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Abstract: Thermal images are widely used for various healthcare applications and advanced research.
However, thermal images captured by smartphone thermal cameras are not accurate for monitoring
human body temperature due to the small body that is vulnerable to temperature change. In this
paper, we propose ThermalWrist, a dynamic offset correction method for thermal images captured by
smartphone thermal cameras. We fully utilize the characteristic that is specific to thermal cameras:
the relative temperatures in a single thermal image are highly reliable, although the absolute
temperatures fluctuate frequently. To correct the offset error, ThermalWrist combines thermal images
with a reliable absolute temperature obtained by a wristband sensor based on the above characteristic.
The evaluation results in an indoor air-conditioned environment shows that the mean absolute
error and the standard deviation of face temperature measurement error decrease by 49.4% and
64.9%, respectively. In addition, Pearson’s correlation coefficient increases by 112%, highlighting
the effectiveness of ThermalWrist. We also investigate the limitation with respect to the ambient
temperature where ThermalWrist works effectively. The result shows ThermalWrist works well in the
normal office environment, which is 22.91 ◦C and above.
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1. Introduction

Thermal cameras are widely used to monitor the temperature [1] because they can measure
temperature distributions quickly without physical contact. For this reason, they are used in various
fields such as animals [2,3], agriculture [4], buildings [5] and humans. For example, thermal cameras
are applied to humans for anomaly detection such as heatstroke [6] and infection [7]. Human skin
temperature is also used for estimating various psychological states such as stress and thermal
comfort [8–10]. Although some wearable devices with skin temperature sensors are available
(e.g., E4 wristband [11] and Microsoft band 2 [12]), their applications are still limited due to the
limitation of single point measurement.

Recently, thermal cameras are widely used because low-cost and miniaturized models are
available on the market. For example, FLIR ONE [13] is a low-cost thermal camera attached to
a smartphone. Thanks to such smartphone thermal cameras, we can measure our skin temperature
anytime anywhere. However, the accuracy of the low-cost thermal camera is insufficient to monitor
the skin temperature compared with the high-end models.
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Thermal cameras are categorized into two types: those with cooled infrared detectors and those
with uncooled infrared detectors [14]. The performance of the cooled detectors is much higher than
the other although they are bulky and expensive due to the cooling apparatus [15]. Therefore, the
smartphone thermal cameras are with uncooled infrared detectors. The uncooled infrared detector
element converts its temperature rise to electric signals. The temperature of the object principally
calculated from the signals and its emissivity. The measured temperature greatly fluctuates in
accordance with the parameters configured by the user, the camera’s body heat, the efficiency of the
element, and the packaging method [14]. By these effects, the measurement error of the smartphone
thermal camera is larger than the high end one. The error range of FLIR ONE is ±3 ◦C or ±5%,
which is larger than the range of human skin temperature changes in daily life. This is clearly not
enough for various healthcare applications. For example, Abdelrahman et al. [8] reported that the nose
temperature decreased by 1.49 ◦C when participants read a literary piece accompanied by increasing
the cognitive load.

To overcome this problem, we propose ThermalWrist: a dynamic offset correction method for
thermal images of faces captured by smartphone thermal cameras. We fully utilize the key feature of
the thermal cameras: the measurement fluctuation is mainly caused by the offset which is common
in all the pixels in a single thermal image [16]. In other words, we can measure the difference of
temperature correctly between any pair of pixels in the same thermal image even using the smartphone
thermal camera. There is a method that uses the temperature reference fixed in the environment. It is
actually used in airports, etc. However, ThermalWrist does not require any fixed devices and achieves
an accurate mobile thermal measurement. ThermalWrist combines thermal images with a reliable
absolute temperature obtained by a wristband sensor based on the above feature. First, we obtain
a thermal image including a reference point (a wrist or a palm) of which absolute temperature is
measured by a wearable device (a wristband sensor). Second, we estimate the offset at the reference
point by comparing the temperature measured by the thermal camera and the wristband sensor.
Finally, ThermalWrist corrects temperature in the thermal image by adding the offset to all the pixels.

