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Abstract: Nineteen million Americans have significant vision loss. Over 70% of these are not
employed full-time, and more than a quarter live below the poverty line. Globally, there are 36 million
blind people, but less than half use white canes or more costly commercial sensory substitutions.
The quality of life for visually impaired people is hampered by the resultant lack of independence.
To help alleviate these challenges this study reports on the development of a low-cost, open-source
ultrasound-based navigational support system in the form of a wearable bracelet to allow people
with the lost vision to navigate, orient themselves in their surroundings and avoid obstacles when
moving. The system can be largely made with digitally distributed manufacturing using low-cost
3-D printing/milling. It conveys point-distance information by utilizing the natural active sensing
approach and modulates measurements into haptic feedback with various vibration patterns within
the four-meter range. It does not require complex calibrations and training, consists of the small
number of available and inexpensive components, and can be used as an independent addition to
traditional tools. Sighted blindfolded participants successfully demonstrated the device for nine
primary everyday navigation and guidance tasks including indoor and outdoor navigation and
avoiding collisions with other pedestrians.

Keywords: visually impaired; blind; assistive devices; sensory substitution; obstacle avoidance;
sensors; ultrasonic sensing; ultrasound sensing; 3-D printing; additive manufacturing

1. Introduction

According to the World Health Organization (WHO) [1,2], approximately 1.3 billion people live
with some form of vision impairment, and 36 million of them are totally blind. The vast majority of the
world’s blind population live in developing countries [3]. In addition, this challenge is falling on the
elderly at an increasing rate, with the group of visually impaired people over 65 years of age growing
with a per-decade increase of up to 2 million persons, which is faster than the overall population
with visual impairments [3]. However, even in developed countries like the U.S. this is becoming
an increasing problem because of several factors. First, the U.S. is aging: Americans 65 and older
is projected to more than double from 46 million today to over 98 million by 2060, and their share
of the total population will rise to nearly a quarter from 15% [4]. Second, the elderly in the U.S. are
increasing financially vulnerable [5]. According to American Foundation for the Blind [6] and National
Federation of the Blind [7], more than 19 million American adults between the ages of 18 and 64 report
experiencing significant vision loss. For working age adults reporting significant vision loss, over 70%
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are not employed full-time, and 27.7% of non-institutionalized persons aged 21 to 64 years with a
visual disability live below the poverty line [7].

Safe navigation and independent mobility are parts of everyday tasks for visually impaired
people [8], and can only partially be resolved with the traditional white cane (or their alternatives
such as guide canes or long canes). According to several studies [9–11], less than 50% of the blind
population use white canes. For those that do use them, they work reasonably well for short distances
as they allow users to detect obstacles from the ground to waist level [12]. Some blind people also use
mouth clicks to implement human echolocation [13]. Echoes from mouth click sounds can provide
information about surrounding features far beyond the reach of a white cane [14], but, unfortunately,
not all visually-impaired people are able to use this technique.

Over the past few decades, several approaches have been developed to create sensory augmentation
systems to improve the quality of life of people with visual impairments, which will be reviewed in the
next section. It is clear developing a sensor augmentation or replacement of the white cane with a sensory
substitution device can greatly enhance the safety and mobility of the population of people with lost
vision [15]. In addition, there are sensory substitution products that have already been commercialized
that surpass the abilities of conventional white canes. However, most of the commercially available
sensory substitution products are not accessible to most people from developing countries as well as
the poor in developed countries due to costs: (i) UltraCane ($807.35) [16], an ultrasonic-based assistive
device with haptic feedback and the range of 1.5 to 4 meters; (ii) Miniguide Mobility Aid ($499.00) [17],
a handheld device that uses ultrasonic echolocation to detect objects in front of a person in the range
of 0.5 to 7 meters; (iii) LS&S 541035 Sunu Band Mobility Guide and Smart Watch ($373.75) [18] that
uses sonar technology to provide haptic feedback regarding the user’s surroundings; (iv) BuzzClip
Mobility Guide ($249.00) [19], a SONAR-based hinged clip which has three ranges of detection (1, 2,
and 3 meters) and provides haptic feedback; (v) iGlasses Ultrasonic Mobility Aid ($99.95) [20] provides
haptic feedback based on ultrasonic sensors with the range of up to 3 meters, (vi) Ray [21] complements
the long white cane by detecting barriers up to 2.5 meters and announces them via acoustic signals or
vibrations, (vii) SmartCane ($52.00 for India and $90.00 for other countries) [22,23] detects obstacles
from knee to head height based on sonic waves and modulates the distance to barriers into intuitive
vibratory patterns. It is thus clear that a low-cost sensor augmentation or replacement of the white
cane with a sensory substitution device is needed.

