
sensors

Article

Simultaneous Calibration of Odometry and Head-Eye
Parameters for Mobile Robots with a Pan-Tilt Camera

Nachaya Chindakham 1, Young-Yong Kim 2 and Alongkorn Pirayawaraporn 1

and Mun-Ho Jeong 1,∗

1 Department of Control and Instrumentation Engineering; Kwangwoon University, Kwangwoon-ro 1-gil 60,
Nowon-gu, Seoul 01890, Korea

2 Research and Development Department; Thinkware Visual Technology, 240 Pangyoyeok-ro, Bundang-gu,
Gyeonggi-do, Seongnam-si 463-400, Korea

* Correspondence: mhjeong@kw.ac.kr; Tel.: +82-010-2940-2353

Received: 13 June 2019; Accepted: 10 August 2019; Published: 20 August 2019
����������
�������

Abstract: In the field of robot navigation, the odometric parameters, such as wheel radii and
wheelbase length, and the relative pose of the optical sensing camera with respect to the robot
are very important criteria for accurate operation. Hence, these parameters are necessary to be
estimated for more precise operation. However, the odometric and head-eye parameters are typically
estimated separately, which is an inconvenience and requires longer calibration time. Even though
several researchers have proposed simultaneous calibration methods that obtain both odometric
and head-eye parameters simultaneously to reduce the calibration time, they are only applicable to
a mobile robot with a fixed camera mounted, not for mobile robots equipped with a pan-tilt motorized
camera systems, which is a very common configuration and widely used for wide view. Previous
approaches could not provide the z-axis translation parameter between head-eye coordinate systems
on mobile robots equipped with a pan-tilt camera. In this paper, we present a full simultaneous
mobile robot calibration of head–eye and odometric parameters, which is appropriate for a mobile
robot equipped with a camera mounted on the pan-tilt motorized device. After a set of visual features
obtained from a chessboard or natural scene and the odometry measurements are synchronized and
received, both odometric and head-eye parameters are iteratively adjusted until convergence prior to
using a nonlinear optimization method for more accuracy.

Keywords: mobile robot kinematics; odometry calibration; head-eye calibration; simultaneous mobile
robot calibration

1. Introduction

Robot navigation is one of the key challenges facing the field of mobile robotics. This is because
mobile robots are required to drive themselves through a given environment using the information
gathered from their sensors. These sensors include proprioceptive sensors such as motor-speed
sensors, wheel-load sensors, joint-angle sensors, battery-voltage sensors and the inertial measurement
unit (IMU), which produces a type of data called odometric data. Additionally, these robots are
fitted with exteroceptive sensors such as image-feature sensors, distance sensors, light-intensity
sensors, sound-amplitude sensors, and global positioning system (GPS) sensors. However, robot
localization is typically inaccurate due to the uncertainty associated with measurement errors during
robot configuration. Although the robot configuration data, such as wheel radii and wheelbase length,
can be obtained simply from the robot specifications or by manual measurement, the actual parameters
can be dissimilar in practice. This is due to systematic errors such as manufacturing errors, assembly
errors, tire pressure variations, and load variations that reduce the precision associated with the
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movement of the mobile robot. It is therefore necessary to estimate these odometric parameters to
improve the robot’s operational precision.

Antonelli’s calibration method [1] uses the least-squares technique to observe a linear mapping
between the unknowns and the measurements. It aims to identify a 4-parameter model, while the
modified version [2] estimates the physical odometric parameters and yields a 3-parameter model
without any requirement for a predefined path. Some researchers, such as [3,4], have reduced the
cumulative error in odometry by considering the coupled effect of errors in diameter, wheelbase errors,
and scaling errors using a popular odometry calibration method for wheeled mobile robots, developed
at and named the University of Michigan Benchmark test (UMBmark) [5]. Some trials required a static
wireless sensor network and GPS devices to be equipped on mobile robots to correct for the odometry
errors [6,7]. However, this approach is disadvantageous in terms of cost-effectiveness.

