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Abstract: As smartphone technology advances and its market penetration increases, indoor
positioning for smartphone users is becoming an increasingly important issue. Floor localization is
especially critical to indoor positioning techniques. Numerous research efforts have been proposed
for improving the floor localization accuracy using information from barometers, accelerometers,
Bluetooth Low Energy (BLE), and Wi-Fi signals. Despite these existing efforts, no approach has
been able to determine what floor smartphone users are on with near 100% accuracy. To address
this problem, we present a novel pressure-pair based method called FloorPair, which offers near
100% accurate floor localization. The rationale of FloorPair is to construct a relative pressure map
using highly accurate relative pressure values from smartphones with two novel features: first, we
marginalized the uncertainty from sensor drifts and unreliable absolute pressure values of barometers
by paring the pressure values of two floors, and second, we maintained high accuracy over time
by applying an iterative optimization method, making our method sustainable. We evaluated the
validity of the FloorPair approach by conducting extensive field experiments in various types of
buildings to show that FloorPair is an accurate and sustainable floor localization method.

Keywords: floor localization; barometer; barometric pressure; relative pressure map; iterative
optimization technique

1. Introduction

Ever since smartphones were equipped with barometers, starting in 2012, numerous research
efforts on floor localization have tried to improve the accuracy of identifying a smartphone user’s
floor location in a multi-floor building. Most of those efforts have succeeded only in detecting floor
changes or the number of floors changed instead of determining the exact floor number. This is due to
barometer limitations, such as sensor drifts, temporal variations, and unreliable pressure readings.
With recent advances in micro-electro-mechanical systems (MEMS) technology, however, modern
MEMS barometers have low power consumption, low cost, and very high-performance sensors.
Because of these beneficial characteristics, barometers are now found in an abundance of mobile
devices, including smartphones and tablets.

Despite all these opportunities, the floor localization problem remains a big challenge, since
no existing methods identify a floor number with near 100% accuracy—a critical requirement for
various applications, such as emergency location service, worker location tracking service, and clinical
monitoring applications.

To cope with this problem, our goal was to design and implement a novel floor localization method
that is able to estimate the exact floor number on which a smartphone user is located. Concretely, we
argue that it is important to rethink the floor localization framework by exploring a relative pressure
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map [1] to maximize accuracy. The relative pressure map is a one-dimensional array containing
pressure differences between the reference floor and the other floors. Note that the reference floor may
be the same as or different from the first (ground or entry) floor. If a building has one entry point on the
first floor, the first floor will be the reference floor in most cases for small buildings. However, because
most buildings have many entry points on multiple floors, the reference floor may not be the first floor
or one of the entry floors. In this paper, we define the reference floor as a logical floor that plays the
role of a reference point in a relative pressure map.

Once we build this relative pressure map, we are able to compute the exact floor number using the
difference between the pressure of the reference floor and the current floor as an index into the relative
pressure map. With these observations in mind, we present a pressure-pair-based floor localization
method called FloorPair, which constructs a relative pressure map for a building and thus offers near
100% accuracy under various environmental conditions.

Our contributions in this paper are:
(1) We propose a novel pressure-pair-based approach called FloorPair for constructing a relative

pressure map. FloorPair makes use of pressure pairs between the reference floor and other floors in a
multi-floor building and thus aggregates those pairs into a list of pressure differences, i.e., a relative
pressure map.

(2) We introduce the marginalization of sensor drifts and absolute pressure errors when computing
pressure differences. With this marginalization of unreliable characteristics, we construct a relative
pressure map.

(3) We present an iterative optimization method based on the framework of the EM (expectation
and maximization) algorithm to track pressure changes due to weather conditions in real-time. Using
this method, we eliminate accumulated errors over time and provide a reliable and sustainable floor
localization service.

(4) Through extensive experiments, we show that FloorPair offers a near 100% accurate floor
localization result, and is an alternative for critical applications, such as emergency location service,
worker location tracking service, and clinical monitoring applications.

The rest of the paper is organized as follows: The next section gives an overview of the related
work in floor localization using the barometer and our motivations. The following Section 3 presents
the advancements in modern barometers and new application opportunities. Section 4 touches on
the efficacy of the barometer for floor localization and describes our marginalization of sensor drifts
and unreliable absolute pressure readings. In addition, this section describes how the design of our
FloorPair method efficiently constructs a relative pressure map and how it maximizes floor localization
accuracy. We present the performance results of FloorPair in Section 5 and finally present our conclusion
and future work in Section 6.

2. Related Work

2.1. Barometers in the Floor Localization Problem

After barometers started appearing in smartphones and tablets in 2012, Muralidharan et al. [1]
analyzed their characteristics in smartphones, such as the Samsung Galaxy S4, Google Nexus 4, and
Google Nexus 10. They observed that absolute pressure readings are unreliable indicators for floor
localization, while the pressure differences between two floors are relatively consistent and steady
measurements independent of time and location. Using these features, they proposed a method that
determines whether the user has changed floors and that also estimates the number of floors changed.
However, they concluded that it is hard to determine the actual floor number on which a user is located
using the barometer. Banerjee et al. [2] proposed an unsupervised probabilistic learning method for
floor localization, which combines the floor transition information with the WiFi-based localization
method called Horus [3] to infer the current floor of a user and improve overall localization accuracy.
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Their approach identifies only the number of floors changed, and depends on the accuracy of the Horus
system to detect the floor number, which suffers from problems inherited from learning techniques.

Ye et al. [4] proposed a crowdsourcing-based floor localization method using barometers.
This method built a barometer fingerprint map using crowdsourcing and did not require Wi-Fi
infrastructure and wardriving of the entire building. However, this method requires as many
encounters in an elevator as possible, which limits the effectiveness of the crowdsourcing. Moreover,
this method’s barometer reading clustering is based on timestamps, making this method impractical
because, in reality, we cannot collect all barometer readings with all timestamps using crowdsourcing.