In the most recent comparative survey of sensory augmentation systems to improve the quality
of life of people with visual impairments [24], assistive visual technologies are divided into three
categories: (1) vision enhancement, (2) vision substitution, and (3) vision replacement. In addition,
Elmannai et al. [24] provided a quantitative evaluation of wearable and portable assistive devices
for the visually impaired population. Additional devices have been developed for white canes are
based on ultrasonic distance measurements and haptic [25,26] or audio [27] feedback. Amedi et al. [28]
introduced an electronic travel aid with the tactile and audio output, that uses multiple infrared sensors.
Bharambe et al. [29] developed a sensory substitution system with two ultrasonic sensors and three
vibration motors in form of a hand device. Yi et al. [30] developed an ultrasonic-based cane system
with haptic feedback and guidance in audio format. Pereira et al. [12] proposed a wearable jacket as a
body area network and Aymaz and Çavdar [31] introduced an assistive headset for obstacle detection
based on ultrasonic distance measurements. Agarwal et al. [32] developed an ultrasonic smart glasses.
De Alwis and Samarawickrama [33] proposed a low-cost smart walking stick which integrates water
and ultrasound sensors.

In addition to the devices based on the use of acoustic waves, there are also a number of
projects which utilize more complex systems based on computer vision [34–37], machine learning
technique [38], and GPS/GSM technologies [39] and provide information regarding the navigation and
ambient conditions.

Tudor et al. [40] designed an ultrasound-based system with vibration feedback, which could be
considered as the closest prototype to the device developed and tested here. The ultrasonic electronic
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system [40] utilizes two separate ultrasound sensors for near (2 to 40 cm) and far (40 to 180 cm) distance
ranges respectively. Tudor et al. [40] use simple linear pulse width modulation dependency for both
vibration motors. Most of these projects allow to navigate within the distance range of 4 m, but suffer
from drawbacks related to cost and complexity and thus accessibility to the world’s population of
visually impaired poor people. One approach recently gaining acceptance for lowering the costs of
hardware-based products is the combination of open source development [41–43] with distributed
digital manufacturing technologies [44,45]. This is clearly seen in the development of the open source
self-replicating rapid prototyper (RepRap) 3-D printer project [46–48], which radically reduced the cost
of additive manufacturing (AM) machines [49] as well as products that can be manufactured using
them [50–52] including scientific tools [42,53–57], consumer goods [58–63], and adaptive aids [64].
In general, these economic savings are greater for the higher percentage of the components able to be
3-D printed [65,66].

In this study, a low-cost, open-source navigational support system using ultrasonic sensors is
developed. It utilizes one ultrasound sensor with one or two vibration motors (depend on the designed
model) in a 3-D printed case to make the system compact and easily fixed on the wrist as a bracelet.
The developed Arduino software performs distance measurements in the full sensor range from 2 cm
to 4 m according to the ultrasound sensor specifications and implements an algorithm that uses the
motors as low- and high-frequency vibration sources. The distance modulation technique consists of
splitting the entire four-meter measurement range into four bands as described in Section 2.4, and of
implementing the non-linear duty cycle modulation for the most significant middle band of 35 cm to
150 cm. The system can be largely digitally manufactured including both the electronics and mechanical
parts with conventional low-cost RepRap-class PCB milling [67] and 3-D printing. The system is
quantified for range and accuracy to help visually-impaired people in distance measurement and
obstacle avoidance including the minimal size of the object. According to [24,68], the proposed system
partially fulfills the Electronic Travel Aid (ETA) requirements, which consist of providing tactile and/or
audible feedback on environmental information that is not available using traditional means such as
white cane, guide dog, etc. Sighted blindfolded participants tested the device for primary everyday
navigation and guidance tasks including: (a) walk along the corridor with an unknown obstacle,
(b) bypass several corners indoors, (c) walk through the staircase, (d) wall following, (e) detect the
open door, (f) detect an obstacle on the street, (g) bypass an obstacle on the street, (h) avoid collisions
with pedestrians, (i) interact with known objects.