Since we assume measuring the skin temperature, the reference point should be any point, which
has an emissivity as large as the face. We use the wristband sensor as an accurate thermometer, which
is widely used in daily life. Since the wristband sensor covers the measurement point, the thermal
camera cannot directly capture the temperature of the same point. Therefore, we define the reference
point as the point that has a high correlation with the point measured by the wristband sensor. In this
paper, we use a palm or a wrist for the reference point and compare the performance through the
real experiment.

To evaluate ThermalWrist, we conducted real experiments with eight subjects in an indoor
air-conditioned environment. The mean absolute error and the standard deviation of the face
temperature measurement error decrease by 49.4% and 64.9%, respectively, and Pearson’s correlation
coefficient increases by 112%, highlighting the effectiveness of ThermalWrist. In addition, we show that
the combination of ThermalWrist and the correction by averaging continuous observations improve the
evaluation values. Finally, in order to evaluate the influence on ThermalWrist due to environmental
temperature change, we conducted an additional experiment in the cool environment and reveal the
limitation with respect to the ambient temperature.

The main contributions of this paper are summarized as below:

• We propose ThermalWrist: an offset correction method for thermal images of faces measured by
a smartphone thermal camera by using a reference point combined with the specific feature of
thermal cameras without any fixed devices.

• We compare the two reference points and discuss their features through the real data with 1148
samples collected from 11 subjects.

• We investigate the limitation of ThermalWrist on ambient temperature and show it can be used in
the indoor air-conditioned environment.
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2. Related Works

2.1. Applications Using Skin Temperature

Many research works have revealed the relation between human mental states and skin
temperature. Choi et al. (2012) [17] investigate the possibility of the use of human body skin
temperature to assess thermal sensation using the temperature sensor on the skin. Tag et al. (2017) [18]
present the system for tracking positive cognitive and emotional states by using temperature sensors
on eyeglasses. Genno et al. (1997) [19] use facial skin temperature to evaluate stress and fatigue.
They revealed the fatigue is the load of the stress by assuming the estimation formula. Understanding
the stress of humans is a crucial issue in our society. Recently, Japanese companies are obligated to
conduct the stress check test for the employees by law [20]. Smartphone thermal cameras are one of
the key technologies to record the stress levels ubiquitously, noninvasively and automatically.

2.2. Applications Using High-End Thermal Cameras

Thermal cameras have recently been used for the estimation of human thermal comfort.
Burzo et al. (2014) [21] divide the thermal comfort into three levels: “hot discomfort”, “comfort”
and “cold discomfort” and combine other biosensors with a thermal camera to estimate the thermal
comfort. Ranjan et al. (2016) [9] estimate the thermal sense using thermal images and propose a method
to reduce energy consumption in buildings. Stress or cognitive load estimation methods are shown
by many research works [8,19,22–26]. Abdelrahman et al. (2017) [8] present an unobtrusive indicator
of users cognitive load based on thermal images by monitoring forehead and nose temperature.
The other emotions are estimated by monitoring the skin temperature [27]. Pavlidis et al. (2002) [28]
detect lies based on bloodstream increase estimated by thermal images. López et al. (2015) [29] and
Basu et al. (2015) [30] propose methods to estimate human emotion by facial temperature distribution.
Thermal cameras are also useful to measure such psychological states since they do not disturb
user behavior.

However, most of the existing works, shown in Table 1, use a high-end thermal camera that has
high accuracy such as±2 ◦C or±2%, or higher. In reality, we can not always use such high-end thermal
cameras, causing the problem of frequent fluctuations of measurement by low cost (i.e., smartphone)
thermal cameras.

Table 1. Thermal cameras used in existing works.

Author Thermal Camera Accuracy
Abdelrahman et al. (2017) [8] Optris PI160 ±2 ◦C or ±2%
Or et al. (2007) [23] MikroScan 7200V ±2 ◦C or ±2%
Kang et al. (2006) [24] MikroScan 7200V ±2 ◦C or ±2%
Shastri et al. (2012) [25] FLIR SC6000 ±2 ◦C or ±2%
Ranjan et al. (2016) [9] FLIR A655sc ±2 ◦C or ±2%
Burzo et al. (2010) [21] FLIR A40 ±2 ◦C or ±2%
Basu et al. (2015) [30] InfReC R300 ±1 ◦C or ±1%
Gane et al. (2011) [31] FLIR SC640 ±2 ◦C or ±2%
Ebisch et al. (2012) [32] FLIR SC3000 ±1 ◦C or ±1%
Manini et al. (2013) [33] FLIR SC660 ±1 ◦C or ±1%
Hahn et al. (2012) [34] testo 881 ±2 ◦C or ±2%