Some initial studies such as Skyloc [5], RADAR [6], and Place Lab [7] proposed a user location
and tracking system using only radio frequency (RF) signals, while other studies [8–10] have started
to fuse radio signals with barometers. None of these methods are applied to the floor localization
problem because not all buildings have sufficient RF signals.

Ichikari et al. [11] proposed a method for estimating the floor level by decomposing the
observed pressure into three components, i.e., device-specific offsets, environmental trends, and
the altitude-dependent component. This method is similar to our method in that it is based on relative
changes of atmospheric pressure values, but differs in that it utilizes beacons or Wi-Fi access points.
Moreover, the accuracy of this method is dependent on the number of participants. Xu et al. [12]
proposed a floor localization method that fuses inertial and barometric pressure measurements.
However, this method required a special device mounted on the waist of a user, making this
method impractical.

2.2. Detecting Users’ Entrance into a Building

The detection of a user entering a building is critical to the floor localization problem. If we
know the moment when a user enters a building, it means that we are able to acquire the current
pressure on that floor and use it to construct a relative pressure map. Naïve approaches to detect
users at a gate would be to use pre-installed sensors, such as Radio Frequency Identification (RFID),
Bluetooth Low Energy (BLE) beacons, or Near-Field Communication (NFC). In [11], they obtained
specific floor-level information from localization infrastructures, such as beacons and Wi-Fi access
points (APs). Yi et al. [13] proposed a visualized signal image-based method for detecting users’
entrance of a building. They used all signals that are received indoors and outdoors from smartphones
by visualizing those signals in one signal image. Their proposed method constructs constellation
images for specific indoor and outdoor locations and detects whether users are indoors or outdoors by
learning the images with deep learning techniques. In this paper, we use this method for detecting a
user’s entrance at a floor and triggering the current pressure measurement on that floor.

2.3. Motivations

As described in the previous section, no previous approach has been able to detect the exact floor
number on which users are located accurately enough to support critical applications. There are four
main reasons for this:

Firstly, the previous approaches did not determine the reference pressure because there was
no method to detect users’ entrance without pre-installed sensors. Second, let us assume that the
barometric pressure at a gate in a building is the reference pressure, Pref. If we know Pref, we can
easily calculate the altitude h of a smartphone user as h = (Pref − Pcur)/0.12, where Pcur is the barometer
reading on the current floor and the value of 0.12 hPa is the pressure decrease when going up every
1 m in a vertical direction. If each floor has the same height of h0, we then know that the floor number
is h/ h0. The problem here was that h0 varies for different buildings. Third, the barometer reading Pcur

from a smartphone was not accurate because of sensor drift. The sensor drift for the same floor level
and even for the same model of smartphone reached 2 hPa, which led to a floor localization error
ranging up to five stories. Fourth, they did not handle temporal pressure variations due to weather
conditions and time.
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To address these problems, we propose a pressure-pair-based approach called FloorPair for
constructing a relative pressure map. The FloorPair method collects a minimum number of pressure
pairs between the reference floor and some specific floors and aggregates those pairs into a list of
pressure differences, i.e., a relative pressure map. While constructing the relative pressure map, we
marginalize the sensor drift and unreliable absolute pressure errors. Once we have the relative pressure
map for a building, our iterative optimization method is run to track pressure changes over time due
to weather conditions in real-time and thus makes our method reliable and sustainable.

3. New Characteristics of Modern Barometers on Smartphones

3.1. High and Consistent Pressure Sensing Accuracy

To clearly show the improvement in pressure sensing accuracy of modern barometers, we present
the noises from Samsung Galaxy Note 4, released in 2014 and LG V40, released in 2018. As shown
in Figure 1, the barometer on the more recent smartphone produces low noise and thus has a lower
standard deviation in pressure measurements, as shown in Table 1.
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Figure 1. Noise differences between 2014 and 2018 smartphones. (a) Samsung Galaxy Note 4; (b) LG
V40 ThinQ.

Table 1. Standard Deviations of 2014 and 2018 smartphones

Model Standard Deviation

Samsung Galaxy Note 4 (2014) 0.034021
LG V40 ThinQ (2018) 0.003927

3.2. Constant Pressure Difference between Two Floors

In addition to their low noise characteristics, recent barometers have become more accurate in
relative pressure values. Although recent barometers still suffer from sensor drift and unreliable
absolute pressure measurements, the difference of the barometer readings between any two floors has
become more constant.

To demonstrate this characteristic, we conducted experiments in a university building, the Hi-Tech
Center at Inha University, with four smartphones under high and low pressure conditions. Specifically,
the smartphones used in the experiment were the LG V40, V10, and two Samsung Note 5s. We used
two Note 5s to show that there are non-negligible errors in pressure readings, even from two devices
of the same company and model. The building has 15 stories whose heights are 5 m for the basement
floor, 4.5 m for the ground floor, and 3.9 m from the second floor to the 15th floor.

As shown in Table 2 and Figure 2, the pressure differences are steady and in-sync across different
devices and different weather conditions. In order to clearly show this characteristic, we present the
differences between two floors and their standard deviations in Table 3.
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Table 2. Barometric pressures measured by various devices and weather conditions.