2. Materials and Methods

2.1. Design

An open-source navigational support with the 3-D printable case components was developed in
form of two models of wearable bracelet with one and two vibration motors respectively (Figure 1)
to help visually impaired people in distance measurement and obstacle avoidance. The system is
based on a 5-volt HC-SR04 ultrasonic sensor [69], which uses SONAR (originally an acronym for
sound navigation ranging) to determine the distance to an object in the range of 0.02–4 m with a
measuring angle of 15 degrees. It detects obstacles in front of the user’s body from the ground to
the head and above, and provides haptic feedback using a 10 mm flat vibration motor [70], which
generates oscillations with variable frequency and amplitude depending on the distance to the obstacle.
The microcontroller unit allows us to coordinate the operation of the motor and the sensor based on
the developed algorithm, uploaded as a C-code to Arduino.

The device can be placed on the right or left hand, and it does not prevent the use of the hand
for other tasks. It conveys point-distance information and could be used as a part of an assembly
of assistive devices or as an augmentation to a regular white cane. In that way, the active sensing
approach [15] was utilized, in which a person constantly scans the ambient environment. This method
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allows a user to achieve better spatial perception and accuracy [15] due to the similarity to natural
sensory processes [71,72].
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Table 1. Bill of materials for the open-source ultrasound-based navigational support. 
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0.25W 1 kΩ resistor 2 <0.01 

Ceramic 0.1uF capacitor 1 0.07 
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2N2222 transistor 1 0.07 

5 mm LED 1 0.07 
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*(23.81 with optional module) 

Figure 1. Parts of an open-source navigational support with 3-D printable case components: (a) 3-D
prototype; (b) Components; (c) Model 1 with one vibration motor; (d) Model 2 with two vibration
motors; (e) Locking rings; (f) Case; (g) Vibration pad; (h) Sensor core; (i) Back cap; (j) Bracelet;
(k) Assembly.

2.2. Bill of Materials

The system was prototyped for people with no engineering skills and the lack of available
materials, so they can finish the assembly with the minimal toolkit. The bill of materials is summarized
in Table 1. A 5V DC-DC boost step-up module can be considered as an optional component that can be
used for battery life extension.

Table 1. Bill of materials for the open-source ultrasound-based navigational support.

Component Quantity Cost, USD

3-D printed case 1 0.65
3-D printed back cap 1 0.25
3-D printed bracelet 1 0.40

3-D printed vibration motor pad 1 0.05
3-D printed locking rings 2 0.05

Arduino Nano 1 3.80
Ultrasonic Sensor HC-SR04 1 1.83

Flat 10 mm 3 V vibration motor 1 1.40
400 mAh lithium polymer battery 1 7.49

Micro USB 5 V 1 A 18650 TP4056 lithium battery charger 1 1.20
*DC-DC 5V boost step-up module (optional) *1 *5.99

Slide switch 1 0.40
0.25W 1 kΩ resistor 2 <0.01

Ceramic 0.1uF capacitor 1 0.07
1N4007 diode 1 0.08

2N2222 transistor 1 0.07
5 mm LED 1 0.07

Total cost, USD 17.82
*(23.81 with optional module)
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2.3. Assembly

After 3-D printing all the necessary components, electronic parts should be soldered together
following Figure 2 and assembled to a sensor core with the vibration motor.
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Figure 2. Electrical circuit.

