], treat the human as a self-driving particle. Indeed, human behavioral models capture
individuals’ characteristics and peculiarities during disasters. For example, the Nomad model focuses
on humans’ daily activities [35]; the social identity theory recognizes the impact of belonging to
a group on human behavior [36]; and the elaborated social identity model identifies that human
social behavior can rapidly change during an emergency [37]. Self-organization phenomena have
also been studied in the context of Public Safety Systems [38], such as the herding effect [39], zipper
effect [40], Faster-is-Slower effect [41], and so on. In this paper, we focus on the users’/victims’
risk-aware decisions regarding their communication with the static and/or the mobile UAV by
adopting the principles of Prospect Theory. The proposed framework is in line with the existing
research initiative of 5G networks to support users’ autonomy and develop user-centric approaches
that will be implemented in a distributed manner without requiring a centralized entity to control the
communication environment and impose additional signaling overhead [42].

The considered wireless communication environment is characterized by high levels of
uncertainty, stemming from the dynamically changing communication, the probability of the mobile
UAV to be unable to serve the users due to its over-exploitation, i.e., increased levels of interference,
and the partial available information to the users. Under this uncertain environment, the users are
making decisions under risk regarding their communication with the UAVs based on their behavioral
characteristics.

Towards capturing the users’ risk-aware behavior, we follow the principles of Prospect Theory.
Prospect Theory was introduced by Kahneman and Tversky in 1979 [43], where humans make
autonomous risk-aware decisions under uncertainty, which are associated with the unpredictable
payoff of their choices that is evaluated with some probability. Following the concept of Prospect
Theory, the users experience greater dissatisfaction from a potential outcome of losses, compared
to their corresponding satisfaction from gains of the same amount. In addition, the users’
prospect-theoretic payoff, i.e., utility, is estimated with respect to a reference point U0,u, which acts as
the ground truth for users’ satisfaction. Based on the above, the user’s prospect-theoretic utility can be
defined as follows
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Uu(xu, xT) =

{
(Uu −U0,u)

au , i f Uu > U0,u
−ku(U0,u −Uu)bu , otherwise

(2)

where Uu(xu, xT) is the user’s u actual utility expressed as the user’s achieved energy efficiency and
xT = ∑

|U|
u=1 xu is the total power investment of all the users to their communication with the mobile

UAV. The reference point U0,u is defined as the user’s u achieved energy efficiency if the user was only
exploiting its communication with the static UAV and is given as follows.

U0,u =
y ·W · log(1 + γu,s(Pu,s, P−u,s))

Pu,s
(3)

The user u has the potential to experience superior actual perceived utility Uu by opportunistically
exploiting its communication and data transmission to the mobile UAV. In this case, the user achieves
greater payoff than the reference point and thus, the user enjoys improved performance and in
a personalized manner (through parameters au, bu, and ku explained below), as expressed by the first
branch of Equation (2). However, if the users cumulatively over-exploit their communication to the
mobile UAV by investing increased transmission power, then the levels of interference at the receiver
increases, thus the user can experience less payoff than the reference point, i.e., loss, as expressed by
the second branch of Equation (2).

The way that each user experiences its personalized gains and losses, as well as how much
risk-seeking it can become regarding its transmission power investment for the data transmission
to the mobile UAV, are captured by the user’s personalized behavioral parameters au, bu, and ku.
In particular, the parameters au and bu, au, bu ∈ (0, 1] capture the users’ perception of the gains and
losses, respectively. A user becomes more risk-seeking and tends to invest more transmission power to
the mobile UAV communication for increasing values of au. In addition, for decreasing values of bu,
the user experiences greater dissatisfaction from its losses, thus it becomes more risk-averse. Without
loss of generality, in the following, we assume au = bu. The loss aversion parameter ku, ku ∈ [0,+∞)

reflects the impact of losses compared to gains on user’s prospect-theoretic utility. If ku > 1, the user u
weighs the losses more than the gains, while, if 0 ≤ ku ≤ 1, the user weighs more or equal the gains
than the losses, thus presenting an aggressive gain seeking behavior.

As mentioned above, each user exploits its dual communication interface in order to transmit
its data to the static and the mobile UAV via intelligently investing its transmission power, and
dynamically managing the available spectrum. Therefore, the user’s actual utility is given as follows.