Floor V40 (H) V10 (H) Note 5 (H) Note 5 (H) V40 (L) V10 (L) Note 5 (L) Note 5 (L)

−1 1020.0485 1021.0597 1015.7985 1017.5154 1015.8888 1017.011 1011.6438 1013.3
1 1019.4166 1020.4616 1015.2037 1016.8817 1015.2662 1016.407 1011.0079 1012.694
2 1018.8644 1019.9028 1014.6411 1016.3334 1014.7261 1015.795 1010.4865 1012.2
3 1018.3719 1019.4202 1014.1196 1015.822 1014.1901 1015.297 1009.9165 1011.623
4 1017.8944 1018.9136 1013.6665 1015.3442 1013.6993 1014.826 1009.4372 1011.148
5 1017.4191 1018.4623 1013.2254 1014.8593 1013.213 1014.328 1008.9368 1010.62
6 1016.9572 1018.0136 1012.7502 1014.3963 1012.7152 1013.825 1008.4254 1010.121
7 1016.4421 1017.5021 1012.2452 1013.8857 1012.2665 1013.361 1007.9504 1009.623
8 1015.9894 1017.0611 1011.8245 1013.4329 1011.7593 1012.865 1007.45 1009.156
9 1015.5374 1016.5809 1011.3105 1012.9605 1011.2819 1012.364 1007.007 1008.666

10 1015.027 1016.0848 1010.8417 1012.4785 1010.8111 1011.913 1006.5177 1008.181
11 1014.6046 1015.7147 1010.3815 1012.0249 1010.3336 1011.401 1006.0361 1007.725
12 1014.0341 1015.0899 1009.8289 1011.4583 1009.8873 1010.982 1005.5866 1007.255
13 1013.5652 1014.6333 1009.3502 1010.9577 1009.389 1010.467 1005.0876 1006.788
14 1013.0734 1014.1267 1008.876 1010.5246 1008.9093 1009.987 1004.6375 1006.314
15 1012.6477 1013.7304 1008.4425 1010.089 1008.4609 1009.537 1004.1875 1005.847
R* 1012.1241 1013.1687 1007.9241 1009.5352 1008.0138 1009.075 1003.6888 1005.388

(H) High barometric pressure, (L) Low barometric pressure. * Rooftop.
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Table 3. Pressure differences and standard deviations.

V40 (H) V10 (H) Note 5 (H) Note 5 (H) V40 (L) V10 (L) Note 5 (L) Note 5 (L) Std. Dev.

B1–1 −0.6319 −0.5981 −0.5948 −0.6337 −0.6226 −0.6042 −0.6359 −0.6054 0.0159
1–2 −0.5522 −0.5588 −0.5626 −0.5483 −0.5401 −0.612 −0.5214 −0.4944 0.0318
2–3 −0.4925 −0.4826 −0.5215 −0.5114 −0.536 −0.4985 −0.57 −0.5768 0.0327
3–4 −0.4775 −0.5066 −0.4531 −0.4778 −0.4908 −0.4702 −0.4793 −0.4749 0.0144
4–5 −0.4753 −0.4513 −0.4411 −0.4849 −0.4863 −0.4988 −0.5004 −0.5278 0.0260
5–6 −0.4619 −0.4487 −0.4752 −0.463 −0.4978 −0.5022 −0.5114 −0.4992 0.0216
6–7 −0.5151 −0.5115 −0.505 −0.5106 −0.4487 −0.4645 −0.475 −0.4985 0.0234
7–8 −0.4527 −0.441 −0.4207 −0.4528 −0.5072 −0.4956 −0.5004 −0.4667 0.0291
8–9 −0.452 −0.4802 −0.514 −0.4724 −0.4774 −0.5008 −0.443 −0.4898 0.0220
9–10 −0.5104 −0.4961 −0.4688 −0.482 −0.4708 −0.4517 −0.4893 −0.4856 0.0169

10–11 −0.4224 −0.3701 −0.4602 −0.4536 −0.4775 −0.512 −0.4816 −0.4556 0.0399
11–12 −0.5705 −0.6248 −0.5526 −0.5666 −0.4463 −0.4184 −0.4495 −0.4698 0.0703
12–13 −0.4689 −0.4566 −0.4787 −0.5006 −0.4983 −0.5153 −0.499 −0.4672 0.0192
13–14 −0.4918 −0.5066 −0.4742 −0.4331 −0.4797 −0.4805 −0.4501 −0.4744 0.0215
14–15 −0.4257 −0.3963 −0.4335 −0.4356 −0.4484 −0.45 −0.45 −0.4669 0.0198
15–R −0.5236 −0.5617 −0.5184 −0.5538 −0.4471 −0.4619 −0.4987 −0.4584 0.0410
SD * 0.0385 0.0617 0.0366 0.0386 0.0253 0.0271 0.0321 0.0312

* Note that the standard deviations are calculated only using the values from the 2nd floor to the R(rooftop) floor
because the heights from the B1 floor to the 2nd floor are different from each height from the 2nd floor to the R floor.
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3.3. Challenges for Constructing a Relative Pressure Map

Even though modern barometers show the advancements described in the previous subsections,
the barometers on recent smartphones still have the problem of sensor drift, which is a key challenge
in constructing a relative pressure map. To clarify this characteristic, we took pressure readings at the
same place and time using the LG V40, V10, and two Samsung Note 5s, as shown in Figure 3. We can
see that the four devices display four different pressure values and also that the maximum difference is
1.4 hPa, which may result in a floor localization error ranging up to four stories in a typical building.
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Through Figure 3, we can observe that the barometers still have an inherent drift from the real
atmospheric pressure and that the drift varies even between two devices of the same company and
model. In addition, Figure 3 shows that the absolute pressure measured by modern barometers is
still unreliable. This unreliable characteristic of absolute pressure is also seen in Figure 2. Hence, to
make use of the barometer pressure readings, it is important to calibrate sensor drift and absolute
pressure readings. Based on these observations, we develop a novel algorithm to marginalize these
two uncertainties and thus construct a relative pressure map, as will be described in Section 4.