Nowadays, mobile robots equipped with cameras which provide single color images, stereo
images, or depth images are widely used in the fields of robot navigation, reconstruction, and mapping.
Using this information, the robot can perform more precise and varied tasks. However, the relationship
between the camera and robot in terms of 3D position and orientation is also important for accurate
operation. Shiu and Ahmad [8] introduced a solution for rigid transformation between the sensor and
the robot, calculated in the form AX = XB. Hand-eye calibration, as proposed by Tsai and Lenz [9],
is a similar, albeit more efficient solution which does not depend on the number of images. In mobile
robots, the 3D position and orientation of the camera relative to the robot’s base is considered instead.
Kim et al. [10] found that the head-eye transformation between the robot’s coordinate system and the
camera’s coordinate system can be estimated simply and accurately by using the minimum variance
technique, which is resistant to noisy environments.

In practical applications, the odometric parameters, such as wheel radii and wheelbase length,
and the head-eye parameters are typically estimated separately, which requires a longer calibration
time and increased inconvenience due to redundancy in these methods. To avoid the disadvantages,
Antonelli et al. [11] have proposed a simultaneous calibration method that performs both odometry
and the head-eye calibrations simultaneously. Since the method required only the synchronized
measurement of odometric data and visual features, it was successful in terms of reducing the
calibration time and improving efficiency in the mobile robot calibration. However, their approach is
only applicable to the mobile robot on which a fixed camera is mounted, while recent mobile robots are
equipped with pan-tilt motorized camera systems for wide view. This caused incomplete estimation
of the head-eye parameters, that is, the method could not provide the z-axis translation parameter.
Shusheng Bi et al. [12] presented an improved version of [11] in terms of accuracy, but still did not
overcome the problem. Hengbo Tang et al. [13] solved the problem by taking the advantage of the
planar constraints of the landmarks. Despite their accurate estimation of the head-eye parameters and
the odometric parameters, there is a clear limitation in the sense that a very constrained environment
is needed and several recognizable landmarks must be premeasured and fixed.

In this paper, we present a full mobile robot calibration of head-eye and odometric parameters,
building on [14]. The full six parameters (rotation and translation) in the head-eye calibration and the
three parameters (wheel radii and wheelbase length) in the odometry calibration are simultaneously
estimated. The mobile robot equipped with a mono or stereo camera moves while the camera mounted
on the pan-tilt motorized device is capturing chessboards or natural scenes. After simply planned
robot movements, the full mobile robot calibration algorithm is performed using both odometry
measurements and visual features such as chessboard’s corners or natural feature points from a stereo
camera, which are obtained by Speeded-Up Robust Feature (SURF) [15]. The head-eye and odometric
parameters are iteratively adjusted to obtain the values, which are searched as a good starting point
close to the ground truth please confirm intended meaning is retained. and then finally fine-tuned
with the direct search-based optimization as Powell’s method [16]. The remainder of this paper is
organized as follows: Section 2 describes our mobile robot configuration and the relationship between
each joint. Section 3 proposes an iterative-based calibration method for mobile robot having a camera
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mounted on a motorized neck. Section 4 presents our experimental results, and the conclusion is
summarized in Section 5.

2. Mobile Robot Configuration

2.1. Robot Coordinate System

The mobile robot configuration in Figure 1a can be understood in terms of an overview of the
coordinate system of a mobile robot with a pan-tilt camera, as depicted in Figure 1b. It consists of
the vehicle coordinate (robot’s base), OVehicle; the neck coordinate includes a pan-tilt joint, (ONeck),
with a camera mounted on the top as camera coordinate, OCam. The relation between the vehicle system
OVehicle and ONeck is estimated using Denavit–Hartenberg parameters (DH parameters) depending
on the mobile robot configuration. The rotation from the neck to camera and the rotations between
robot’s bases are estimated in Section 3.2. The remain parameters are calculated in Section 3.4.

(a) (b)
Figure 1. Mobile robot configuration. (a) Robot having a pan-tilt neck equipped with a camera
(front-view); (b) coordinate system of mobile robot configuration (side-view).

2.2. Robot Wheel Parameters

In the field of robot navigation, one of the important parameters for mobile robot calibration is
the wheel parameters, which are the radii of the left and right robot wheels and the baseline (the axle
length between left and right wheel), as shown in Figure 2. The robot kinematics can be expressed as

ẋ = υ cos(θ),

ẏ = υ sin(θ),

θ̇ = ω,

(1)

where υ, ω, and θ are the velocity, angular velocity, and the orientation of the mobile robot, respectively,
as depicted in Figure 2. These parameters can be obtained by using the following equation:

υ =
rR
2

ωR +
rL
2

ωL,

ω = αRωR + αLωL,
(2)
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where αR = rR
b and αL = − rL

b . The wheel parameters as rR, rL, and b are right and left wheel radii and
the length of the baseline, respectively. ωR and ωL are angular velocities, which are calculated using the
encoder on the right and left wheels. The ratio between the radii of wheels and the length of wheelbase
is represented in terms of intermediate parameters, (αR, αL), which are used in the calibration process
instead of the real wheel parameters.