The Arduino Nano board should be programmed with the code available at [73], and the electronic
core assembly should be placed in the 3-D printed case to finish the whole assembly (Figure 1k).
All the CAD models and STL files are available online under an open-source CC BY-SA 3.0 license
(Creative Commons – Attribution – Share Alike) [74]. The hand bracelet (Figure 1j) has an online
option for customization [75], so a person with no experience with complicated 3-D modeling software
could print the part after adjusting it to their hand size. For Arduino programming, it is necessary to
download free open source Arduino IDE [76]. The final assembly of the sensor core and 3-D printed
case components is demonstrated in the supplementary material (Video S1).

2.4. Operational Principles

The ultrasonic sensor emits acoustic waves at the frequency of 40 kHz, which travel through the
air and reflects from objects within the working zone. Every measurement cycle it sends a 10 µs trigger
input pulse and an 8-cycle sonic burst at the speed of sound and its reflection from an object is received
by an echo sounder [69]. It receives a 150 µs – 25 ms (38 ms in case of no obstacle) output echo pulse,
Techo, which width linearly depends on the distance to the detected obstacle:

Techo / k = D, (1)

where Techo is the output echo pulse width [µs], D is the measured distance to an obstacle [cm], k = 58
(µs/cm) is the conversion factor given by the sensor datasheet.

The measurement cycle, Tmeasure, specified in the Arduino program and represents a constant
time duration declared by a developer, but according to the sensor datasheet, this time duration should
be no less than 60 ms [69]. The distance to the object is measured by the time delay between sending
and receiving sonic impulses in the Arduino program.
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A single exponential filter [77] was used to smooth noisy sensor measurements. It processes the
signal with the desired smoothing factor without using a significant amount of memory. Every time a
new measured value yt is provided, the exponential filter updates a smoothed observation, St:

St = α · yt + (1−α) · St-1, 0 < α < 1, (2)

where St−1 – is the previous output value of the filter, yt is a new measured value, α = 0.5 is the
smoothing constant.

Total measurement time consists of the traveling time caused by the finite speed of sound and the
delay necessary for measurements. The time delay caused by the finite speed of sound, Tmax travel, is:

Tmax travel = Dmax / Vsound = 2 · 4 / 340 = 8 / 340 = 24 (ms), (3)

where, Dmax is the maximum measured distance to an obstacle and Vsound is the speed of sound in air.
The measured distance is modulated with vibration amplitude and translated in real-time as a duty
cycle parameter from the Arduino board (Figure 3). Distances up to 35 cm are characterized by single
vibration pulses with a relatively high periodicity. Distances from 150 to 250 cm are characterized by
single pulses with low periodicity, and distances above 250 cm are modulated with two-pulse beats.
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Figure 3. The ultrasonic sensor operating principles: (a) The principal distances (not to scale);
(b) Calibration of the optimal duty cycle equation for the distance range of 35 cm to 150 cm, where
(c) MDC = 127 + 127 · tanh (−(D − 70) / 35); (d) MDC = 127 + 127 · tanh (-(D - 150) / 35); (e) MDC = 296 –
1.5 · D; (f) MDC = 335 – 1.3 · D; (g) MDC = −77 + 2.2 · D; (h) MDC = −48 + 1.2 · D.

An optimal duty cycle equation (Figure 3c) for the most common distance range of 35–150 cm
was found during experiments and calibrations (Figure 3b). The generated duty cycle for the Arduino
output, MDC is:

MDC = m + m · tanh (−(D−k) / b) = 127 + 127 · tanh(− (D − 70)/35), 0 < MDC < 255, (4)

where m = 127, k = 70 and b = 35 are the calibrated parameters, and D is the measured distance in
the range of 35 cm to 150 cm. This modulation law is based on hyperbolic tangent function, tanh,
(Figure 3c), which is close to the inverse of pain sensitization in its shape [78,79] and demonstrated the
best efficiency in most common tasks (Figure 4).
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Figure 4. Calibration procedure of the duty cycle modulation based on hyperbolic tangent function (4):
(a) Hand swinging; (b) Wall following; (c) Obstacle detection; and (d) Curbs tracking.

