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Abstract: In this paper, a novel in-line modal interferometer for refractive index (RI) sensing
is proposed and experimentally fabricated by cascading single-taper and multimode-double-
cladding-multimode (MDM) fiber structure. Owing to evanescent field in taper area, the ultra-sensitive
and linear intensity-responses to the varied surrounding RI are gained in both single- and double-pass
structures. Moreover, the crosstalk from temperature can be effectively discriminated and compensated
by means of the RI-free nature of MDM. The experimental results show that the RI sensitivities in
single- and double-pass structures, respectively, reach 516.02 and 965.46 dB/RIU (RIU: refractive
index unit), both with the slight wavelength shift (~0.2 nm). The temperature responses with
respect to wavelength and intensity are 68.9 pm◦C−1/0.103 dB◦C−1 (single-pass structure) and
103 pm◦C−1/0.082 dB·◦C−1 (double-pass structure). So the calculated cross-sensitivity of intensity is
constrained within 8.49 × 10−5 RIU/◦C. In addition, our sensor presents high measurement-stability
(~0.99) and low repeatability error (<4.8%�). On account of the ~620 µm size of taper, this compact
sensor is cost-efficient, easy to fabricate, and very promising for the applications of biochemistry
and biomedicine.

Keywords: refractive index sensor; modal interferometer; intensity demodulation; temperature
compensation

1. Introduction

Fiber refractive index (RI) sensors have been widely applied in biology, chemistry, medicine,
and other fields with the merits of high sensitivity, compact size, and low-cost [1]. Recently, massive
RI sensors include fiber Bragg grating (FBG) sensors [2,3], long-period fiber grating sensors [4,5],
surface plasmon resonance refractometers [6–8], photonic crystal fiber refractometers [9–11],
microfiber/microfiber coupler [12–15], and model interferometer [16–21] have been extensively
investigated and the sensitivity record is continuously updated. So far, to the best knowledge
of the authors, wavelength sensitivity as high as ~2 × 105 nm/RIU (RIU: refractive index unit) is
achieved in a polarization-maintaining microfiber based structure [22]. Nevertheless, it is worth noting
that wavelength modulated schemes surely require the support of expensive optical spectrum analyzer
(OSA) to monitor spectral shift.

Comparatively, intensity modulation based RI sensors are more practical but it is rarely reported
that they can be implemented by a cost-effective power meter [18,23]. Zhou et al. proposes an offset-core
thin-core fiber (TCF) based structure and the sensitivity of −202.46 dB/RIU is obtained [24]. To enhance
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sensitivity, lots of schemes based on up- and down-taper are frequently proposed due to the extensive
loss of the evanescent field [25–27]. Moreover, based on the RI-free feature of multimode fiber (MMF),
the bias-taper based structures with self-temperature compensation are respectively fabricated by
arc-discharge and flame-brushing techniques. The reported sensitivities are about−340 dB/RIU with the
linearity of >0.98 [28,29]. Further, Chen et al. form a weak Fabry–Perot cavity by the slight RI difference
of TCF and single mode fiber (SMF) and an exceeding −1100 dB/RIU sensitivity is demonstrated,
but only at the point of 1.4305 [30]. To overcome this limitation, Shi et al. insert a no-core fiber (NCF)
into a fiber ring-cavity laser with FBG and its output power is only sensitive to the variation of external
RI. The segmented intensity sensitivities with low temperature crosstalk are presented in [31], which are
196.1 dB/RIU (in the range of 1.335–1.354) and 744.6 dB/RIU (in the range of 1.354 to 1.367), respectively.

In this paper, we fabricate a novel in-line modal interferometer for RI sensing through cascading
the single-taper and multimode-double-cladding-multimode (TMDM) fiber structure. In the proposed
TMDM, the taper area is intensity sensitive to the varied surrounding RI (SRI) owing to the evanescent
field, and the part of MDM just serves to monitor the change of ambient temperature because of its
RI-free nature. Comprehensive RI measurements are performed in terms of sensitivity, stability, and
repeatability. The experimental results show that the sensitivity up to 965.46 dB/RIU is gained in
double-pass structure with the ~0.2 nm wavelength shift. Moreover, the intensity drift of temperature
is constrained within ~0.1 dB/◦C and the calculated cross-sensitivity is about 8.49 × 10−5 RIU/◦C.
Additionally, the proposed sensor with ultra-high sensitivity and a narrow refractive index range can
accurately detect specific biological, medical, or chemical agents. It has the merits of compactness,
cost-efficiency, and ease of fabrication, which is very potential to be a minimized biochemical sensor.