Figure 2. Mobile robot odometry and its relevant variables.

The rotational angle of the mobile robot from frame i to frame j, by ti = 0 and tj = t, can be obtained
through the integral of Equation (2) with respect to time as follows:

θ (t) = αR

∫ t

0
ωR (τ)dτ + αL

∫ t

0
ωL (τ)dτ,

= αRφR (t) + αLφL (t) ,
(3)

where φR (t) , φL (t) are the encoder positions of the right and left wheels, respectively.

3. Simultaneous Calibration for Mobile Robot with Pan-Tilt Camera

In this section, we describe the proposed calibration method separately in six parts.
The closed-loop transformation of the camera and the robot base to the robot neck between any
frames i and j, where i = 1, ... , N − 1 and j = i + 1 are concisely depicted in Section 3.1. Since a set
of captured images, In=N

n=1 , and the calibration data set (such as rotating angles of wheels (φRi , φLi ),
and transformation from robot base coordinate to robot’s neck coordinate, TVi

Ni
) are obtained once as the

calibration input data. Sections 3.2–3.4 explain how to use these data to obtain the head-eye rotation,
intermediate wheel parameters, and head-eye translation, including the actual wheel parameters,
respectively. These processes are estimated iteratively until the value of all parameters converge,
as described in Section 3.5. Finally, Section 3.6 describes the non-linear optimization method that
increases the accuracy of the calibration results.

3.1. Closed-Loop Transformations

Let us now consider the homogeneous transformation of different vehicle poses from frame i to
j, as shown in Figure 3. The abbreviations OC, ON , OV are the camera, neck, and vehicle coordinate
systems, respectively. The closed-loop diagram can be represented by Equation (4).

TVi
Ni

TNi
Ci

TCi
CJ

= TVi
Vj

T
Vj
Nj

T
Nj
Cj

, (4)

where TV
N is the physical relationship between ONeck and OVehicle. The head-eye homogeneous

transformation is TN
C . When the camera is directed at the same target or feature, camera motion
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is represented as TCi
Cj

. The robot’s motion between frame i and j is presented to TVi
Vj

. The homogeneous
transformation of Equation (4) can be decomposed into rotational and translational terms as follows:

RVi
Ni

RNi
Ci

RCi
Cj

= RVi
Vj

R
Vj
Nj

R
Nj
Cj

, (5)

RVi
Ni

RNi
Ci

tCi
Cj
+ RVi

Ni
tNi
Ci

+ tVi
Ni

= RVi
Vj

R
Vj
Nj

t
Nj
Cj

+ RVi
Vj

t
Vj
Nj

+ tVi
Vj

, (6)

where R is the 3× 3 rotation matrix and t is 3× 1 translation vector. Equation (5) is used to obtain
the head-eye rotation parameters, RN

C , which consist of 3 degrees of freedom (DOF), (γx, γy, γz).
Equation (6) refers to the translation of the system, which is used to estimate the head-eye translation
(tN

C,x, tN
C,y, tN

C,z) and the actual size of the wheel parameters (rR, rL, b). These parameters are calculated
in Section 3.4.

Figure 3. Closed-loop transformation between any frame i and j.

3.2. Head-Eye Rotation Estimation

The six parameters in head-eye calibration consisting of three for rotation and another three for
the translation, which are necessary and required to be obtained before an operation. In this section,
three parameters of the rotation between the robot’s neck and the camera are calculated precisely. A set
of visual measurements and robot movement data were obtained by moving the robot and capturing
images synchronously and continuously. The rotation between the camera and the robot’s base was
estimated accurately, as by Antonelli et al. [11]. They obtained the rotation parameters between the
robot’s base and camera using Equivalent angle-axis representation. However, their approach achieved
because their mobile robot had a camera equipped on a fixed neck that did not change the relation
between the robot’s base and camera. If the relation between the base and the camera was changed
during the calibration data collection, the Equivalent angle-axis method could not be used to solve the
problem. During collecting the input calibration data of our mobile robot, both the robot and its neck
move that means the rotation between the base and the camera are also changed.