2.3. Application Using Smartphone Thermal Cameras

Some applications using smartphone thermal cameras have been developed since their release.
Nurmi et al. (2017) [35] developed a low-cost solution for search and rescue operations using
smartphone thermal cameras. Mauriello et al. (2017) [36] evaluated energy-efficiency issues in the
building environment. However, they use smartphone thermal cameras for measuring objects
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whose temperature range is much wider than human skin temperature. In addition, there are some
applications for medical support. For example, Jaspers et al. (2017) [37] use the smartphone thermal
camera for the burn wound assessment. However, they measure temperature differences between the
burn wound and healthy skin. As far as we know, there are no applications to measure human skin
temperature using only smartphone thermal cameras. This is because smartphone thermal cameras
are suitable for the measurement of relative temperature rather than absolute temperature.

2.4. Calibration of Thermal Cameras

To measure accurate temperatures, thermal cameras need to calibrate [16]. The purpose of
calibration is to determine the accurate quantitative relations between camera output and incident
radiation. Malmivirta et al. (2018) [38] mitigate the smartphone thermal camera’s error using
a deep learning-based calibration technique. They achieve smartphone thermal camera calibration
without any additional device; however, an error larger than 1 ◦C still remains. Our target scenarios
are measurement of human skin temperature change over time, which requires higher accuracy.
The calibration procedure introduced by Vollmer et al. (2011) [16] uses a black body with different
temperatures whose emissivity is close to unity. In addition, their radiometric quantities and spectral
quantities are well defined. Therefore, we obtain relations between the black body temperature and
the temperature of the black body in the thermal image. Instead of the blackbody, shutter-based
calibration [39] is widely used since a blackbody is large, heavy, and expensive. However, it is effective
only when the shutter’s temperature is stable. Because of the small body of a low cost thermal camera,
the shutter temperature tends to increase due to the increase of the internal temperature. Our method
is inspired by the object-based calibration and leverages different parts of the same body with similar
emissivity for calibration.

Several factors causing errors still exist in the thermal camera in a real environment. The emissivity
of a target object is one of the factors, which is the efficiency of the surface in thermal energy emission.
The emissivity is a specific parameter dependent on a component of substance. Mitchell et al. (1967) [40]
reported the difference of the emissivity of human skin is 0.95–0.99, caused by the difference of the
blood flow and skin color. This 4% difference leads to 0.25 ◦C error in the measurement of skin
temperature. In order to determine the emissivity, it is necessary to measure the temperature of
an object whose emissivity is known, such as black body tape [41]. To solve the problem, we use the
body parts of the same person as the reference and the target. Therefore, ThermalWrist is not affected
by skin color and blood flow because the emissivity of the reference and the target is almost the same.
We note that our target environment is daily life where blood flow does not change greatly. However,
the correction of the other factors is still challenging. Electrical noise and noise due to fluctuation in
the scaling of thermal energy are the remaining major factors. To mitigate these effects, we essentially
need high-end thermal cameras if we do not rely on any additional devices. Our method tackles this
challenge by a combination of a wristband sensor and a smartphone thermal camera.

3. ThermalWrist: Smartphone Thermal Camera Correction Method

3.1. Overview

Infrared detectors built in thermal cameras are composed of a number of detector elements
having different signal responsibilities. To measure quantitatively, the nonuniformity is corrected
using a method called nonuniformity correction (NUC) [16]. Because of NUC, there is little difference
in the accuracy between detector elements. Therefore, the error of a thermal image is a common offset
over all pixels.