2. Principle and Fabrication

The TMDM with a single-pass (SP) structure is illustrated in Figure 1, which includes
two short-length MMFs (denoted by MMF-1 and MMF-2, respectively), a piece of tapered SMF,
and a section of double-cladding fiber (DCF, SM-9/105/125-20A, Nufern, Hartford, CT, USA).
In particular, the fiber-core and two fiber-claddings (inner-cladding and outer-cladding) diameters of
the adopted DCF are 9, 105, and 125 µm, respectively. The matched MMFs are chosen with the fiber-core
and fiber-cladding diameters of 105 and 125 µm. Therefore, the incident light from the taper area is
split by MMF-1 with the ratio of κ1 and propagates in the fiber-core and fiber-cladding. The guide
mode and excited cladding modes are recoupled by MMF-2 with the ratio κ2. Because the phase delay
(denoted by ∆φ) caused by the RI difference of the fiber-core mode and fiber-cladding mode, a stable
in-line Mach–Zehnder interferometer (MZI) is formed. It is well known that its transmitted intensity
can be described by

I = Ico + Icl + 2
√

IcoIcl cos(∆ϕ) (1)

where Ico and Icl are the intensities of the fiber-core and fiber-cladding modes, respectively. ∆φ can be
written as

∆ϕ =
2π
λ
(nco − ncl)·L =

2π ∆ne f f L

λ
(2)

where nco, ncl, and ∆neff are the effective RI of the fiber-core mode, the effective RI of fiber-cladding mode,
and the effective RI difference of the fiber-core and fiber-cladding modes, respectively. L and λ are
the DCF length and the incident light wavelength, respectively. When the condition ∆φ = (2m + 1)π,
the interference dip wavelength (λdip) of the spectrum will be

λdip =
2∆ne f f L

2m + 1
(3)

where m is an integer. Note that, the modal interference generates just between the fiber-core mode
and the inner-cladding mode because of the limitation of MMF-1. In addition, the incident light will
extensively leak into the cladding and air in taper area due to the evanescent field. Moreover, this loss
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will increase with the rise of SRI according to [32]. This means the introduced single-taper can be used
as an attenuator related to SRI.
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Figure 1. The schematic diagram of the single-taper and multimode-double-cladding-multimode
(TMDM) with a single-pass structure.

Here we define the loss factor as α(n) and assume κ1 = κ2 = κ, Equation (1) is then modified by

I = Ico + α(n)κ1κ2Ico + 2
√

Icoα(n)κ1κ2Ico cos(∆ϕ)

= (α(n)κ
2 + 1)Ico + 2κ Ico

√
α(n) cos(∆ϕ)

(4)

Furthermore, the normalized fringe visibility is defined as:

V =
2κ Ico

√
α(n)

(α(n)κ2 + 1)Ico
=

2κ√α(n)
α(n)κ2 + 1

(5)

Equation (5) shows that, for the given κ the value of V is proportional to √α(n) and that means an RI
sensing test with intensity modulation can be achieved by the proposed SP structure.

In fabrication, both ends of a 45-mm long DCF are firstly spliced with two sections of MMF
(MM-S105/125-22A, Nufern, Hartford, CT, USA) by a commercial fusion splicer (FSM-100P, Fujikura,
Tokyo, Japan) and keep the length of MMF are about 0.4 mm by cutting to avoid the possible multimode
interference. Then the formed MDM structure is respectively spliced with two pieces of SMF (Corning
SMF-28) as the lead-in and lead-out fibers. Finally, an adiabatic taper locating at the middle of
lead-in SMF is completed by the arc-discharge technique. In detail, the power of pre-discharge and
main-discharge are 30 bits and 80 bits, and the corresponding discharge times are 150 and 2200 ms,
respectively. The waiting time and the speed of welding are 1200 ms and 0.15 µm/ms, respectively.
From Figure 2a, the symmetric transitions are demonstrated with the length of ~311.3 µm and the
waist-diameter is dw = 28.5 µm. Further, the cross-sectional morphology of DCF and the transmission
spectrum of the SP structure (in air) are also given in Figure 2b,c. Obviously, there are two fringes,
respectively, located at 1541 and 1555 nm (denoted by dip-1 and dip-2) with the visibilities of 22.5 and
16.4 dB. In addition, the interval spacing between dip-1 and dip-2 is about 14 nm.
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3. Experiments and Results

The experimental setup is shown in Figure 3. The fixed sensor head is connected to a broadband
source (BBS, homemade, working in 1520–1565 nm) and an OSA (Agilent 86142 B, resolution:
0.06 nm/0.01 dB, Palo Alto, CA, USA). We prepare glycerol solutions with different concentrations and
then perform a comprehensive RI test at room temperature of 24 ± 0.5 ◦C. Note that, the RI of glycerol
solution is collimated using an Abbe refractometer before each test. We drip the glycerin solution on
the sensor head and record the spectrum. The sensor head is thoroughly cleaned with anhydrous ethyl
alcohol after each recording of the spectrum.
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Figure 3. Experimental setup.