4. Design and Implementation of FloorPair

In this section, we describe a pressure pair based floor localization called FloorPair, which aims to
determine the exact floor number on which smartphone users are located. We designed FloorPair to
achieve three goals: first, we constructed a relative pressure map with minimum costs; second, using the
relative pressure map, we provided near 100% accuracy in determining the exact number of the floor;
third, we maintained 100% accuracy over time for the sustainability of the floor localization service.

We first give a description of the variables used in this paper in Table 4.

Table 4. Definition of variables.

Variables Description

f Floor number (bottom floor ≤ f ≤ top floor)
f pivot Floor number of pivot floor
f probe Floor number of floor to be probed paired with f pivot

FP(f pivot, f probe) FloorPair: Pressure difference between a pivot floor f pivot and a probe floor f probe
P(f ) Pressure reading on the f -th floor

Diff_map[f top − f bottom] An array for relative pressure differences for a (f top − f bottom)-story building
T Threshold for the valid time interval

Pcur Pressure reading at a place on which a user is located
Pref Pressure value at the reference floor
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A pressure value at each floor is estimated by Equation (1):

P(f ) = Pground + drift + FP(1, f ). (1)

Let us assume that Pground is the ground truth pressure of the reference floor and that we want to
know a floor pair, FP(1, f ). Note that, as described in Section 1, the reference floor may or may not be
the first floor. For simplicity, however, we assume that the reference floor corresponds to the first floor
in Equation (1). Then, as described in Table 4, FP(1, f ) denotes the pressure difference between the
reference floor (1) and the f -th floor. We construct a relative pressure map using a set of these FPs.

However, it is almost impossible to obtain the exact value of the sensor drift because every
smartphone has a different value of drift, as described in Section 3.3. In addition, it is also impractical
to measure Pground because we need a pre-installed and high-cost barometer on the ground floor.
Therefore, in order to obtain a floor pair, we need to marginalize these two variables. For example, if
we want to know FP(1, f ), we get it by subtracting Equation (2) from Equation (3):

P(1) = Pground + drift + FP(1,1), (2)

P(f ) = Pground + drift + FP(1, f ). (3)

Then, FP(1, f ) can be obtained by the following equation, since FP(1,1) is zero:

FP(1, f ) = P(f ) − P(1). (4)

Our goal was to construct a relative pressure map using these FPs. Given a set of FPs, we may
think that we easily construct a relative pressure map. Specifically, once we collect all pressure values
at every floor, P(f ), we simply build a relative pressure map by subtracting P(1) from P(f ).

However, this naïve approach does not intuitively work for three reasons. First, pressure value
varies, even during the process of pressure collection on each floor. This means that only pressure
values collected within a time threshold T are valid when obtaining floor pairs. Second, we need to
reduce the cost of collecting pressure values for practical reasons. We aimed at constructing a relative
pressure map with minimal cost. Third, even after successfully constructing a relative pressure map,
we had to iteratively update the value of Pref because pressure values such as Pref and Pcur continued
to vary over time. In the next three subsections, we address each of these three issues.

4.1. Pressure Variations in Minutes

Barometric pressure varies often enough to change every minute. To show this characteristic, we
use the dataset of the pressure measurements in Seoul in February 2019 [14]. Table 5 summarizes the
number of pressure changes in n minutes. For example, there were 20 cases where pressure variation
in 1 minute was greater than 0.2 hPa. Similarly, the number of pressure variations greater than 0.3 hPa
in 3 minutes was 94.

Table 5. The number of pressure variations in n minutes.

1 min 2 min 3 min 4 min 5 min 10 min 15 min 20 min 30 min 60 min

>0.6 hPa 0 0 0 1 4 92 366 1010 3399 11,810
>0.5 hPa 0 0 0 1 7 110 401 1145 3711 12,452
>0.4 hPa 0 1 6 17 60 497 1566 3310 7519 18,529
>0.3 hPa 0 14 94 254 444 2101 5010 8195 14,052 25,626
>0.2 hPa 20 325 939 1751 2724 8717 14,261 25,108 25,108 33,989

Total 40,320 minutes in 28 days.
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Table 5 shows that a pressure value measured at a specific time t and a pressure value measured
at t + T cannot be paired for calculating a relative pressure value. In other words, a floor pair is
established only among the pressure values measured at times within a time threshold T. For small
and low buildings, we may collect all pressure values required to construct a relative pressure map
within T. In this case, we simply construct relative pressure maps for such buildings by calculating the
differences between Pref and P(f ). However, in reality, we have to take into account the case where
we cannot collect the required pressure values within T. To address this problem, we developed the
FloorPair algorithm.

4.2. FloorPair: Generating a Relative Pressure Map from Collected Pressure Data

An input of the FloorPair algorithm is a set of collected pressure tuples consisting of floor number,
pressure reading, and its timestamp (line 1 in Algorithm 1). Using these tuples, we generated a valid
set of floor pairs using only tuples collected within T. Specifically, we generated a floor pair FP(f pivot,
f probe) with a condition where f pivot was greater than f probe and the difference of their timestamp was
less than T (line 6 in Algorithm 1).

Algorithm 1. Generating a set of pressure pairs

1
2
3
4
5
6
7
8
9
10
11

input: collected_pressure_set //A set of tuples, containing (floor, pressure readings, timestamp)
output: FP_set // A set of FloorPairs, FP(f pivot, f probe)

for a tuple Q ∈ collected_pressure_set // self-join
for a tuple R ∈ collected_pressure_set

if Q.floor < R.floor and |Q.timestamp − R.timestamp| < T (= 5 min)
FP(Q.floor, R.floor)← R.pressure – Q.pressure
Add FP(Q.floor, R.floor) to FP_set

Sort FP_set on f pivot, f probe in { 1, −1, 2, −2, 3, −3 . . . } order // Floor order closer to the reference floor
return FP_set // return to Algorithm 2

To illustrate the algorithm for constructing a set of floor pairs, we present a running example in
Tables 6 and 7. Note that we used a special order that represents a floor order to consider floors close
to the reference floor first, i.e., {1, −1, 2, −2, 3, −3..}. To implement this floor order, we added 0.5 to the
absolute value of negative floor numbers. For example, a basement floor B1 is greater than 1F and is
less than 2F because the floor number of B1 is converted to 1.5.