We correct the offset by setting a reference point in a thermal image. Figure 1 shows an overview
of ThermalWrist. We assume that a user wears a wristband sensor such as an E4 wristband sensor to
measure her/his wrist skin temperature in real time. The input is wrist temperature measured by the
wristband, a visible image, and a thermal image. We extract the skin temperature of body parts from
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the thermal image by using image processing techniques. To do this, we apply pre-processing to match
each pixel in the visible image with the temperature in the thermal image. Based on linear regression,
the reference point temperature is estimated from the temperature of the wrist. By comparing the
reference point temperature measured by the wristband sensor and the thermal image, we estimate
the offset. Finally, we obtain the target point temperature by adding the offset to the thermal image.

Figure 1. Overview of the offset correction.

3.2. Image Pre-Processing

As shown in Figure 2, the visible image and the thermal image have slightly different views due
to the difference between camera positions. This means, for example, the palm pixels in the visible
image are not exactly equivalent to those in the thermal image. Therefore, if we recognize a target
region (e.g., a palm) in the visible image and then obtain the temperature distribution of the area
from the thermal image, the distribution incorrectly contains temperatures of different parts. Figure 3
shows that this problem greatly affects temperature extraction, especially for a small part such as
a fingertip and a nose. In addition, the position difference has a large impact on feature extraction
from the distribution such as the minimum value and the maximum value. Therefore, we apply
image pre-processing to match each pixel in the visible image with its correct temperature in the
thermal image.

Our key idea in the pre-processing is that both images share almost the same edges. Figure 4 shows
the detailed steps. First, edge detection using the Canny algorithm [42] is performed on both images
to detect contours of body parts such as a face and hands. Then, smoothing based on a Gaussian
filter is applied to both images to exclude noises after edge detection. Finally, Normalized Cross
Correlation [43] (NCC) is used for template matching. NCC is used as a metric for evaluating the
degree of similarity between a pair of images. In the template matching, we resize and slide the visible
image over the thermal image to find the best position and size of the visible image that achieves the
highest NCC with the thermal image based on the detected edges.

Figure 2. Position difference of visible and thermal cameras.
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Figure 3. Result of overlapping.

Figure 4. Image pre-processing steps.

3.3. Reference Point Temperature Estimation

As we mentioned earlier, thermal cameras cannot capture the temperature of the point measured
by the wristband sensor since it is covered by the wristband sensor itself. Therefore, we need to
correlate the wristband temperature with the temperature of the reference points. For this purpose,
we construct regression models given as

y = a + bx, (1)

where x is an explanatory variable which is a temperature reported by the wristband sensor, y is
a target variable as a temperature of the reference point (Test) which is a palm (Tpalm_est) or a wrist
(Twrist_est). a and b are parameters determined by training data. The appropriateness of the regression
model is evaluated in Section 4.3. In addition, we evaluate the effect of the reference point selection
in Section 4.4.

3.4. Reference Point Temperature Extraction

The temperature of any pixel in the visible image can be extracted from the thermal image after
the pre-processing. In this paper, we propose two reference points close to the wristband. One is
a palm and the other is a wrist around the wristband. In the following sections, we describe the
temperature extraction for each reference point.

3.4.1. Palm Temperature Extraction

We extract a palm from a visible image based on skin color as shown in Figure 5 because it
is difficult to detect hands from thermal images. This is because the skin is easily cooled by the
atmosphere in the cold environment and it is assimilated into the background in the thermal image.
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Figure 5. Palm region extraction.

We use an object detector using OpenCV based on a Haar-like feature [44] to detect a palm from
a visible image. The position of the palm can be obtained as a rectangle. Since we can obtain the area
including other parts such as a background and clothing, we need to further extract the palm region.
For this purpose, we use an approach for human skin detection proposed by Tan et al. (2012) [45].
We use the green value of RGB color space and the saturation value of HSV (hue, saturation, value) color
space [46] to obtain a squared histogram of color values in the face. We regard a pixel whose distance
from the center of the smoothed histogram [47] is within three times of the standard deviation as a skin
pixel. We extract the temperature of the skin pixel and calculate the average of the temperatures as
a palm temperature Tpalm_meas. The definition is given as

Tpalm_meas =
∑(x,y)∈P T(x, y)

|P| , (2)

where (x, y) is a coordinate in a visible image and P is a set of the extracted skin pixels. In addition,
T(x, y) is the temperature of (x, y) and |X| is the number of elements in the set X. P is defined as

P = {(x, y)|(x, y) ∈ Rhand ∩ Chand}, (3)

where Rhand is a set of coordinates in the detected palm rectangle and Chand is a set of coordinates
whose colors are regarded as skin.