Uu(xu, xT) = U0,u(1− xu) + Fu · xu · RoR(xT) (4)

The first term of Equation (4) expresses the user’s utility, in terms of energy-efficiency units, by
its transmission to the static UAV. The second term of Equation (4) captures the user’s satisfaction
by transmitting its data to the mobile UAV, where Fu = (1−y)·W·log(1+γu,m(Pu,m ,P−u,m))

Pu,m
. The function

RoR(xT) expresses the Rate of Return (RoR) of the mobile UAV-based communication and is
a decreasing function with respect to the users’ total power investment for communication with the
mobile UAV. The latter is justified and motivated by the fact that, as users’ increase their transmission
power investment to their mobile UAV-based communication, the mobile UAV is less able to serve them
due to the increased interference at the reception of their signals and its limited spectrum. Without
loss of generality, we adopt a representative rate of return function.

RoR(xT) = 2− exT−1 (5)

Following the previous reasoning, the mobile UAV has a probability of not being able to serve the
users (referred to as probability of failure), which is an increasing function with respect to the users’
total transmission power investment to their mobile UAV-based communication. For demonstration
purposes and without limiting the following analysis, we adopt a probability of failure function
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P(xT) for the mobile UAV, as follows: P(xT) = x2
T . If the mobile UAV is able to serve the users,

then each user perceives an actual utility Uu greater than the reference point, i.e., the user gains from
investing to the mobile UAV-based communication. Thus, by calculating the difference Uu −U0,u via
Equations (3) and (4), we have U (xu, xT) = xau

u · [Fu · RoR(xT)−U0,u]
au . For simplicity of notation, we

normalize the rate of return function, so that U0,u = 1, and denote RoRu(xT) , (Fu · RoR(xT)− 1)au ,
where RoRu(xT) is assumed concave, decreasing, twice continuously differentiable and positive.
Thus, we conclude that Uu(xu, xT) = xau

u RoRu(xT). In the opposite case that the mobile UAV is not
able to serve the users, the user achieves less utility than its reference point. Thus, by calculating
the difference (U0,u −Uu), and shaping the result following the second branch of Equation (2), we
have Uu(xu, xT) = −kuxau

u . In this case, the second term of Equation (4) is zero, as the user gets
zero satisfaction from the mobile UAV-based communication, even if invested some power in this
communication effort.

Summarizing the above analysis, the users’ prospect-theoretic utility function is written as follows.

Uu(xu, xT) =

{
xau

u RoRu(xT), i f Uu > U0,u
−kuxau

u , otherwise
(6)

Furthermore, by incorporating the probability of the mobile UAV to fail serving the users’ QoS
requests, the user’s prospect-theoretic utility is reshaped as follows.

Uu(xu, xT) =

{
xau

u RoRu(xT), with probability (1−P(xT))

−kuxau
u , with probability P(xT)

(7)

4. Risk-Aware Resource Management in UAV Networks

4.1. Problem Formulation

In this section, we formulate the distributed resource management problem to enable the users,
to autonomously determine their uplink transmission power investment to the static and mobile
UAV-based communication. This in turn allows the realization of a dynamic spectrum management.
Given the probabilistically defined user’s prospect-theoretic utility function (Equation (7)), the user’s
expected prospect-theoretic utility function is derived as follows.

E(Uu) = xau
u RoRu(xT)(1−P(xT))− kuxau

u P(xT) (8)

Therefore, the corresponding distributed resource management problem is formulated as
a maximization problem of each user’s expected prospect-theoretic utility function, as follows.

max
xu∈[0,1]

{E(Uu) = xau
u hu(xT)}, ∀u ∈ U (9)

where hu(xT) = RoRu(xT)(1− P(xT)) − kuP(xT) and hu(xT) is the effective rate of return of the
mobile UAV-based communication considering the users’ personal behavioral characteristics and the
probability of the mobile UAV to fail serving the users.

The maximization problem of Equation (9) can be addressed as a non-cooperative game among
the users. The non-cooperative game is defined as G = [U, {Xu}u∈U , {E(Uu)}u∈U ], where U denotes
the set of users, Xu = [0, 1], ∀u ∈ U is the strategy space of user u (i.e., its percentage power
investment to the mobile UAV-based communication), and E(Uu) is the user’s payoff as expressed by
its expected prospect-theoretic utility function (Equation (8)). Our goal is to determine the existence
and uniqueness of a Pure Nash Equilibrium (PNE) point representing users’ power investment to
their mobile UAV-based communication. The PNE is denoted as x∗ = [x∗1 , . . . , x∗u, . . . , x∗|U|] and at the
PNE point no user can further improve its achieved expected prospect-theoretic utility by unilaterally
changing its uplink transmission power investment given the strategies of the rest of the users,
i.e., E(Uu(x∗u, x∗−u)) ≥ E(Uu(xu, x∗−u)), ∀xu ∈ Xu. Before proving the existence and uniqueness of the
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PNE point in the following subsection, we provide some useful mathematical properties regarding
the probability of failure P(xT) and the normalized rate of return function RoRu(xT). The probability
of the mobile UAV failing to serve the users is strictly increasing, twice differentiable and convex
in the normalized total power investment xT = [0, 1] and P(xT ≥ 1) = 1. The normalized rate
of return function RoRu(xT) , (Fu · RoR(xT) − 1)au is twice-differentiable, monotonic decreasing

( ∂RoRu(xT)
∂xT

< 0), concave ( ∂2RoRu(xT)

∂x2
T

< 0), and positive ∀xT ∈ [0, 1].