Here dip-1 is selected to monitor the variation of SRI due to its larger visibility. From Figure 4a,
the intensity of dip-1 is quickly increased with the added solution concentration. By calculation the
total increment reaches 12.988 dB (from −67.544 to −54.556 dB) in the range of 1.3325~1.3565 RIU.
Figure 4b presents an intensity response of 519.71 dB/RIU is obtained with high linearity. On account
of 0.01-dB resolution, the detection limit of SP structure is 1.92 × 10−5 RIU. Comparatively, dip-1
merely shifts about −0.2 nm (from 1540.8 to 1540.6 nm). Since the isolation of the outer cladding
of the DCF makes the DCF region insensitive to the SRI, and the energy loss of the taper increases
as the SRI increases, only the power in the received spectrum is affected by an RI change without
the wavelength shift. In addition, the repeatability test is conducted and the solution concentration
is increased (decreased) by adding the ratio of glycerol (distilled water). As shown in the insets of
Figure 5, the intensity variations of fringe visibility present a high consistence for the increased and
decreased concentrations of glycerol solution. In the range of 1.335–1.358, the intensity sensitivities of
520.96 and 518.47 dB/RIU with high linearity (>0.99) are gained for the rising and reducing of SRI,
respectively. By calculation the repeatability error of our sensor is ~4.8%�.Sensors 2019, 19, x FOR PEER REVIEW 5 of 11 
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Figure 4. (a) Transmission spectra of SP structure and (b) the wavelength and intensity responses with
a varied surrounding refractive index (SRI).



Sensors 2019, 19, 3820 5 of 10

Sensors 2019, 19, x FOR PEER REVIEW 5 of 11 

 

  

Figure 4. (a) Transmission spectra of SP structure and (b) the wavelength and intensity responses 
with a varied surrounding refractive index (SRI). 

 

Figure 5. Intensity responses with the rising and reducing of SRI. Insets: transmission spectra. 

Furthermore, to verify stability, three new SP-based samples are prepared with the same DCF length 
(~45mm) and similar waist-diameters (dw = 27.9, 28.8, and 28.6 μm, respectively). The transmission 
spectra of three new SP-based samples are shown in Figure 6(a)–(c). From Figure 6(d), the intensities 
of three dips consistently increased with the rise of SRI, and the sensitivities are 519.83, 512.69, and 

515.53 dB/RIU with the linearity of 0.99. By calculation, mean sensitivity (Sm) is 02.516
3
1


i

iS

dB/RIU, and the stability is equal to 3,2,1,599.0
-

-1
3
1

 i
S

SS

i m

mi , where Si is the sensitivity of 

Sample-i. The standard deviation (SD) is equal to 87.2)-(
3
1 3

1

2 
i

mi SS dB/RIU, and the standard 

error is equal to 657.1
3


SD dB/RIU. The slopes of all samples are distributed in the range of (Sm-3σ, 

Sm+3σ) and the proposed sensor presents a high stability. Therefore, the mean resolution of SP 
structure is 1.938 × 10-5 RIU. 

1534 1538 1542 1546 1550

-65

-60

-55

-50

-45

(a)

Tr
an

sm
is

si
on

/d
Bm

Wavelength/nm

 1.3325
 1.3355
 1.337
 1.3385
 1.34
 1.3415
 1.343
 1.3445
 1.346
 1.3475
 1.349
 1.3505
 1.352
 1.3535
 1.355
 1.3565

1.333 1.338 1.343 1.348 1.353 1.358

-68

-66

-64

-62

-60

-58

-56

-54

(b)

slope: 519.71 dB/RIU

D
ip

 tr
an

sm
is

si
on

/d
Bm

Refractive index

 Dip intensity
 Dip wavelength 
 linear fits  

            (R2=0.998)