3.4.2. Wrist Temperature Extraction

We extract a wrist from a visible image based on the wristband color. Different from the palm
detector implemented in OpenCV, we need to implement the wristband detector. In this paper,
we manually extracted rough positions of the wristband. However, we note that this may be easily
achieved by attaching a special marker or collecting training data. The flow of the wrist temperature
extraction is shown in Figure 6. First, to highlight the wristband, we conduct threshold processing
based on the hue value from HSV color space. Next, we conduct edge detection, enclose the detected
edges in a rectangle, and extract temperatures in the enclosed box from corresponding pixels of thermal
images. Finally, we extract wrist temperature Twrist_meas by calculating the average of top 20% in the
temperature distribution. Twrist_meas is defined as

Twrist_meas =
∑(x,y)∈W T(x, y)

|W| , (4)

where W is a set of the wrist coordinates that is defined as

W = {(x, y)|(x, y) ∈ Rwrist ∩ Cwrist}. (5)

In the above equation, Rwrist is a set of coordinates in the enclosed box of the wristband and Cwrist

is a set of coordinates whose temperature is in the top 20%, which achieves the highest r-squared value
of 0.91.
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Figure 6. Flow of wrist temperature extraction.

3.5. Target Part Extraction

In this paper, we select faces as the target part because the face temperature is used in many
applications [8,9,18,19]. We note that ThermalWrist can be also applied to other target parts. We use
the face detector of OpenCV based on a Haar-like feature [44]. Since we can obtain a face position
as a rectangle including a background, we need to extract the temperatures of facial skins from the
thermal image. For this purpose, we use an approach for human skin detection [45] to the visible image
and extract from the corresponding point in the thermal image. Figure 7 shows an example of skin
detection. We extract face temperature Tface by calculating the average of face pixels. The definition is
given by

Tface =
∑(x,y)∈F T(x, y)

|F| , (6)

where F is a set of coordinates in the detected face rectangle.

Figure 7. Face skin detection.

3.6. Offset Correction

We obtain the corrected temperature Tcorr of the target by adding the offset C to the temperature
Ttarget of the target in the thermal image as below:

Tcorr = Ttarget + C,

C = Test − Tmeas.
(7)

The offset C is calculated for the reference point (either a palm or a wrist) by subtracting the temperature
Tmeas measured by the thermal camera from the temperature Test estimated by the regression. Namely,
Test is either Tpalm_est or Twrist_est and Tmeas is either Tpalm_meas or Twrist_meas.
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4. Evaluation

4.1. Evaluation Settings

For evaluation, we used FLIR ONE 2 and E4 wristband as a smartphone thermal camera and
a wristband sensor, respectively. We also used a high-end thermal camera, FLIR T540, for the ground
truth. The specifications of FLIR T540 and FLIR ONE 2 are shown in Table 2. The smartphone
thermography has lower resolution and accuracy than the high-end one, but both of them have small
thermal sensitivity and thermal differences can be accurately measured. E4 wristband measures the
temperature at the sampling rate of 4 Hz. We use the mean temperature per minute for the evaluation.
The accuracy of the temperature sensor is 0.2 ◦C within 36–39◦C and its thermal sensitivity is 0.02 ◦C.
It is accurate enough to calculate a reference point temperature.

Table 2. Specification of FLIR T540 and FLIR ONE.