4.2. Problem Solution

In this section, we prove the existence and uniqueness of the PNE for the game G, as well as the
convergence of all the users’ strategies to the PNE. The concept of best response strategy BRu(x−u)

is adopted, where BRu(x−u) = argmaxE(Uu), BRu : X−u ⇒ Xu, where X−u denotes the aggregate
investment of all the users except for user u. The users’ best response strategy BRu lies in the interval
[0, 1], where BRu(x−u) = 0 means that the user communicated only through the static UAV and, if
BRu(x−u) = 1, then the user invested its maximum uplink transmission power to the communication
with the mobile UAV. In the following theorem, we examine the properties of the effective rate of
return function hu(xT) = RoRu(xT)(1−P(xT))− kuP(xT).

Theorem 1. The effective rate of return function hu(xT) is decreasing, concave and positive in the modified
strategy space X′u = [0, µ], ∀au < 0.5.

Proof. The first-order derivative of hu(xT) with respect to each user’s power investment xu is given
as follows.

∂hu(xT)

∂xu
=

∂RoRu(xT)

∂xu
(1− x2

T)− 2xT RoRu(xT)− 2kuxT (10)

Based on Equation (5) and the normalized rate of return function RoRu(xT) = (Fu · RoR(xT)− 1)au ,

we have RoRu(xT) > 0 and ∂RoRu(xT)
∂xT

< 0. Thus, ∂hu(xT)
∂xu

< 0 and the effective rate of return function is
decreasing. Considering the second-order derivative of hu(xT), we have:

∂2hu(xT)

∂x2
u

=
∂2RoRu(xT)

∂x2
u

(1− x2
T) + g(xT)− 2ku (11)

where g(xT) = −4xT
∂RoRu(xT)

∂xu
− 2RoRu(xT). Given that ∂2RoRu(xT)

∂x2
T

< 0, the normalized aggregate

investment is xT ≤ 1, and g(xT) < 0 in Xu, ∀au < 0.5, thus we show that ∂2hu(xT)

∂x2
u

< 0. Therefore,
the effective rate of return function hu(xT) is concave.

Towards showing that the effective rate of return function hu(xT) is positive, we apply Bolzano’s
Theorem within Xu = [0, 1] which is an important specialization of Intermediate Value Theorem [44].
We observe that hu(0) > 0 and hu(1) < 0, hence there exists a value µ ∈ Xu, such that hu(µ) = 0. Thus,
hu is positive in the modified strategy space X′u = [0, µ] ⊆ [0, 1] = Xu.

In the following theorem, we prove the existence of the PNE for the non-cooperative game G.

Theorem 2. (Existence of PNE) For the non-cooperative game G = [U, {Xu}u∈U , {E(Uu)}u∈U ], there exists
a PNE x∗u, x∗u ∈ X′u, ∀u ∈ U.

Proof. Initially, we examine the first-order derivative of the user’s expected prospect-theoretic utility
E(Uu(xu, xT)), as follows.

∂E(Uu(xu, xT))

∂xu
= xu

au−1(xu
∂hu(xT)

∂xT
+ auhu(xT)) (12)
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For xu = 0, we have (xu
∂hu(xT)

∂xT
+ auhu(xT))|xu=0 > 0, since hu(xT) > 0. Considering a very small

value ε1 → 0, ε1 > 0, we have (xu
∂hu(xT)

∂xT
+ auhu(xT))|xu=ε1 > 0, thus ∂E(Uu(xu ,xT))

∂xu
|xu=ε1 > 0. For a very

large value ε2 = µ ∈ X′u, we have hu(ε2) = 0, thus (xu
∂hu(xT)

∂xT
+ auhu(xT))|xu=ε2 < 0, and subsequently

∂E(Uu(xu ,xT))
∂xu

|xu=ε2 < 0. Given that ∂E(Uu(xu ,xT))
∂xu

|xu=ε1 > 0 and ∂E(Uu(xu ,xT))
∂xu

|xu=ε2 < 0, and by applying
the Intermediate Value Theorem, we prove that there exists at least one x∗u value, x∗u ∈ X′u, such that
∂E(Uu(xu ,xT))

∂xu
|xu=x∗u = 0. Given also the properties of P(xT) and RoRu(xT), as discussed in Section 4.1,

we conclude that x∗u, x∗u ∈ X′u, ∀u ∈ U is a PNE of the game G = [U, {Xu}u∈U , {E(Uu)}u∈U ].