Table 6. Input of Algorithm 1, collected_pressure_set.

Floor Pressure Timestamp

6 995 12:02
5 - -
4 997, 990 12:08, 13:00
3 991 13:01
2 999 12:04
1 1000 12:00
−1 1001 12:01
−2 - -
−3 - -
−4 1004 12:11
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Table 7. Output of Algorithm 1, FP_set.

f pivot, f probe FP(f pivot, f probe)

1, −1 1
1, 2 −1
1, 6 −5
−1, 2 −2
−1, 6 −6
2, 4 −2
2, 6 −4
3, 4 −1

4, −4 7

When Q = (1, 1000, 12:01), the possible tuples to be paired are (−1, 1001, 12:01), (2, 999, 12:04),
(6, 995, 12:02) collected before 12:01 + T(= 5 min), satisfying the condition in line 6. Note that we
heuristically set T to 5 minutes based on Table 5. These three tuples resulted in three floor pairs, FP(1,
−1), FP(1,2), and FP(1,6), as shown in the first three rows in Table 7. When Q = (3, 991, 13:01), the
possible tuple is (4, 990, 13:00), resulting in FP(3,4).

After constructing a set of floor pairs, FP_set, we sorted it in the floor order for Algorithm 2, as
shown in line 10 in Algorithm 1.

Algorithm 2. Constructing a Relative Pressure Map

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

input: FP_set
output: Diff_map

Initialize Diff_map[f top − f bottom], pivot_floors[f top − f bottom] to 0
Set Diff_map[1]← 0, pivot_floors[1]← 1

for a tuple R ∈ FP_set // Forward merging from pivot floors
if pivot_floors[R.f pivot] , 0 and pivot_floors[R.f prove] = (0 or R.f pivot)

Update Diff_map[R.f probe] after including (Diff_map[R.f pivot] + FP(f pivot, f probe))
pivot_floors[R.f prove]← R.f pivot;

for a tuple R ∈ FP_set // Backward merging from probe floors
if pivot_floors[R.f prove] , 0 and pivot_floors[R.f pivot] = (0 or R.f prove)

Update Diff_map[R.f pivot] after including (Diff_map[R.f prove] − FP(f pivot, f probe))
pivot_floors[R.f pivot]← R.f prove;

for f in range − f bottom ~ f top // Complete a relative pressure map using linear interpolation
if pivot_floors[f ] = 0 // Fill a zero item with a linear interpolated value

Diff_map[f ]← linear interpolation between two nearest non-zero values in Diff_map

return Diff_map // return to Algorithm 3

Algorithm 2 constructs a relative pressure map, Diff_map, using FP_set from Algorithm 1. First, we
initialized Diff_map, pivot_floors, as shown in line 1~5 in Algorithm 2. Each column named “initial state”
in Tables 8 and 9 shows the initial values of Diff_map and pivot_floors, respectively. Each element of the
pivot_floors array contains its corresponding pivot floor number. Note that the bold and underlined
numbers denote the values updated at that stage.
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Table 8. Construction of a relative pressure map, Diff_map.

Floor
Diff_Map

Initial
State

Merging
(1,x)

Merging
(−1,x)

Merging
(2,x)

Merging
(3,x)

Merging
(4,x)

Backward
Merging (x,4) Final

6 0 −5 −5 −5 −5 −5 −5 −5
5 0 0 0 0 0 0 0 −4
4 0 0 0 −3 −3 −3 −3 −3
3 0 0 0 0 0 0 −2 −2
2 0 −1 −1 −1 −1 −1 −1 −1
1 0 0 0 0 0 0 0 0
−1 0 1 1 1 1 1 1 1
−2 0 0 0 0 0 0 0 2
−3 0 0 0 0 0 0 0 3
−4 0 0 0 0 0 4 4 4

Table 9. pivot_floors while constructing Diff_map.

Floor
Pivot_Floors

Initial
State

Merging
(1,x)

Merging
(−1,x)

Merging
(2,x)

Merging
(3,x)

Merging
(4,x)

Backward
Merging (x,4)

6 0 1 1 1 1 1 1
5 0 0 0 0 0 0 0
4 0 0 0 2 2 2 2
3 0 0 0 0 0 0 4
2 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1
−1 0 1 1 1 1 1 1
−2 0 0 0 0 0 0 0
−3 0 0 0 0 0 0 0
−4 0 0 0 0 0 4 4

At the stage of “Merging (1,x)”, there were three pairs whose pivot floor was 1, i.e., (1, −1), (1,2),
and (1,4) in FP_set. Then, the values for the −1, 2, 4 floors in Diff_map were updated to 1, −1, and −5,
respectively (line 9 in Algorithm 2). In addition, in line 10 in Algorithm 2, the pivot floor numbers in
the pivot_floors array were updated to 1. At the next stage of “Merging (−1,x)”, there were two pairs
whose pivot floors were −1, (−1,2), and (−1,6). However, because the value of the probe floor 2 already
had the relative pressure −1, the FP(−1,2) did not change the value of the probe floor 2. Similarly,
the FP(−1,6) did not update the value of the probe floor 6, −5. Therefore, there were no changes at
“Merging (−1,x)”.