FLIR T540 FLIR ONE 2
Infrared Sensor Resolution 464× 348 160× 120
Accuracy ±1 ◦C or ±1% ±3 ◦C or ±5%

(10–35 ◦C) (0–35 ◦C)
Thermal Sensitivity 0.04 ◦C 0.15 ◦C

To evaluate ThermalWrist in detail, we conducted two experiments in different ambient
temperatures. All subjects gave their informed consent for inclusion before they participated in
the study. The study was conducted in accordance with the Declaration of Helsinki, and the protocol
was approved by the Ethics Committee of Graduate School of Information Science and Technology,
Osaka University (201811). First, we collected the real data from 11 subjects (eight males and three
females) in their twenties for a day. Each subject participated in the data collection at least four hours.
In the experiment, we captured both visible and thermal images seven times with a ten-second interval
every 30 min. During the experiment, the subjects were asked to wear E4 wristbands and worked
as usual in the laboratory. They sat in front of the thermal cameras with the palms of both hands
facing toward the cameras without any overlap. In total, 1148 samples (i.e., pairs of the visible and
thermal images) were collected. The maximum and the minimum numbers of samples per subject
are 105 and 63, respectively. The average room temperature of the experiment was 25.92 ◦C and the
standard deviation was 0.69 ◦C. The highest and the lowest air temperatures in the room were 28.7 ◦C
and 23.4 ◦C, respectively.

In addition, we conducted an experiment in a roughly controlled cool environment to evaluate the
influence on ThermalWrist due to environmental temperature change. We used the same equipment
as the previous experiment and collected data from eight subjects in their early twenties for seven
hours for each subject. Both of them participated in the previous experiment. We capture the images
seven times with a ten-second interval every 30 min. In total, we collected 1085 samples. The average
temperature of the room was 18.93 ◦C and standard deviation was 3.02 ◦C.

Hereafter, we denote the former experiment as “lab” and the latter experiment as “cool”. We note
that the room temperature of the lab experiment is clearly warmer than the cool experiment.

4.2. Confirmation of a Thermal Camera’s Feature

We found that thermal cameras are suitable for measuring the difference of temperature in the
same image even if a low-cost smartphone thermal camera. To confirm it, we compare the temperature
difference between face and around wristband measured by the high-end thermal camera with the
same measurement by the smartphone thermal camera. Figure 8 illustrates the relation between them
in the lab experiment showing high correlation coefficient was 0.94. However, Figure 9 shows low
correlation between the measurement by the high-end thermal camera and the smartphone thermal
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camera. The correlation coefficient was 0.21, which is totally different from the temperature difference.
From the results, we see that smartphone thermal cameras can still capture temperature difference,
which is comparable with the high-end one. We also note that temperature difference measured by
the smartphone thermal camera tends to be slightly higher than the high-end one. This is because
the difference of the resolution between the two thermal cameras. The temperature of each part from
a thermal camera is calculated as a representative value (e.g., a mean or a maximum) in a particular
area (e.g., a square or a circle), which is determined by each system. Therefore, the temperature
measured by thermal cameras are affected by the temperature distribution which can be captured by
each thermal camera. In particular, a temperature measured by a thermal camera with high resolution
tends to be low in a cool environment. The evaluation results are shown in Section 4.6.
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Figure 8. Relation between temperature differences (face–wrist) measured by a high-end thermal
camera and smartphone thermal camera.
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Figure 9. Relation between face temperatures measured by a high-end thermal camera and smartphone
thermal camera.
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4.3. Reference Point Temperature Estimation

We evaluated the performance of the temperature estimation of the reference points by linear
regression. The purpose of the experiments is to build models to estimate the reference point
temperature from the wristband temperature. For this purpose, we use thermal images after the
outlier removal to collect the training data. The training data can be collected in the continuous
measurement as described in Section 4.7.

The regression functions are sufficient to understand the temperature difference between
palm/wrist and wristband. The details are described in Appendix A. The regression function for
estimating the palm temperature is given as:

Tpalm_est = −3.4223 + 1.0639 Twristband. (8)

The mean absolute error was 0.88 ◦C.
On the other hand, the regression function for estimating the wrist temperature is given as:

Twrist_est = 3.5528 + 0.8748 Twristband. (9)

The mean absolute error was 0.79 ◦C.
From the above results, we see that the wrist temperature can be estimated more accurately than

the palm. This is natural because of the closeness to the point measured by the wristband sensor.
However, the errors of the two methods are much smaller than the error of the smartphone thermal
camera; both are valid as reference points. We further investigate the performance of ThermalWrist
based on the above regression functions in the next section.