In the following theorem, we prove the uniqueness of the PNE point for the game G.

Theorem 3. (Uniqueness of PNE) The PNE point x∗u, x∗u ∈ X′u, ∀u ∈ U of the non-cooperative game
G = [U, {Xu}u∈U , {E(Uu)}u∈U ] is unique.

Proof. Initially, we study the concavity of E(Uu(xu, xT)) by examining its second-order derivative
with respect to xu.

∂2E(Uu(xu, xT))

∂x2
u

= au(au − 1)xu
au−2hu(xT) + 2auxu

au−1 ∂hu(xT)

∂xu
+ xu

au
∂2hu(xT)

∂x2
u

(13)

All the terms of the above equation are negative given that xu > 0 ∈ X′u, hu is positive,

decreasing, and concave in X′u, and au < 0.5. Thus, we conclude that ∂2E(Uu(xu ,xT))

∂x2
u

< 0,

therefore E(Uu(xu, xT)) is concave. Based on the above analysis, the point x∗u, x∗u ∈ X′u, ∀u ∈ U
is a unique global maximum of E(Uu(xu, xT)) and a unique PNE point of the non-cooperative game
G = [U, {Xu}u∈U , {E(Uu)}u∈U ].

Towards providing the convergence of the users’ strategies of uplink transmission power to the
PNE point, we use the best response dynamics BRu(x−u). In the following theorem, we prove that the
users’ best response dynamics BRu(x−u), ∀u ∈ U monotonically decrease with users’ aggregate power
investment xT and converge to the PNE point.

Theorem 4. (Convergence to PNE) The user’s best response strategy BRu(x−u), ∀u ∈ U in the
non-cooperative game G = [U, {Xu}u∈U , {E(Uu)}u∈U ] is decreasing in xT and converges to the PNE point
x∗u, x∗u ∈ X′u, ∀u ∈ U.

Proof. Let H(xT) = −au
hu(xT)

∂hu(xT )/∂xu
be defined as the optimal non zero investment of each user u, u ∈ U,

where H(BRu(x−u) + x−u) = BRu(x−u), when BRu(x−u) > 0. It is easily shown that ∂H(xT)
∂xu

< 0, thus,
H is monotonically decreasing in xu. Let now x1 = BRu(x−1), x2 = BRu(x−2), with x−1, x−2 ∈ X′−u.
If BRu is increasing, then for x2 > x1, then BRu(x−2) > BRu(x−1). However, since H is decreasing, for
x2 > x1, H(BRu(x−2) + x−2) = BRu(x−2) < BRu(x−1) = H(BRu(x−1) + x−1), which is contradicting.
Subsequently, we conclude that best response BRu is decreasing in xT , and the users’ strategies
converge to the game’s G unique PNE.

5. Distributed Algorithm—DYNAMISM

In the following, we present and discuss a distributed and low complexity algorithm, namely
DYNAMIc Spectrum Management in risk-aware UAV networks (i.e., DYNAMISM), which undertakes
the practical implementation of the previously described theoretical framework. DYNAMISM
algorithm acts as a common interface which enables the optimal user’s power investment
determination for the spectrum usage of both the UAVs. Transmission is differentiated for each
user given its relative position from both UAVs, with the static UAV to provide a stable channel gain
environment due to its steady position, while the mobile UAV offers varying channel gain conditions
since its movement impacts the quality of communication among itself and the users. DYNAMISM
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algorithm is executed per timeslot, with its duration range (i.e., 0.5 msec) to allow capturing a snapshot
of the network’s operation. Hence, the users are able to optimize their power investment to each
UAV’s spectrum during this timeslot, an outcome which may be modified in the upcoming timeslots,
if the transmission via the mobile UAV becomes more favorable or strenuous.