In fact, whenever the robot’s neck moves around the pan-tilt axis, the coordinate of the camera
mounted on that neck is also moved significantly. Therefore, the relationship between the camera
and the robot’s neck is static, which means the subscript i of RCi

Ni
can be omitted as RC

N = RC1
N1

= RC2
N2

= . . . = RCN
NN

, where N is the total number of input images. Moreover, the mobile robot rotation is
performed only on a planar. In other words, the mobile robot rotates around z-axis only [11]. Hence,
RVi

Vj
, in Equation (5) can be replaced with Rz(θ). Assuming the rotation matrices RCi

Cj
, RNi

Vi
, and RVi

Vj
are
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known, which are thoroughly described in Section 4, an Equation (5) can be represented in form of AX
= XB, and the rotation RC

N can be obtained likewise [8,9] as follows:

RCi
Cj

RC
N = RC

N RNi
Vi

Rz (θ) R
Vj
Nj

, (7)

where the matrix X is the estimated head-eye rotation, RC
N . The camera rotations, RCi

Cj
, are represented

to matrix A. The remaining variables of the right side RNi
Vi

Rz (θ) R
Vj
Nj

are demonstrated to matrix B,
which i = 1, . . . , N − 1 and j = 2, . . . , N.

3.3. Intermediate Wheel Parameters Estimation

In this section, the linear relationships of intermediate wheel parameters, (αR, αL), and rotational
angle of the robot movement from the previous to current positions prior to capture any image i, θj,
which is obtained with Equation (3) using the period time of the robot movement between the previous
and current positions, which is θ(1) = 0 as no loss of generality. The change in the rotational angle
of the robot’s base from frames i to j, on a planar θ(tj) is also re-estimated. According to the robot’s
movement on a plane, the change in rotational angle about the z-axis of the robot’s base coordinates,
which is assumed to be perpendicular to the floor, between a pair of consecutive frames is Rz(θ).
In practical applications, the z-axis at the robot’s base coordinates from one consecutive frame to
another, (Vi and Vj), may not be parallel because of an error in the estimated RN

C and the floor plane of
any pair of positions are not parallel. Therefore, the rotational angle about the z-axis at the robot’s base
coordinates between frames i and j can be calculated using the Euler angle (ZYX) as follows:

θj = θ(tj) = Atan2(r21, r11), RVi
Vj

= RVi
Ni

RN
C RCi

Cj
RC

N R
Nj
Vj

, (8)

where r21 and r11 are generic elements of RVi
Vj

. If we consider for N images, the representation of
Equation (3) can be used to obtain the parameters, (αR, αL), similar to [11], as follows: θ1

...
θN

 =

φθ1
...

φθN

 [αR
αL

]
= φ̄θ

[
αR
αL

]
, (9)

where φθj =
[
φR
(
tj
)

φL
(
tj
)]

, are obtained from the rotational angles of both wheels from position i
to j, (i = 1, . . . , N −1 and j = 2, . . . , N). φ̄θ is a matrix with N × 2 dimensions. The intermediate wheel
parameters, (αR, αL), can be calculated using the linear least squares method as follows

[
αR
αL

]
=
(

φ̄T
θ φ̄θ

)−1
φ̄T

θ ·

 θ1
...

θN

 (10)

3.4. Head-Eye Translation and Wheel Parameters Estimation

The head-eye rotation and intermediate parameters have already been obtained in Sections 3.2
and 3.3. The remaining parameters that are estimated in this section are tN

C , the head-eye translation
vector, and the actual wheel parameters rR, rL, b. The translational and the rotational components of
the robot’s base coordinates can be described using the mobile robot kinematic equations as

xj = xi + τυi cos (θi + τωi/2) ,

yj = yi + τυi sin (θi + τωi/2) ,

θj = θi + τωi,

(11)
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where i and j denote the previous and current frames, respectively, and τ is the period of time between
frames. Substituting the intermediate wheel parameters and Equation (2) into Equation (11) yields

xj = xi + τ

(
− αR

2αL
rLωR,i +

rL
2

ωL,i

)
cos (θi + τωi/2),

yj = yi + τ

(
− αR

2αL
rLωR,i +

rL
2

ωL,i

)
sin (θi + τωi/2).