4.4. Dynamic Offset Correction

First, we evaluate our method in the air-conditioned lab environment. Figure 10 shows
the error distributions of the baseline (without correction), our palm-referenced method, and our
wrist-referenced method. Palm (proposed) and Wrist (proposed) are the proposed methods including
the reference point temperature estimation. On the other hand, Palm (ideal) and Wrist (ideal) are the
ideal methods that use the reference point temperatures captured by the high-end thermal camera
instead of the estimated temperatures. Therefore, the ideal methods are more accurate than the
proposed methods because they are not affected by the accuracy of the reference point temperature
estimation. We see that the distribution approaches 0 and the error dispersion becomes smaller in
the proposed methods. Especially, the proposed method succeeded in completely excluding the large
error in the baseline. Although such large error might be removed by outlier detection using multiple
images captured over a long time (e.g., one minute), the advantage of our method is the dynamic offset
correction with a single image. We also found the error distributions slightly shift to positive. One of
the reasons is the fact that the average temperature in a small region (e.g., a wrist) tends to become
higher than that of a large region (e.g., a face) when the resolution is high.

To investigate the statistical significance of ThermalWrist, we conduct the Brunner–Munzel test [48]
between the absolute error of the baseline and the absolute error of each method because the error of
the baseline is not normally distributed. It can analyze equality between two independent samples
with not assuming the normal distribution. Both of the p-values between the baseline and Palm
(proposed) and between the baseline and Wrist (proposed) are much smaller than 0.001. This result
means significant improvement of ThermalWrist compared to the baseline.

In addition, Figure 11a–c show the mean absolute error (MAE), the standard deviation of the
error (SD), and the Pearson’s linear correlation coefficient (CORR) of the baseline and our methods,
respectively. It is obvious that both of our methods reduce MAE and SD compared to the baseline.
We also see that the Wrist (proposed) method and Wrist (ideal) method achieve smaller SD than
Palm (proposed) and Palm (ideal), respectively. This is because the accuracy of the reference point
temperature estimation for the wrist is higher than the palm as mentioned in Section 4.3. Finally,
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the CORR of our methods is remarkably higher than the baseline. This means that our methods achieve
higher linearity, which is generally important in correction of sensors.
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Figure 10. Error distributions of face temperature.
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Figure 11. Evaluation in lab environment.

From the above results, we have confirmed that the wrist-referenced method is better than the
palm-referenced method. Therefore, we use the wrist-referenced method in the following evaluation.

4.5. Evaluation for Each Subject

We evaluate ThermalWrist for each subject in a lab environment using the wrist-referenced method.
Figure 12a,b show the difference of the wrist-referenced method and the baseline in MAE and SD for
each subject, respectively. In both figures, a positive value shows a reduction of MAE or SD by our
method. The subjects A–I are male while the other subjects J–L are female.
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Figure 12. Improvement of ThermalWrist from baseline.

In Figure 12a, we can see improvements in MAE for all subjects. Therefore, ThermalWrist can
improve accuracy for the purpose of the absolute temperature comparison among several persons.
In Figure 12b, we can see clear improvements in SD over all subjects except J. However, SD of J even
without ThermalWrist is 0.37, which is quite small compared to most of the other subjects. This means
that ThermalWrist can improve precision regardless of individual differences including gender impact.
Therefore, ThermalWrist can measure temperature difference in the same person (e.g., a temporal
change) accurately. In practical situations, skin temperature is used to estimate the mental state of
the person. For this purpose, the skin temperature change (i.e., mental state change) of the same
person is more important than the comparison of the absolute temperature among different persons.
In this perspective, improvement in SD is more important than MAE because the accurate mental state
estimation requires the individual training data. For the above reason, ThermalWrist is appropriate for
such situations containing the individual training step.

4.6. Effect of Ambient Air Temperature

The above experiments have shown the effect of the reference point temperature difference on
the performance. Table 3 shows the SD of the correction error in each environment. The SD is 0.38 ◦C
larger than the lab environment.

Table 3. Difference in standard deviation due to environmental change.