The algorithm promotes a highly decentralized approach with regards to decision making,
since each user is responsible for streamlining its power investment in order to optimize its
prospect-theoretic expected utility during the resource allocation process. At the beginning of the
algorithm’s implementation, the users define their behavioral characteristics reflecting their QoS
preferences and their perceptions towards risk. Based on their topological and prospect-theoretic
modeling, the users identify the optimal power investment to each UAV’s spectrum, starting from any
initial feasible point. Eventually, the algorithm converges into an optimal allocation of users’ power
investment among the UAVs indicating a successful transmission, otherwise if excessive congestion
and over-exploitation of mobile UAV’s spectrum is identified, then the algorithm will terminate and
only the users who transmitted via the static UAV will be able to communicate. During the entire
process, the role of the system administrator is rather limited, as only the overall interference in the
network is required to be exchanged from the UAVs to the users. The user-centric design of the
DYNAMISM algorithm and the parallel execution of actions significantly mitigate the computational
complexity required to determine the game’s optimal operational point (i.e., Pure Nash Equilibrium).
The basic steps and actions of DYNAMISM algorithm are summarized in Algorithm 1.

Algorithm 1 DYNAMISM: DYNAMIc Spectrum Management in risk-aware UAV networks.

Require:
constants ku, au, ε; user and UAV position coordinates; UAV spectra Wmobile

UAV = (1− y)W, Wstatic
UAV = yW

1: ite← 1; convergence(ite) ← 0; system f ail ← 0
2: Calculate Channel Gains per user and apply SIC
3: Assign initial random x(ite)u
4: while convergence(ite) = 0 do

5: Calculate Pu,s, Pu,m;
6: Overall interference per UAV broadcasted and each user calculates its own sensed interference
7: Calculate utility E(Uu)(ite)

8: for all xu ∈ [0, 1] do

9: x∗u=argmaxxuE(Uu)

10: if E(Uu) > E(Uu)(ite) then

11: x(ite+1)
u ← x∗u and E(Uu)(ite+1) ← E(Uu)

12: end if
13: end for

14: Calculate mobile UAV Spectrum utilization util =
∑
|U|
u=1(1− y) ·W · log(1 + γu,m(Pu,m, P−u,m))

(1− y)W

15: if util > 1 then

16: system f ail ← 1
17: end if
18: if x(ite+1)

u − x(ite)u < ε then

19: convergence(ite+1) ← 1
20: end if
21: ite← ite + 1
22: end while
23: return

The DYNAMISM algorithm returns each user’s investment xu, if the mobile UAV achieves to serve
the users and the flag “system f ail”, if the mobile UAV fails to serve the users.
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The low duration of each timeslot ensures that the movement of the mobile UAV within the
timeslot duration is rather limited with no significant impact on the channel gain determination.
However, since DYNAMISM algorithm is timeslot based, each iteration for a consecutive timeslot is
capable of capturing the trajectory of the mobile UAV, and repeat the resource allocation process for
the new topological coordinates. Thus, the algorithm manages to address the challenge of changing
positions of the UAV above the users and identify the optimal power investment and spectrum
allocation for the system.

6. Performance Evaluation

In this section, we present a detailed evaluation of the performance and the operational
characteristics of the proposed framework, obtained via modeling and simulation. Furthermore,
a detailed comparative evaluation of the proposed framework against other approaches with respect to
user selection policies to multiple UAV spectrum sources, is provided. All simulations were conducted
under the MATLAB computing environment on an Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz
2.90 GHz laptop with 8.00 GB RAM.

In the tested operational scenario, we assumed a wireless network covering an area of radius
< = 3.5 km, and consisting of two UAV aircrafts flying above a number of |U| = 20 ground users
randomly distributed within the wireless network. The first UAV (i.e., static UAV) is hovering in
a steady position and provides stable transmission conditions to the users of the network, while the
second UAV (i.e., mobile UAV) moves above the users resulting in changing channel gains depending
on its relative position towards them. For demonstration purposes, we assumed that the spectrum
of the network is W = 4 MHz, 80% of which is allocated to the mobile UAV and 20% allocated to
the static UAV. Both UAVs operate under the NOMA transmission paradigm, and acknowledging
system’s physical limitations, user maximum feasible transmission power is set at PMax

u = 0.2 Watts,
being split between the communication with the two UAVs.

We examined the system’s behavior under various transmission scenarios considering initially
homogeneous population (Section 6.1.1) where all users present common behavior characteristics;
subsequently, (Section 6.1.2) a heterogeneous set of users was considered where the impact of
diversifying risk characteristics—as modeled via Prospect Theory—was evaluated. Moreover the
impact of the mobility and repositioning of the mobile UAV on the achievable user data rate and
system spectrum utilization was evaluated (Section 6.1.3). Finally, we illustrate some comparative
results in order to assess the performance of the DYNAMISM algorithm against two other alternative
approaches: one performing a fixed user allocation to each UAV under the Expected Utility Theory
without considering risk behavioral modeling, and a second one providing exclusive UAV selection by
enabling the users’ devices to select each UAV based on their most favorable channel conditions at
each timeslot (Section 6.2). The key simulation parameters that have been adopted in the following
numerical results are summarized in Table 1.