1540.2

1540.5

1540.8

1541.1

1541.4

1541.7

1542.0

1542.3

D
ip

 w
av

el
en

gt
h/

nm

1.335 1.340 1.345 1.350 1.355

-66

-64

-62

-60

-58

-56

-54

D
ip

 in
te

ns
ity

/d
Bm

Refractive index

slope: 520.96 dB/RIU

slope: 518.47 dB/RIU1533 1539 1545

-64

-60

-56

-52

-48

In
te

ns
ity

/d
Bm

Wavelength/nm

1.3565

1.3355

1533 1539 1545

-64

-60

-56

-52

-48

In
te

ns
ity

/d
Bm

Wavelength/nm

1.3565

1.337

Figure 5. Intensity responses with the rising and reducing of SRI. Insets: transmission spectra.

Furthermore, to verify stability, three new SP-based samples are prepared with the same
DCF length (~45 mm) and similar waist-diameters (dw = 27.9, 28.8, and 28.6 µm, respectively).
The transmission spectra of three new SP-based samples are shown in Figure 6a–c. From Figure 6d,
the intensities of three dips consistently increased with the rise of SRI, and the sensitivities are
519.83, 512.69, and 515.53 dB/RIU with the linearity of 0.99. By calculation, mean sensitivity (Sm) is
1
3
∑
i

Si = 516.02 dB/RIU, and the stability is equal to 1
3
∑
i

1− |Si−Sm |
Sm

= 0.995, i = 1, 2, 3, where Si is

the sensitivity of Sample-i. The standard deviation (SD) is equal to

√
1
3

3∑
i=1

(Si − Sm)
2 = 2.87 dB/RIU,

and the standard error is equal to SD
√

3
= 1.657 dB/RIU. The slopes of all samples are distributed in the

range of (Sm − 3σ, Sm + 3σ) and the proposed sensor presents a high stability. Therefore, the mean
resolution of SP structure is 1.938 × 10−5 RIU.
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Figure 6. Stability measurements. (a–c) The transmission spectra and (d) intensity responses with
varied SRI of three new SP-based samples.

In order to quantify crosstalk, the temperature response is also investigated by placing the sensor
head into an electric thermostat. The inset of Figure 7 shows that the fringe dip has a clear red-shift
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as the temperature increasing from 25 ◦C to 55 ◦C. From Figure 7, a linear relation is found and the
sensitivity is ~68.9 pm/◦C. Comparatively, there is a slight increase for the fringe intensity when the
temperature is increased and the calculated sensitivity is ~0.103 dB/◦C. So the intensity error caused by
temperature cross-sensitivity is 1.98 × 10−4 RIU/◦C when non-temperature-compensation is employed.
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Figure 7. The wavelength and intensity responses with varied temperature. Inset: transmission spectra
of SP structure.

Furthermore, to further enhance sensitivity, the sensing characteristics of TMDM with double-pass
(DP) structure are experimentally performed. As shown in Figure 8, in DP structure, the light beams
will be reflected by a well-cut end-face of DCF and pass through the taper area again. This surely brings
a twice-loss and leads a doubled sensitivity improvement. A new DP-based sample is fabricated with
a shorter DCF length (~23.5mm) and a similar waist-diameter (dw = 28.8 µm) for discrimination.
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Figure 8. Schematic and experimental setup of TMDM with a double-pass structure.

The DP structure is connected with BBS and OSA by a circulator and its RI response is measured
and presented in Figure 9. The inset shows that the DP structure has a much quicker intensity
increase when the SRI is rising but with a ~8.5-dB reduction of visibility maybe due to the loss of
the fiber-core mode at the reflected end-face. In detail, the total increment is 8.455 dB in the range of
1.33~1.339 RIU and the corresponding intensity sensitivity reaches 965.46dB/RIU with a linearity of
0.989. Moreover, the maximum value of wavelength drift is merely ~0.12 nm. Thus, approximately
1.85-time enhancement of detection limit (1.036 × 10−5 RIU) is gained in the DP structure. Note that
the actual sensitivity is not fully doubled possibly due to the fabricated taper difference in terms of
length and waist-diameter [26]. In addition, the measurement range of the proposed sensor increases
as the fringe visibility increases, and the fringe visibility is related to the waist-diameter and length
of the taper. Therefore, the measurement range can be expanded by appropriately adjusting the
waist-diameter and length of the taper. For comparison, the temperature response of DP structure
is also measured and demonstrated in Figure 10. The inset shows a clear red-shift with the added
temperature but the increased intensity is merely 0.849 dB in the range of 25~35 ◦C. The temperature
sensitivity with respects to wavelength and intensity are 103.3 pm/◦C and 0.082 dB/◦C with a linearity
of 0.985. So the intensity crosstalk from the temperature is further restrained within 8.49 × 10−5 RIU/◦C
in the DP structure.
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Figure 9. Wavelength and intensity relationships in a double-pass (DP) structure with varied SRI.
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Further, the variations of RI and temperature in DP structure can be discriminated by the inversion
matrix method [28], which can be described as[