According to [80,81], there are four major types of tactile mechanoreceptors in human skin:
(1) Merkel’s disks, (2) Meissner’s corpuscles, (3) Ruffini endings, and (4) Pacinian corpuscles. Meissner’s
corpuscles respond to high amplitude incentives with low frequency and Pacinian corpuscles, in turn,
respond to low amplitude incentives with high frequency. Thus, varying amplitude and frequency of
vibrations, it is possible to activate these mechanoreceptors separately, which increases the working
range of sensitivity levels (Figure 5a). The vibration pad (Figure 1g) with the vibration motor are in
contact with the skin on the outer area of the wrist. As the nominal frequency characteristics of the motor
(Figure 5b) do not cover the full range of human threshold for detection of vibrotactile stimulation,
switching the motor on and off at different intervals allows us to simulate low-frequency pulsations.
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Figure 5. Human haptic sensitivity and vibration motor characteristics: (a) Psychophysically
determined thresholds for detection of different frequencies of vibrotactile stimulation (adapted
from [82]); (b) Vibration motor performance (adapted from [70]).

Estimated current for the whole device is at the level of 50 mA assuming that the vibration
motor works 40% of the time. According to this, a 400 mAh battery will provide us with 8 hours of
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autonomous work, which is an efficient amount of time for test purposes as well as for general use if a
blind person was walking throughout the entire working day.

Finally, the cost saving in percent (P) of the device was determined by:

P = (c −m) / c · 100, (5)

where c is the commercial cost of an equivalent device and m is the cost in materials to fabricate the
open source device. All economic values are given in U.S. dollars.

2.5. Testing of the Device

Since there are no well-established tests for sensory substitution devices, the experimental setup
was based on previous experience. García et al. [26] conducted an experiment with eight blind
volunteers and evaluate the results in form of quiz, where participants noted the efficiency in obstacle
detection above the waistline. Pereira et al. [12] evaluated their prototype on both blind and sighted
participants in five different scenarios to simulate the real-world conditions, including head-, chest-,
foot-level obstacles, and stairs. Maidenbaum et al. [15] performed a set of three experiments with
43 participants (38 of them are sighted blindfolded) to evaluate their prototype on basic everyday tasks,
including distance estimation, navigation, and obstacle detection. Nau et al. [83] proposed an indoor,
portable, standardized course for assessment of visual function that can be used to evaluate obstacle
avoidance among people with low or artificial vision.

Summarizing the experience of previous researchers, the set of experiments used to test the
devices here consists of indoor and outdoor, structural and natural environment in order to explore the
intuitiveness of the developed device and its capabilities in everyday human tasks.

Five sighted blindfolded lab researchers took part in a series of tests, the main purpose of which
was to collect the necessary information about adaptation pace, usability, and performance of the
developed system. The experiments were conducted in a familiar indoor and outdoor environment for
the users.

Participants were assigned to the following nine tests (Figure 6):

(a) Walk along the corridor with an unknown obstacle
(b) Bypass several corners indoors
(c) Navigate a staircase
(d) Wall following
(e) Detect the open door
(f) Detect an obstacle (shrub plant/road sign) outdoors
(g) Bypass an obstacle outdoors
(h) Avoid collisions with pedestrians
(i) Interact with known objects (bin/cardboard boxes)

Each participant had a 10-minute training before nine tests with two attempts, one attempt using
the Model 1 (the white device, Figure 1c) and one attempt using the Model 2 (the blue device, Figure 1d).
The tasks were to complete a distance of approximately 10 meters (20 steps) with obstacles (pedestrian,
road sign, etc.) or with landmarks (wall, door, steps, etc.). Success was counted if the participant has
finished the path relying only on the sensing device. Any collision with an obstacle or difficulty in
passing the test path was considered a failure. The time spent on passing the test was not taken into
account. Results of the experiments presented in Table 2. Some of the experiments were recorded and
included in the supplementary material (Video S1).
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Figure 6. Testing procedure. (a) Walk along the corridor with an unknown obstacle; (b) Bypass several
corners indoors; (c) Walk through the staircase; (d) Wall fallowing; (e) Detect the open door; (f) Detect
an obstacle on the street; (g) Bypass an obstacle on the street; (h) Avoid collisions with pedestrians;
(i) Interact with known objects.

Table 2. Results of the experiments.