(12)

In fact, tVi
Vj

is the relative translation in x and y directions, which can be rewritten as

[
λ1

λ2

]
=

τ

2

[
(− αR

αL
ωR,i + ωL,i) cos (θi + τωi/2)

(− αR
αL

ωR,i + ωL,i) sin (θi + τωi/2)

]
rL,

tVi
Vj

=
[
λ1 λ2 0

]T
· rL,

(13)

From Equation (13), the translation between two robot base positions can be substituted into
Equation (6) representing the relationship between the coordinates as follows:

(RVi
Ni
− Rz (θ) R

Vj
Nj
)tN

C −
[
λ1 λ2 0

]T
· rL = −RVi

Ni
RN

C tCi
Cj
− tVi

Ni
+ Rz (θ) t

Vj
Nj

, (14)

where RVi
Ni

RN
C and (RVi

Ni
− Rz (θ) R

Vj
Nj

) are referred to the matrices A and B, respectively. Thus,
Equation (14) can be simplified as

BtN
C −

λ1

λ2

0

 rL = −AtCi
Cj
− tVi

Ni
+ Rz(θ)t

Vj
Nj

, (15)

B11 B12 B13

B12 B22 B23

B31 B32 B33




tN
C,x

tN
C,y

tN
C,z

−
λ1

λ2

0

 rL = −

A11 A12 A13

A12 A22 A23

A31 A32 A33




tCi
Cj,x

tCi
Cj,y

tCi
Cj,z

−
tV

N,x
tV
N,y

tV
N,z

+

Cθ −Sθ 0
Sθ Cθ 0
0 0 1


tV

N,x
tV
N,y

tV
N,z

 (16)

from Equation (16), the third component of the vector
[
λ1 λ2 0

]T
is zero, which also makes the third

row zero. It can be derived as follows:

[
B11 B12 B13 −λ1

B21 B22 B23 −λ2

] 
tN
C,x

tN
C,y

tN
C,z
rL

 =

[
A11tCi

Cj,x + A12tCi
Cj,y + A13tCi

Cj,z + tV
N,x − CθtV

N,x + SθtV
N,y

A21tCi
Cj,x + A22tCi

Cj,y + A23tCi
Cj,z + tV

N,x − SθtV
N,x − CθtV

N,y

]
. (17)

Consider Equation (17) over all frames. The final equation can be expressed as


B11 B12 B13 −λ1

B21 B22 B23 −λ2
...

...
...

...
B2N1 B2N2 B2N3 −λ2N




tN
C,x

tN
C,y

tN
C,z
rL

 =


A11tCi

Cj,x + A12tCi
Cj,y + A13tCi

Cj,z + tV
N,x − CθtV

N,x + SθtV
N,y

A21tCi
Cj,x + A22tCi

Cj,y + A23tCi
Cj,z + tV

N,x − SθtV
N,x − CθtV

N,y
...

A2N1tCi
Cj,x + A2N2tCi

Cj,y + A2N3tCi
Cj,z + tV

N,x − SθtV
N,x − CθtV

N,y

 , (18)

where the left matrix of the left term has 2N × 4 dimensions; and the right term is a vector with 2N dimensions.
N is a total number of frames, N = 1, . . . , 2N. From Equation (18), the head-eye translation and the actual radii of
the left wheel, (tN

C,x, tN
C,y, tN

C,z, rL), are estimated using a linear least-squares method. The remaining parameters rR

and b can be obtained with Equation (2). The wheel parameters, (rL, rR, b), which are obtained in this section, will
be used to re-estimate the rotation between the robot’s head and neck, as previously described.
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3.5. Linearly Iterative Estimation

Even though the previous approach [11] could estimate the odometric and head-eye parameters
simultaneously, their method could not provide the completed six parameters. The translation of z-axis
between head-eye coordinates, tN

C,z was not obtained by their method. The proposed method presents
a fully mobile robot calibration of odometric and head-eye parameters, building on [14]. The rotation
and translation in head-eye calibration including tN

C,z and the odometric parameters are simultaneously
estimated precisely. Supposing that the values of all parameters are not obtained correctly before
optimization, it leads all parameters to convergence with incorrect values or divergence. Therefore,
this section explains our contribution that we apply iteration-based estimation to initially guess the
values of all parameters correctly that leads all parameters to convergence with the correct values
rapidly. The processes of Sections 3.2–3.4 are used to compute repeatedly until all parameters are
converged. The head-eye parameters, RC

N , are estimated from Section 3.2 prior to being used to
calculate the intermediate wheel parameters, (αR, αL), of both wheels in Section 3.3. After that, they are
used to compute the remaining parameters, as described in Section 3.4. These results are also used
again to calculate the head-eye parameters following Section 3.2, as shown in Algorithm 1, which
shows steps 3 to 5 compute repeatedly until convergence.