∆T
∆n

]
=

1
D

[
kIn − kλn
−kIT kλT

] [
∆λ
∆I

]
, (6)

where ∆n and ∆T are the variations of RI and temperature, respectively. ∆λ and ∆I are the wavelength
shift and intensity change. D = kλTkIn − kITkλn, where kλT = 0.103, kλn = 0 are wavelength sensitivities
of temperature and RI in the DP structure, kIn = 965.46, kIT = 0.082 are intensity sensitivities of RI and
temperature in the DP structure. Consequently, the matrix will be changed as[

∆T
∆n

]
=

1
99.44

[
965.46 0
−0.082 0.103

] [
∆λ
∆I

]
(7)

and the measurement of RI without the crosstalk of temperature can be completed.
Table 1 compares the various fiber RI sensors with our schemes (Note, the resolution of receivers

in calculation are the same with 0.06 nm/0.01 dB). It is obvious that the competitive sensitivities are
presented in both SP and DP structures. A near 1 × 103 dB/RIU is gained by the DP structure and is
only slightly lower than the result reported in [30] but it has a better linearity (0.989) in the range
from 1.33 to 1.339 RIU. Besides, on account of the self-temperature compensation and ultra-small size
(~620 µm), our schemes have potential and are suitable to be integrated and applied in biochemical
fields, such as lab-on-chip.
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Table 1. Comparisons of various fiber RI sensors.

Structures Sensitivity Resolution
(RIU) Linearity RI Range

(RIU) Refs

Tilted FBG −574.23
nm/RIU 1.045 × 10−4 0.999 1.40–1.45 [3]

Long-period grating 505 nm/RIU 1.188 × 10−4 / 1.333–1.354 [5]
Microfiber coupler 12,020 nm/RIU 4.99 × 10−6 0.996 1.3333–1.3341 [13]

S-tapered fiber 268.8 nm/RIU 2.23 × 10−4 0.982 1.332–1.387 [20]
Eccentric hole-assisted dual-core fiber 102.2 dB/RIU 9.785 × 10−5 0.981 1.335–1.37 [23]

Offset-core TCF −202.46 dB/RIU 4.939 × 10−5 / 1.42 [24]
Tapered fiber tip with air bubble 442.59 dB/RIU 2.259 × 10−5 0.994 1.333–1.38 [25]

Bias-tapered MMF 345.78 dB/RIU 2.892 × 10−5 0.998 1.336–1.351 [29]

Weak-FP based TCF
240 dB/RIU 4.167 × 10−5 / 1.3326–1.4305 [30]

1110.7 dB/RIU 9.003 × 10−6 / 1.4305

NCF-based laser sensor
−196.1 dB/RIU 5.099 × 10−5 0.997 1.335–1.354 [31]
−744.6 dB/RIU 1.343 × 10−5 0.997 1.354–1.367

SP-TMDM 516.02 dB/RIU 1.938 × 10−5 0.998 1.33–1.356 Our
worksDP-TMDM 965.46 dB/RIU 1.036 × 10−5 0.989 1.33–1.339

4. Conclusions

In conclusion, a compact RI sensor is experimentally fabricated and demonstrated by cascading
the tapered SMF and multimode-double-cladding-multimode fiber structure and the performance of
SP and DP based structures are measured and compared in terms of RI and temperature responses.
Experimental results show that only the taper area (~620µm) is sensitive to the varied SRI by an intensity
modulation. Owing to the introduced twice-loss, the sensitivity of near 1 × 103 dB/RIU is gained in the
DP structure with a high linearity (>0.989) and low wavelength-shift. The corresponding detection
resolution is 1.036 × 10−5 RIU and by the inversion matrix method, the measurement of RI without the
crosstalk of temperature can be completed. More importantly, the proposed sensor presents a high
practicality in terms of repeatability and stability. Therefore, such a compact and stable sensor with
self-temperature compensation and ultrahigh linear sensitivity is very promising in high-resolution
biochemical sensing.
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