Participants

Tests

a b c d e f g h i

Device Model

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 • - • • • • • • • • • • • • • • • •

2 • • • • • • • • • • • • • • • • • •

3 • • • • • • • • • • • • • • • • • -

4 • • • • - - • • • • • • • - • • • •

5 • • • • • • • • • • • • • - • • • •

• Success, - Failure.

3. Results and Discussion

All versions of the device were built for less than $24 USD each in readily available purchased
components and 3-D printed parts. The economic savings over generally inferior commercial products
ranged from 80.2–97.8% for the base system to 73.5–97.0% for the optional module system.

The devices were tested to demonstrate that it has intuitive haptic feedback as outlined above.
The device range and accuracy was found to allow a person with a lost eyesight to detect objects with
the area of 0.5 m2 or more within the distance range of up to 4 m. To omit head-level obstacles the
user must sweep the head area along the direction they are moving. During the experiments was also
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found that it is possible to track objects with the moving speed of up to 0.5 m/s within the one-meter
distance range.

As can be seen from Table 2, the failure rate is 6.7%, with the majority of failures occurring in
experiments with Model 2 (the blue device with two vibration motors, Figure 1d). Some participants
experienced difficulty navigating a staircase, as well as finding and avoiding unfamiliar obstacles
indoors and outdoors.

The preliminary testing of the device was determined to be a success based on the majority of the
participants being able to complete the nine tasks outlined in the methods section. All participants
during the experiments noted the effectiveness of the haptic interface, the intuitiveness of learning and
adaptation processes, and the usability of the device. The system produces fast response and allows a
person to detect objects that are moving. It naturally complements primary sensory perception of a
person and allows one to detect moving and static objects.

The system has several limitations. First, for the developed system, it is necessary to note a narrow
scanning angle and a limited response rate, which is expressed in ignoring the danger posed by small
and fast-moving objects. Second, the low spatial resolution of the system is also noted. Thus, in the
conditions of an outdoor street environment, it was difficult for the experiment participants to track
road curbs and determine the change in the level of the road surface. Third, indoors, soft fabrics, such as
furniture and soft curtains, as well as indoor plants, can cause problems with distance estimation
caused by acoustic wave absorption. In open outdoor areas, determining the distance can be difficult
on lawns with high grass and areas with sand. In addition, given the increase in the threshold of
sensitivity with age [84], the performed experiments do not cover the diversity of the entire population
of people with visual impairments.

This is a preliminary study on the technical specifications of the new device and a much more
complete study is needed on human subjects including blind subjects. Future work is needed for further
behavioral experimentation to improve data acquisition methods, obtain more data, and perform a
comprehensive statistical analysis of the developed system performance. This will allow designers to
utilize achievements in haptic technologies [85] and to improve the efficiency of its tactile feedback,
since the alternation of patterns of high-frequency vibrations, low-frequency impulses and beats of
different periodicity can significantly expand the range of sensory perception. Similarly, improved
sensors could expand range and improved electronics could increase the speed at which objects could
be detected. Minor improvements can also be made to the mechanical design to further reduce the
size, alter the detector angle to allow for more natural hand movement, and improved customizable
design to allow for individual comfort settings as well as aesthetics.

4. Conclusions

The developed low-cost (<$24 USD), open-source navigational support system allows people
with lost vision to solve the primary tasks of navigation, orientation, and obstacle detection (>0.5 m2

stationary within the distance range of up to 4 m and moving up to 0.5 m/s within the distance
range of up to 1 m) to ensure their safety and mobility. The devices demonstrated intuitive haptic
feedback, which becomes easier to use with short practice. It can be largely digitally manufactured as
an independent device or as a complementary part to the available means of sensory augmentation
(e.g., a white cane). The device operates in similar distance ranges as most of the observed commercial
products, and it can be replicated by a person without high technical qualification. Since the prices for
available commercial products vary from $90–800 USD, the cost savings ranged from a minimum of
73.5% to over 97%.

Supplementary Materials: The following are available online at https://youtu.be/FA9r2Y27qvY. Video S1:
Low-cost open source ultrasound-sensing based navigational support for visually impaired.

https://youtu.be/FA9r2Y27qvY
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