Algorithm 1 Full algorithm simultaneous calibration for mobile robot with pan-tilt camera.

Input: {TVi
Ni
}i=N

i=1 , {φRi , φLi}i=N
i=1 , Ii=N

i=1

Output: RN
C , tN

C , rL, rR, b

for i ∈ 1,. . . , N − 1 do

Step 1: Obtain TCi
Cj

between each frame using chessboard’s corners or natural features

end for

Step 2: Initial rL, rR, b with manual measurements and obtain θ with Equation (3)

while Convergence do

Step 3: Compute RN
C with Equation (7)

Step 4: Compute αR, αL with Equations (8)–(10)

Step 5: Compute tN
C , rL, rR, b with Equation (18)

end while

Step 6: Refine RN
C , tN

C , rL, rR, b with Equations (19)

3.6. Non-Linear Optimization

Even though all parameters that are estimated in the previous section can lead to a good initial
estimation, they are probably not the correct and accurate values. Therefore, a method of minimizing
a function as Powell’s method [16] is applied to fine-tune all parameters as closely as the ground
truth. The variables consisting of the Euler angles of the head-eye rotation, RN

C , (γx, γy, γz), head-eye
translation, (tN

C,x, tN
C,y, tN

C,z), and wheel parameters, (rL, rR, b) are refined using the following equation:

Θ? = arg minRN
C ,tN

C ,rL ,rR ,b C(Θ),

C(Θ) =
N−1

∑
i=1

K

∑
k=1

[
Qi,k − Q′i,k

]2
,

Q′i,k = TC
N TNi

Vi
TVi

Vj
T

Vj
Nj

TN
C

[
Xj Yj Zj 1

]T
, j = i + 1,

(19)
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where Q′i,k is the predicted 3D features, which are used to transform any point k from frame j, j = i + 1,
to frame i. The 3D feature at frame i, represented with Qi,k and TN

C , is constructed using head-eye
rotational and translational parameters, (γx, γy, γz, tN

C,x, tN
C,y, tN

C,z). TV
N is calculated using DH parameters

and pan-tilt data from the encoders; while TVi
Vj

is referred to Rz(θ), which is calculated using wheel
encoder data and the estimated wheel parameters, rL, rR, b. N and K are the total number of images
and features, respectively.

4. Experimental and Results

In our experiments, we used a mobile robot, which had two RGB cameras mounted on the pan-tilt
motorized device, as shown in Figure 1. A chessboard and natural scenes were used as the calibration
target for single camera and a pair of cameras (a stereo camera), respectively. The differential-drive
mobile robot moved to any specified position and both the robot’s neck and pan-tilt axis also moved
before capturing an image sequentially. The mobile robot moved and captured repeatedly to obtain
a set of images, In=N

n=1 . The data of the robot movements such as the rotational angles of both wheels
(φRn , φLn ) and of any image n ( n = 1, . . . , N) were obtained by their angular velocity (ωRn , ωLn ) and the
movement period time, τi, as shown in Equation (3). The angles of wheels at the starting position, n = 1,
were determined with φR1 = φL1 = 0. The transformation, including rotation and translation between
robot’s base and robot’s neck coordinate systems, TVn=1,...,N

Nn=1,...,N
, were calculated with the rotational angles

of the pan-tilt axis at the robot’s neck and Denavit–Hartenberg parameters (DH parameters).
In the case that used a chessboard as the calibration target, we captured a set of images using

single camera with a resolution of 320× 240 pixels. The chessboard contained 10 × 7 black and white
square grids (56 corner points), and the size of any grid was 5.4× 5.4 cm. We extracted the feature
points of the chessboard’s corners manually using [17]. Since all feature points of the chessboard’s
corners were obtained, the transformation TW

Ci
between the camera at position i and the chessboard,

which was determined to be the world coordinate, can be estimated with a plane-based transformation
estimation [18]. Therefore, the transformation between any pair of camera positions i and j, TCi

Cj
,

was simply estimated with TCi
Cj

= TCi
W TW

Cj
.