At the “Merging (3,x)” stage, there was one FP(3,4). However, it cannot change any values because
the pivot value of 3 in the pivot_floors array was 0, which means that there was no connection to the
reference floor. Figure 4a illustrates the pair relationship trees after the first for-loop in line 7~10 in
Algorithm 2. As shown in Figure 4a, it was possible that the pair relationship trees were disconnected
and thus formed a forest. In other words, the FP(3,4) had no connection to the reference floor, 1, which
meant that there was no relation to calculate the pressure difference between the reference floor and
floor 3. To prevent this case, we examined a pair relationship again but in reverse by swapping the role
of the probe floor and the pivot floor in line 12~15 in Algorithm 2. In this backward merging step, we
connected all separate trees by searching for a relationship between the probe floor (instead of the
pivot floor) and the reference floor. The dashed line in Figure 4b shows such a relationship between
floor 4 and the reference floor.
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After two merging steps, we filled zero values with linear interpolated values between two nearest
non-zero values in Diff_map (line 17~19 in Algorithm 2). Then, we completed a relative pressure map
for a building, as shown in the column labeled “Final” in Table 8.

4.3. Estimating the Exact Floor Number and Refreshing the Reference Pressure

Once we obtained a relative pressure map, Diff_map, we estimated the number of the current floor
on which a user is located simply by subtracting Pref from Pcur (line 11~12 in Algorithm 3), where Pcur

is a pressure reading from a user’s smartphone and Pref is the reference pressure obtained in line 5
in Algorithm 3. As mentioned in Section 2.2, we detected the entry floor, f entry, using [13] and then
calculated Pref as shown in line 5 in Algorithm 3.

Algorithm 3. Estimating the Current Floor Using Diff_Map

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

input: Diff_map
output: f cur

Pcur ← current barometer reading
// Initialize Pref using f entry from [13]
Pref ← Pcur – Diff_map[f entry]

While(TRUE)
Pcur ← current barometer reading

// E(expectation)-step: Estimate f cur based on Pref
Pdiff ← Pcur - Pref
f cur ← index of the value closest to Pdiff in Diff_map
Report f cur to the caller

// M(maximization)-step: Update Pref based on f cur

if IsUpdate() ==TRUE // if a user does not move vertically,
Pref ← Pcur − Diff_map[f cur] // then update the reference pressure Pref in accordance with

// the current pressure, Pcur on f cur.

However, the issue that makes the floor localization problem difficult is that Pcur continues to
vary over time. For example, let us assume that a user is on a floor at a specific time t and its Pcur is
1000 hPa. After the user stays on the same floor for a couple of hours after t, Pcur may have changed
to 1020 hPa. This means that the value of (Pcur − Pref) is no longer valid to estimate the exact floor
number from Diff_map and thus we need to iteratively update the value of Pref in accordance with the
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variations of Pcur, as shown in line 16~17 in Algorithm 3. Specifically, if a user moves only horizontally
and not vertically for a certain time period s, the value of Pref is updated in accordance with the relative
pressure value on f cur in Diff_map (line 16~17 in Algorithm 3).

Algorithm 4 shows the IsUpdate() function. In order to determine whether a user moves vertically
or not, we take into account two parameters: the pressure variations, p, allowed for a time period s.

Algorithm 4. IsUpdate() – Determining Whether We Need to Update Pref or Not

1
2
3
4
5
6
7
8
9
10
11
12
13
14

input: Pcur, f cur, Diff_map
output: TURE, FALSE

p← (Diff_map[f cur] − Diff_map[f cur + 1])/2
s← p/0.015 // Based on the lower and upper bound

if ∆Pcur > p in s seconds // if a user’s vertical movement is out of the true range,
// then return FALSE.

return FALSE // FALSE means “Don’t update Pref because a user is moving vertically“.

if |Diff_map(f cur) − (Pcur − Pref)| > p/2 // if a user stays out of the true range, then return FALSE.
return FALSE

return TRUE // Otherwise, “Update Pref based on f cur“.

Since people usually live on the surface of a floor, we consider the range of vertical displacement
of a user’s smartphone as half of the typical floor height. On the basis of this fact, we set p to the half of
a pressure difference between two floors, (Diff_map[f cur] − Diff_map[f cur + 1])/2 (line 4 in Algorithm 4).

To determine whether a user is moving vertically or not, we divided a floor height into two ranges,
i.e., true range and false range, as shown in Figure 5. The goal of the IsUpdate() function is to return
TRUE only if it decides that a user is vertically stable within p (i.e., in the true range) for s seconds. Then,
our algorithm updates Pref (line 17 in Algorithm 3). Otherwise, the IsUpdate() function returns FALSE,
which means that our algorithm needs not to update Pref because a user is still moving vertically by
taking an elevator/escalator or using the stairs. The IsUpdate() function also returns FALSE if a user is
in the false range, even though the user stops for s seconds in the middle of stairs, e.g., a stair landing.
This is to avoid wrong updates of Pref while a user is moving vertically very slowly. To address this
issue, we introduced a lower bound of the parameter s.

The lower bound was based on the slowest vertical movement speed of a human, 0.2 m/s [15].
Therefore, the lower bound is calculated by 0.2 (m/s)/8 (m/hPa) = 0.025 hPa/s.

The upper bound of s is derived from Table 5. If s is too long, it means that we cannot distinguish
weather changes from users’ vertical movements. Therefore, the upper bound corresponds to the
maximum time period over which no change in atmospheric pressure occurs. As shown in Table 5,
the number of pressure variations greater than 0.3 hPa is zero within 1 minute, which means that the
upper bound is calculated by (0.3 hPa / 60 sec) = 0.005 hPa/s.