Table 1. Simulation Parameter Values.

Parameter Description Value

y Portion of the overall available spectrum allocated to the static UAV 0.2 (20%)
< Radius of the PSN 3.5 km
|U| Number of users 20
W Network’s spectrum 4 MHz

PMax
u User’s maximum transmission power 0.2 Watts
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6.1. Risk-Aware Dynamic Spectrum Management

6.1.1. Homogeneous Population: Common User Behavior

Initially, we considered that the users have common prospect-theoretic parameters, i.e. the same
risk aversion parameter ku = 20 and sensitivity parameter au = 0.1. Figure 2 depicts users’ achievable
data rates from each UAV, as well as the relative investment xu to the mobile UAV, for a case where
both UAVs are placed very close to each other. Please also note that, for presentation purposes,
the user IDs are assigned such that increasing user ID corresponds to an increasing distance from
the mobile UAV. We observed that, due to the higher spectrum availability from the mobile UAV,
the obtained data rates for users who are very close to the mobile UAV or far away from it are quite
high, owing either to their very favorable channel gain conditions (for the close ones) or to the absence
of interference as a consequence of the application of SIC technique (for the distant ones) adopted by
NOMA. On the contrary, middle distance users are severely impacted by their worsening channel
conditions in conjunction with the rising interference levels sensed from the users with worse channel
gains than them. The overall above discussion is also reflected on the values of the power investment
parameter, with the users close to the mobile UAV to obtain high data rates even with small investment
values. Distant users on the contrary do not further increase their investment significantly (e.g., observe
for example users with IDs 14–20), since they manage to achieve satisfactory communication with the
mobile UAV due to the low sensed interference as explained above. The static UAV, since it operates
under a stricter framework with each user transmitting with stable channel conditions, delivers much
more stable achievable data rate to all users, with all of them managing to split the limited spectrum in
a more balanced manner.
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Figure 2. Data rates and power investment per user ID.

6.1.2. Heterogeneous Population: Diversifying User Behavior

We next studied how system utilization is impacted, when a subset of users modify their behavior
towards investing in the mobile UAV (which is assumed to have higher spectrum availability),
in an attempt to further improve their benefits (i.e., heterogeneous population). Particularly,
Figure 3a presents system’s overall spectrum utilization and the respective power investment xu

for communicating with the mobile UAV, for a user group that modifies its perceptions towards
risk through its prospect-theoretic parameters: (a) sensitivity parameter au; and (b) the risk aversion
parameter ku. Based on the results, when parameter au increases, initially this leads to higher levels of
investment to the mobile UAV spectrum, while the investment to the static UAV is correspondingly
reduced. However, there is a certain level (au = 0.15 in our case) where utilization reaches a peak
(almost 100%), while subsequently further increasing the sensitivity value makes the users become
very aggressive against the mobile UAV spectrum due to its higher expected returns and fully invest
in it. As a result, spectrum utilization decreases rapidly as the mobile UAV spectrum collapses due to
over-exploitation. At this point, users have fully invested their power to the mobile UAV, as observed
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by the trend of the corresponding curve presenting the power investment parameter (i.e., xu = 1), and
therefore they do not receive any return from the spectrum of the static UAV either.

Similarly, with reference to the risk aversion parameter, lower values of ku indicate that users
are more risk seeking, hence investing more heavily to the mobile UAV spectrum. Consequently,
as observed from the results in Figure 3b, when ku = 0, users do not invest in the static UAV at all,
while by rising risk aversion parameter users become more conservative and reduce their investment
to the mobile UAV, thus unlocking the additional spectrum of the static UAV, with the utilization
eventually reaching 100% at certain point of parameter ku. However, for even higher values of ku, users
keep investing less to the mobile UAV (i.e., CPR) due to their more conservative approach against its
probability of failure, and therefore the overall spectrum utilization decreases again.