In the case of natural scenes, the natural features were observed from the real environment
based on rectified images. The corresponding feature points of the stereo images were estimated
with SURF [19]. The transformations between any pair of camera positions, TCi

Cj
, were obtained

by a closed-form solution of the least-squares problem of absolute orientation using orthonormal
matrices [20]. The result of stereo matching is shown in Figure 4.

The transformations (TN
C and TV

C ), odometric parameters, and 3D back-projection error results
of the proposed and Antonelli’s methods [11] were compared in Table 1. In the table of TN

C ,
the head-eye rotation parameters (γx, γy, γz) were obtained by the ZYX-Euler angle corresponding
to the rotation matrix RN

C . The comparison of the head-eye transformation result indicated that
the rotation and translation calibrated with the proposed method showed completed parameters
estimation, while Antonelli’s method did not obtain the transformation between the camera and the
robot neck due to the fact that their mobile robot’s neck could not move.

Furthermore, we also compared the results of the transformation between the robot’s base and
the camera, TV

C , by calculation of the transformation at the starting position, TV1
C1

, which was obtained
by TV1

N1
and TN

C . The transformation matrix, TV1
C1

, of the proposed method was similar to Antonelli’s
except the translation, tV

C,z, that Antonelli’s method could not provide due to the constraining of the
origin of the vehicle reference frame on the inertial x-y plane. The error was a 3D back-projection error,
which was calculated with the average of Euclidean distance from all 3D feature points between any
image and the transformed 3D feature points of other images, which was shown in mm units. Figure 5
also presents the reprojection result between frames of our method.
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Figure 4. Natural features matching.

Table 1. Results of the proposed method and Antonelli’s method.

Coordinate Unit Parameter Proposed Method Antonelli’s Method

TN
C Deg. γx −45.5715 -

γy −82.0160 -
γz 45.4678 -

mm. tN
C,x 31.5182 -

tN
C,y −75.1629 -

tN
C,z −90.0127 -

TV
C Deg. γx 78.6669 −62.4582

γy −84.3044 −87.9764
γz 11.0493 153.6164

mm. tV
C,x 321.9080 221.4345

tV
C,y −89.4305 −50.3979

tV
C,z 969.8691 unknown

wheel mm. rL 202.4040 225.3074
rR 200.6111 227.3912
b 490.4046 513.1268

Error mm. 4.4239 7.9798

(a) (b)
Figure 5. Reprojection results: (a) Reprojection of image i; (b) transformed reprojection of image j.

Even though our method requires an iterative computation in Section 3.5, all parameters reach
stability within just a few iterations, as shown in Figure 6. The calibration error after optimization
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using both chessboard and natural scenes with respect to the number of iterations is shown in Figure 7.
However, the 3D back-projection error of the calibration using natural scenes also depends on accuracy
of the stereo matching process. Although the back-projection error using natural features is significantly
higher than using features from a chessboard, both cases required only a few optimized iterations
before the error was steady, which demonstrated the back-projection error of 4.4239 mm, as represented
in Table 1. The back-projection error before optimization (iteration = 0) and after optimization of both
chessboard and natural scenes related to the number of images are represented in Figure 8. It shows
the number of poses that affect to the calibration accuracy. However, the required number of input
images using a chessboard as the calibration target is at least 30 input images, while using the natural
features requires at least 35 input images for the steady results.

(a) Head-eye parameters

(b) wheel parameters

Figure 6. Rate of change related to number of iterative estimation.

Figure 7. 3D back-projection error after optimization related to number of iterations.
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Figure 8. 3D back-projection error after optimization related to number of poses.

5. Conclusions

In this paper, we presented an approach for simultaneous calibration of head-eye and odometric
parameters on the mobile robot equipped with a camera mounted on the motorized pan-tilt.
Our proposed approach involves complete estimation of the wheel radii, wheelbase length, and the
rotation and translation of the head-eye. Additionally, we obtain comprehensive results of the
relative pose between the camera and the robot’s base, showing that our proposed method can
compute the translation in z-axis while the previous studies could not. After the data from the visual
features of either chessboard’s corners or natural scenes and odometry measurements were acquired,
both head-eye and wheel parameters were simultaneously estimated by using iterative adjustment
until all parameters converged—the experimental results showed a few iterations were necessary for
the convergence. Furthermore, nonlinear optimization is used to minimize the cost function to more
sufficiently and appropriate to perform on the mobile robot equipped with a pan-tilt camera precisely.
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