The parameter s is determined by p / ((lower bound + upper bound)/2), i.e., p/0.015. For example,
if p is the half of a typical floor pressure difference [1,12], 0.2 hPa, the parameter of s is 13 seconds.
Since the parameter s is a function of p, the parameter s reflects the height of the floor.
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Figure 5. Illustration of Algorithm 4.

In the case where s exceeds the upper bound, there is a possibility according to Table 5 that a
pressure change coming from weather changes is mistaken for a pressure change caused by an actual
user’s vertical movement. On the other hand, if s is below the lower bound and a user moves vertically
very slowly (e.g., below 0.2 m/s), our method continues to make unnecessary updates of Pref. On the
basis of these lower and upper bound characteristics, we set s to p/0.015 seconds in order to provide
100% accuracy, as shown in Section 5.

As shown in Algorithms 3 and 4, our algorithm is based on an iterative optimization method
such as the expectation–maximization (EM) algorithm [16], which is widely used in statistics and data
clustering in machine learning, to jointly optimize two parameters. Conceptually, when it is hard to
optimize two interacting parameters A and B at the same, the EM algorithm optimizes parameter A
while holding parameter B’s value. In the next step, the EM algorithm optimizes parameter B based on
parameter A from the previous step. The EM algorithm basically alternates between performing an
expectation (E) step and a maximization (M) step.

In the E-step of our algorithm, we estimated an initial f cur using Pref. Then, in the M-step,
conversely, we optimized Pref using the f cur estimated in the E-step. This new Pref is iteratively used to
estimate f cur in the next E step. We present an illustration of our optimization method in Figure 6.
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Because our algorithm is based on the concept of the EM algorithm, we can easily apply recent
machine learning techniques to the floor localization problem and we will leave this as future work.

5. Performance Evaluations

5.1. Collecting Pressure Data

One of our goals was to minimize the cost of collecting pressure data. It is important for the
floor localization service to be widely deployed in practice with minimum cost for both construction
and maintenance. Our FloorPair method basically needs to collect floor pairs to construct a relative
pressure map for a building. Floor pairs are easily collected by reading the numbers of floors in a
building and the pressure values and time of a smartphone without special devices or experts.

As described in the following two paragraphs, this collection process is performed only once by
anyone who wants to provide the exact number of floors of a building, e.g., the owner of a building, a
service provider, or an end-user.

If the floors of a building have the same height, we need only one floor pair. For example, in the
case of a university building whose floors have the same height, we constructed a relative pressure
map by collecting one pressure value at the first floor and one at the top floor, resulting in FP(1,15), as
shown in Table 10. With this one FP, we can build a relative pressure map for this building and thus
obtain the exact floor number with 100% accuracy.

Table 10. Process of correcting floor localization errors.

Floor
Hi-Tech Center

Floor
POSCO Tower-Songdo

1st
Pair

Final
Error

1st
Pair

1st
Error

2nd
Pair

2nd
Error

3rd
Pair

3rd
Error

4th
Pair

Final
Error

−1 0 −1 0 0 0 0
1 � 0 1 � 0 � 0 � 0 � 0
2 0 2 +1 � 0 0 0
3 0 3 +1 0 0 0
4 0 4 +1 0 0 0
5 0 5 +1 0 0 0
6 0 6 +1 0 0 0
7 0 7 +1 0 0 0
8 0 8 0 0 0 0
9 0 9 0 0 0 0

10 0 10 0 0 0 0
11 0 11 −1 0 0 0
12 0 12 −1 0 0 0
13 0 13 −1 0 0 0
14 0 14 −1 +1 � 0 0
15 � 0 ...

36 +2 +2 +2 � 0
...
65 � 0 0 0 0

On the other hand, a tall commercial building such as the POSCO tower (B1 ~ 65F) has different
heights for different floors. In this case, we need a couple of floor pairs to complete a relative pressure
map, as shown in Table 10. First, we collected two pressure values on the first and top floor. Then, we
calculated a floor localization error as shown in the column of “1st Error” of Table 10. To correct this
error, we collected the 2nd pair, FP(1,2), the 3rd pair, FP(1,14), and the 4th pair, FP(1,36). With these four
floor pairs, we easily constructed a relative pressure map for a 66-story building with minimum cost.

Note that once the relative pressure map of a building is completed, it means that it is unique and
permanent for that building, and does not need to be collected repeatedly.
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5.2. Result of Experiments

As shown in Table 10, our method achieves 100% accuracy by iteratively correcting the errors.
Once the relative pressure map is completed, our method also maintains 100% accuracy by optimizing
the reference pressure in accordance with the current pressure using the framework of the EM
(expectation and maximization) algorithm as described in Section 4.3.

To further validate the efficacy of our method, we conducted extensive field experiments in the
various buildings, as listed in Table 11.

Table 11. Buildings used for our field experiments.

Name Floors Purpose Type Location

Lotte World Tower 123, −6 Office Skyscraper Seoul, Korea
POSCO Tower-Songdo 68, −3 Office Skyscraper Incheon, Korea

COEX 4, −2 Commercial Wide and Flat Seoul, Korea
HYUNDAI Department Store COEX

Branch 11, −4 Commercial Wide and Tall Seoul, Korea

Gangnam Station −2 Public Underground Seoul, Korea
Indeogwon Station −2 Public Underground Anyang, Korea

I-first Tower 14, −7 Commercial Narrow and Tall Anyang, Korea
Woojung Town 9, −1 Commercial Narrow and Tall Anyang, Korea

Star Tower 15, −2 Commercial Narrow and Tall Anyang, Korea
Inha Hi-Tech Center 15, −1 University Narrow and Tall Incheon, Korea

Wellcounty 4 Apartment 30, −2 Residential Narrow and Tall Incheon, Korea
Woomin Villa 4, −1 Residential Narrow Incheon, Korea

Among the five smartphone models in Table 12, we used one or two models to collect floor pairs
and five models to evaluate the accuracy of our proposed method, as shown in Table 13. We used
different models of smartphones for both collection and evaluation to show that our method works
well even when different smartphones are used for collection and evaluation. As shown in Table 14,
our method shows 100% accuracy, independent of types of phones and buildings. For each trial, we
counted success only when our method consistently showed the exact number of a floor for about
10 minutes to reflect constantly changing pressure values, such as Pcur and Pref. Note that Pcur is
measured about 600 times in 10 minutes, while Pref is updated 20 to 50 times depending on the height
of a floor.