Additionally, in Figure 4, we demonstrate the achieved spectrum utilization—separately for the
mobile UAV and static UAV—as a function of increasing values of transmission power investment
to the mobile UAV (xu), obtained through properly altering in a combined manner both user
prospect-theoretic parameters, that is sensitivity parameter au, and risk aversion parameter ku.
The combinations of (au, ku) are (0.05, 40), (0.10, 40), (0.10, 20), (0.15, 20), (0.15, 10), where the users’
behavior becomes more risk-seeking in the latter choices. For low values of xu, users do not invest
intensively to the mobile UAV, with the respective spectrum utilization (blue curve) remaining slightly
above 60%, while for increasing levels of power, utilization gradually rises until the point that
transmission power reaches its upper bound (e.g., 0.2 Watts as assumed here), where utilization
to the mobile UAV has reached almost 96.5%. Please note that here we have considered a scenario and
respective parameters where the CPR does not collapse. On the contrary, utilization for the static UAV
(red curve) follows an opposite trend. For low transmission power levels to the mobile UAV, users
invest more in the static UAV, and therefore its utilization remains close to 100%, as an outcome of the
safe nature of this resource, as explained before in the paper. In the extreme case where users only
transmit via the mobile UAV, users do not opt to communicate with the static UAV, and therefore the
respective spectrum utilization eventually drops to zero.
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6.1.3. UAV Mobility and Utilization

In Figure 5, we present the achievable average user data rates for both the mobile UAV and the
static UAV, for different snapshots of the system with changing positions of the mobile UAV. The latter
is reflected by moving the mobile UAV such that the distance between the static and mobile UAV is
increasing (the horizontal axis of this figure reflects exactly this distance). It is expected that the relative
position of the mobile UAV against the users in the ground impacts their channel gain conditions.
Consequently, this in combination with the application of the NOMA SIC technique, will impact and
influence the user decision in their power investment. It is evident that indeed different positions of
the mobile UAV result in diverse obtained data rates for the users and the system as a whole, while
the average data rate of the static UAV remains practically stable, or is slightly reduced in some cases
due to the potential higher investment of the users to the mobile UAV. Specifically, when the distance
between the two UAVs reaches approximately 2.3 km, then the majority of the users takes advantage
of the most favorable channel gain conditions and they obtain the highest data rates, which are 33.53%
higher than the base case (zero distance between the two UAVs).

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5
x 10

5

Distance between UAVs (m)

A
v
e
ra

g
e
 D

a
ta

 R
a
te

 (
b

p
s
)

 

 

Mobile UAV

Static UAV

Figure 5. Average user data rate for mobile and static UAV for increasing distance between the UAVs.

6.2. Comparative Evaluation

In this subsection, the advantages and superiority of the DYNAMISM algorithm compared
to other approaches with regards to UAV selection and spectrum utilization is demonstrated and
analyzed. In particular, the proposed framework is compared against: (a) an approach where the
users follow a fixed UAV allocation under Expected Utility Theory (EUT), which is referred to as
EUT-fixed allocation approach; and (b) an approach where users can dynamically connect to the best
UAV option (mobile or static) based on their optimal channel gain condition at that specific timeslot.
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It should be noted that, under the examined comparative scenario of the EUT-fixed allocation approach,
each user aims at maximizing its utility function, as expressed by its energy efficiency in Equation 3,
where the available bandwidth is y ·W for the static UAV and (1− y) ·W for the mobile UAV. In the
EUT-fixed allocation approach, each user can communicate only with one UAV, i.e., the static or the
mobile UAV. The user initially selects the UAV that it will communicate with based on the criterion
of the best channel conditions. Then, each user keeps the same communication choice, i.e., the UAV
initially selected.

Specifically, in Figure 6, we present the average spectrum utilization (from both UAVs) for various
positions of the mobile UAV, reflected by the increasing distance between the static and mobile UAV
(horizontal axis) for the various approaches considered. Firstly, we notice that the EUT-fixed allocation
(blue curve) delivers the worst utilization, since users do not have the capability to dynamically switch
between the available bands, and they are forced to stay with the UAV they have been originally
assigned to. The approach under which users can dynamically connect to a UAV based on their
superior channel gain conditions (green curve), gives an additional degree of freedom to users in
order to improve their transmission compared to a fixed allocation and therefore presents a slightly
improved utilization compared to the EUT-fixed allocation. Specifically, under the optimal channel
gain selection scenario, while the mobile UAV is moving away from the constant position of the static
UAV, each user checks the communication channel gain conditions with each UAV and selects to
connect with the one that has the best communication channel gain conditions. However, it is noted
that this scenario, results in worse spectrum utilization compared to our proposed framework, due to
the fact that in the latter the users can jointly exploit their communication with both the UAVs, while
in the optimal channel gain selection scenario the user will exploit only the available bandwidth of
the UAV that it selected to communicate with, while letting idle and unused the bandwidth of the
non-selected UAV. In addition, the optimal channel gain selection scenario leads to better spectrum
utilization results compared to the EUT-fixed allocation approach, as in the latter the user keeps its
initial UAV selection without dynamically exploiting the channel gain conditions. Lastly, we notice
that the DYNAMISM algorithm following the principles of Prospect Theory (red curve), outperforms
all other cases, since the users enjoy multiple degrees of freedom with regards to their transmission and
are capable of: (a) dynamically splitting their transmission power between both UAVs; (b) investing
intelligently in the higher spectrum capacity mobile UAV in a more aggressive manner, while still
routing some traffic to the static UAV; and (c) dynamically managing the spectrum utilization of the
system in a decentralized and distributed manner, since they are able to modify their behavior based
on the risk of the spectrum failure.
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Figure 6. Average total spectrum utilization for increasing distance between the UAVs under different
resource management approaches.