Method Lab Cool
Baseline 1.48 1.33
ThermalWrist 0.52 0.82

Figure 13 shows the relation between the number of data and the error of ThermalWrist. The data
in the dataset used for calculating the SD are extracted by setting the lower limit of the temperature
measured by the wristband. When the cool data are mixed at 32.40 ◦C, the SD starts to increase.
The wrist temperature border is shown in Figure 13 as the blue line. The mean room temperature
when the border temperature was recorded was 22.91 ◦C. For this reason, we consider that the wrist
temperature needs to be 32.40 ◦C or higher in order to utilize ThermalWrist with a small error.
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Figure 13. Relation between wristband measured temperature and SD of correction error.

4.7. Comparison with Continuous Measurement Correction

The accuracy of smartphone thermal cameras may be mitigated by conducting multiple
measurements to remove outliers. To see the effect of such simple outlier detection, we captured both
visible and thermal images seven times with a ten-second interval every 30 min. Then, we remove
outliers from continuous measurement by defining a suitable threshold. Figure 14 shows an example
of the outlier removal process. The black line is the mean of the seven measurements and the red lines
are the thresholds. The thresholds are defined as the temperatures that are higher or lower than the SD
of the seven continuous measurements.
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(a) Raw continuous measurement
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(b) After outlier removal

Figure 14. Example of removal defining thresholds.

Table 4 shows that MAE, SD, and CORR for the dataset where the above outlier removal was
applied. We see that almost all the results are improved by the outlier removal. The MAE of the
baseline is especially improved by the outlier removal, which is slightly better than ThermalWrist.
However, the SD and CORR of the wrist-referenced method are much better than the baseline even
with the outlier removal. This result indicates that ThermalWrist greatly improves the performance of
smartphone thermal cameras, especially in terms of the ability to follow the changes of the ground
truth. Therefore, we have confirmed that ThermalWrist is also useful for continuous measurement.
We note that the baseline with outlier removal may be acceptable depending on situations since it does
not require wristbands. Nevertheless, to apply outlier removal, users have to remain stable in front of
thermal cameras. In contrast, ThermalWrist is able to correct a single thermal image in combination
with a wristband, which is beneficial for users.
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Table 4. Effect of outlier removal.

MAE SD CORR
Method Before After Before After Before After
Baseline 0.87 0.66 1.48 0.81 0.26 0.49
Palm-referenced 0.65 0.63 0.78 0.76 0.47 0.49
Wrist-referenced 0.44 0.43 0.52 0.46 0.55 0.57

5. Conclusions

In this paper, we presented dynamic offset correction for a smartphone thermal camera using
a wristband sensor for low cost and accurate temperature monitoring. The design of ThermalWrist is
based on the key feature that the measurement fluctuation of the thermal cameras is due to the offset,
which is common in all the pixels in a single thermal image. ThermalWrist estimates the temperature
of the reference point by regression from the wristband temperature measurement. We selected
a palm and a wrist for the reference points for comparison. Through the real experiment with 1148
samples from 11 subjects, we confirmed that ThermalWrist remarkably improves the accuracy on three
evaluation metrics: the mean absolute error, the standard deviation of the error, and the Pearson’s
linear correlation coefficient. The limitation of ThermalWrist depends on the variance of reference point
temperature distribution. The experiment in a cool environment shows that the variance is larger when
the temperature measured by a wristband sensor is lower. The wrist temperature needs to be 32.40 ◦C
or higher in order to fully utilize ThermalWrist. This result indicates that ThermalWrist is effective
in normal indoor ambient temperature. We note that the limitation of wristband thermometers is
low reliability when people sweat heavily (e.g., vigorous exercise, walking in a hot environment).
However, our target applications include comfort level estimation for air conditioning [9] and cognitive
estimation in daily life [8]. We assume that most of these applications are used in air-conditioned
indoor environments where people seldom sweat. Therefore, we are able to rely on a wristband
thermometer as a reference. Our future work is to design a method that does not depend on ambient
temperature and to correctly extract the temperature of the reference point from thermal images using
other wearable sensors or other methods.
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Appendix A

Figure A1a,b show the relation between the reference points’ temperature measured by the
high-end thermal camera and the temperature measured by the wristband in both experiments
described in Section 4.1. The palm is used as a reference point in Figure A1a and the wrist is used as
a reference point in Figure A1b. The line on the figures is the regression lines and they also show the
estimation formulas.
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Figure A1. Relation between temperature measured by the the wristband and thermal camera.
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