Table 12. Smartphones used for our field experiments.

Model Notation Manufacturer Year of Release

Galaxy Note 9 Note 9 Samsung 2018
V40 ThinQ V40 LG 2018

V10 V10 LG 2015
Galaxy Note 5 Note 5gold Samsung 2015
Galaxy Note 5 Note 5white Samsung 2015
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Table 13. Environment of experiments.

Name of Building Devices Used For Visited
Floors

# of Floor Pairs
CollectedCollection Evaluation

Lotte World Tower V40 V40, Note 5gold, Note 5white
−1~2
31,123 3

POSCO Tower-Songdo V40 V40, Note 5gold, Note 5white
−1~14
36, 65 4

COEX V10, V40 V40, V10, Note 5white −2~4 4

HYUNDAI Department
Store COEX Branch

V10,
Note 5white

V40, V10, Note 5white −4~ 11 5

Gangnam Station V10,
Note 5white

V40, V10, Note 5white −2~1 1

Indeogwon Station
V10,

Note 5gold

V40, V10, Note 9,
Note 5gold, Note 5white

−2~1 1

I-first Tower
V10,

Note 5gold

V40, V10, Note 9,
Note 5gold, Note 5white

−7~14 21

Woojung Town
V10,

Note 5gold

V40, V10, Note 9,
Note 5gold, Note 5white

−1~9 15

Star Tower
V10,

Note 5gold

V40, V10, Note 9,
Note 5gold, Note 5white

−2~15 17

Inha Hi-Tech Center V10, V40
V10, V40, Note 9,

Note 5gold, Note 5white
−1~15 1

Wellcounty 4
Apartment Note 9 Note 9 −2~30 1

Woomin Villa V10
V40, V10,

Note 5gold, Note 5white
−1~4 1

Table 14. Accuracy and sustainability of FloorPair.

Name of Building MAE (Mean Absolute Error)/The Number of Tests

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Lotte World Tower 0/10 0 / 10 - - -

POSCO Tower-Songdo 0/34 0/34 0/34 - -

COEX 0/12 0/12 0/12 0/12 0/12

HYUNDAI Department Store
COEX Branch 0/30 0/30 0/30 0/30 0/30

Gangnam Station 0/6 0/6 0/6 0/6 0/6

Indeogwon Station 0/6 0/6 0/6 0/6 0/6

I-first Tower 0/42 0/42 0/42 0/42 0/42

Woojung Town 0/20 0/20 0/20 0/20 0/20

Star Tower 0/34 0/34 0/34 0/34 0/34

Inha Hi-Tech Center 0/32 0/32 - - -

Wellcounty 4
Apartment 0/64 0/64 - - -

Woomin Villa 0/10 0/10 0/10 0/10 -

Moreover, in order to further evaluate the sustainability of our method, we conducted the same
experiments up to five times for several months. As shown in Table 14, our method maintains 100%
accuracy over time. In this paper we used the mean absolute error (MAE) metric defined by MAE
= 1

n
∑n

1

∣∣∣(estimated f loor number) − (actual f loor number)
∣∣∣, where n is the number of tests, to evaluate

the accuracy of our method.
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5.3. Reasons for near 100% Accuracy

Even though our FloorPair method showed 100% accuracy in our experiments, our method is said
to provide near 100% accuracy for the following reasons: First, we did not conduct our experiments
under serious weather conditions, such as tornadoes and hurricanes. In this case, we do not expect
that our method provides 100% accuracy. Second, if a user continues to move up and down for a
long time, e.g., 5 minutes, it causes about 0.017% error according to Table 5. Third, if a user vertically
moves below 12 cm per second, our method mistakes a user’s vertical movement for a weather change,
leading to erroneous results. In the second and third cases, our method cannot provide 100% accuracy
only to users moving with these extreme patterns, but it continues to provide near 100% accuracy to
other users.

6. Discussion

In this paper, we proposed a pressure-pair-based floor localization method called FloorPair that
aims at determining the exact number of the floor on which smartphone users are located. Specifically,
we had the following three goals for the floor localization problem: first, we construct a relative
pressure map with minimum costs; second, using the relative pressure map, we provide near 100%
accuracy in determining the exact number of a user’s floor; third, we maintain near 100% accuracy
over time for sustainability of the floor localization service.

To achieve these goals, FloorPair first generates a set of pressure pairs from a dataset of pressures
collected in a building. In the process of this collection, FloorPair needs only a few pressure readings on
a minimum number of floors, unlike previous approaches. Using this set of pressure pairs, FloorPair
merges those pressure pairs into a relative pressure map that contains pressure differences between a
reference floor and the other floors in the building. On the basis of this relative pressure map, FloorPair
determines the exact floor number on which users are located with near 100% accuracy. In addition,
FloorPair is able to maintain this high accuracy over time with an iterative optimization method based
on the framework of the EM algorithm, making our method sustainable.

Extensive field experiments in various types of buildings show that FloorPair is near 100% accurate
and is a sustainable floor localization method with minimum costs. For future work, we plan to
augment our method with recent artificial intelligence techniques to further expand the adaptability of
our method to various environments.
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