The overall performance gains are summarized in Table 2. The proposed prospect theory based
approach (DYNAMISM) manages to increase the average user data rate by almost 260% compared to
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a fixed allocation under EUT-fixed allocation. In addition, note that, although the approach based on
the channel gain selection also delivers some improvements (approximately 45%) in the attained user
data rates compared to the EUT-fixed allocation, its performance remains significantly lower than the
DYNAMISM algorithm.

Table 2. Average user data rate and percent increase in various UAV selection scenarios/approaches.

Scenario/Approach Average Data Rate per User (bps) Percent Increase in Average Data Rate

EUT-fixed allocation 6.55× 104 -
Channel Gain Selection 9.53× 104 45.50%

DYNAMISM (Prospect Theory) 23.60× 104 260.22%

7. Conclusions

In this paper, a user-centric risk-aware resource management and dynamic spectrum management
framework is proposed in UAV-assisted PSNs. The PSN is supported by a static UAV and a mobile
UAV, where greater portion of the available spectrum is allocated to the latter by the Emergency
Control Center due to the potentially better communication channel conditions with the users, as it
can dynamically re-position itself and fly closer to the users. The mobile UAV spectrum’s exploitation,
while promising higher satisfaction, introduces uncertainty to users’ power investment decisions, as
the potentially increased levels of interference if over-exploited can make it fail to serve the users.
Furthermore, the resource-constrained environment and the partial information availability introduce
risk to users’ decisions regarding their transmission power investment to the static and mobile
UAV-based communication.

In this challenging and dynamic environment, in our paper, the users’ risk-aware behavior has
been captured following the principles of Prospect Theory and users’ risk-aware prospect-theoretic
utility functions have been devised. Respecting the need for developing distributed solutions,
a non-cooperative game among the users has been formulated, where each user aims at maximizing
its prospect-theoretic utility function by autonomously deciding its power investment to the static
and mobile UAV-based communication. The existence and uniqueness of the game’s Pure Nash
Equilibrium (PNE) is proven, and convergence to it has been demonstrated. An iterative distributed
and low-complexity algorithm is introduced to determine the unique PNE. A detailed series of
numerical results, obtained via modeling and simulation, is presented to show the operation of
the risk-aware prospect-theoretic resource management framework in terms of achievable data rate
and spectrum utilization, under different user behavioral characteristics and scenarios. Moreover,
a comparative analysis of the proposed approach against other methods that realize UAV selection
and spectrum sharing, has been performed and demonstrated its superiority.

It should be noted that the problem introduced in this paper considers one static and one mobile
UAV. Part of our current and future work is to extend this problem by considering multiple static
and multiple mobile UAVs. In the latter problem, the users’ optimal uplink transmission power
levels at each UAV (to both the static and mobile UAVs) should be determined. This problem is
a non-trivial multi-variable non-convex optimization problem that can be addressed as a multi-variable
non-cooperative game among the users. Part of this problem is also the positioning of the UAVs within
the disaster area, which makes the problem even more complicated. Furthermore, part of our future
work is to further exploit the principles of Prospect Theory in studying the problem of distributed
denial of service attacks in UAV-assisted PSNs. Finally, the problems of UAV optimal placing while
simultaneously determining the number of required UAVs to optimally serve the users, considering
the users’ risk-aware behavior, are part of our current and future research goals.
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Abbreviations

The following abbreviations are used in this manuscript:

DYNAMISM DYNAMIc Spectrum Management
UAV Unmanned Aerial Vehicles
LoS Line-of-sight
PSN Public Safety Network
TDMA Time-Division Multiple Access
TETRA Terrestrial Trunked Radio
NOMA Non-Orthogonal Multiple Access
MBS Macro Base Station
QoS Quality of Service
ECC Emergency Control Center
CPR Common Pool of Resources
PNE Pure Nash Equilibrium
SLA Stochastic Learning Automata
SINR Signal-to-Interference-plus-Noise-Ratio
SIC Successive Interference Cancellation
RoR Rate of Return
BR Best Response
EUT Expected Utility Theory
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