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Abstract: Nonintrusive appliance load monitoring (NIALM) allows disaggregation of total electricity
consumption into particular appliances in domestic or industrial environments. NIALM systems
operation is based on processing of electrical signals acquired at one point of a monitored area.
The main objective of this paper was to present the state-of-the-art in NIALM technologies for
the smart home. This paper focuses on sensors and measurement methods. Different intelligent
algorithms for processing signals have been presented. Identification accuracy for an actual set of
appliances has been compared. This article depicts the architecture of a unique NIALM laboratory,
presented in detail. Results of developed NIALM methods exploiting different measurement data are
discussed and compared to known methods. New directions of NIALM research are proposed.

Keywords: NIALM; smart home; electrical appliances; home events; load disaggregation; sensing
technologies; intelligent algorithms; human behavior

1. Introduction to Appliance Load Monitoring Systems

A major problem of power systems in recent years has been the constant increase in demand
for electricity. In view of this problem, saving energy and reducing its consumption are promoted.
Many people have joined in the initiatives aimed at increasing the energy efficiency of the places
where they live. However, the users of electricity have no opportunity for conscious control of energy
consumption, because their possibilities are mostly limited to analysis of accounts after settlement
periods lasting usually a few months. Moreover, in both the domestic and industrial environment,
dozens of appliances with different power consumptions are switched on and off several times a
day. Accounts containing total energy consumption do not give any information about electricity
consumption of particular appliances. Therefore, it is hard to form habits of saving energy consciously
and effectively, which is one of the most important aims of smart homes.

The first purpose of developing an appliance load monitoring (ALM) system is to provide
an electricity consumer with information about the energy consumption of individual appliances.
This leads to limiting electricity consumption and less atmospheric pollution. Moreover, consumers
with an ALM system would be aware of the appliances consuming the most energy. From a social point
of view, it is important to educate people about the habit of saving energy. Obtaining information about
the most energy-consuming appliances provides potential opportunities for electricity management.
Some of the most energy-consuming appliances could be switched on only when there is an excess
of energy in the power system. For industry, ALM systems may suggest optimal configurations
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of industrial machines to limit reactive power. Future possibilities of ALM systems may include
diagnostics of electrical appliances [1], including monitoring of device wear (e.g., mechanical problems
in rotating motors), and detection of supply network states, including dangerous inferences, voltage
spikes, weakening of insulation, etc.

The simplest way to monitor power consumption of all appliances is to equip them with individual
electricity meters. There are many problems resulting from the fact that each monitored appliance
needs an individual meter. Firstly, with the increase in the number of monitored appliances, the cost
of the measuring system increases significantly [2]. Secondly, measuring data need to be collected
in one central unit, which is another system element. Thirdly, data from meters need to be sent to a
central unit, so electricity meters have to be equipped with a suitable interface, e.g., a radio interface.
Moreover, current flowing through the monitored appliances has to flow through the meter too, which
reduces the reliability of the power supply. Lastly, measuring devices consume energy. The more
monitoring system elements, the more energy is consumed. Because of the mentioned arguments, such
a system is called IALM—intrusive appliance load monitoring (see Figure 1a).

Another concept for solving the presented problem is a nonintrusive appliance load monitoring
(NIALM) system, which also determines the energy consumption of particular appliances turning on
and off in local domestic or industrial power grids. First concept of NIALM system was introduced by
Hart [3], and is also known as energy disaggregation [4]. It is called nonintrusive because measurements
are made solely near the energy meter, in contrast to intrusive systems where every socket or load
should be equipped with a suitable sensor [5]. When new appliances are plugged into the area
monitored by nonintrusive system, the hardware does not need to be expanded. Measured values are
typically current and voltage of the total load [6]. A measuring system of this type is presented in
Figure 1b.
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Figure 1. Appliance load monitoring systems: (a) intrusive appliance load monitoring (IALM); (b) 

nonintrusive appliance load monitoring (NIALMS). 
Figure 1. Appliance load monitoring systems: (a) intrusive appliance load monitoring (IALM);
(b) nonintrusive appliance load monitoring (NIALMS).
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Electricity is transferred in the form of voltage. Under the action of voltage, the current flows
through a specific receiver. The goal of electrical signal processing algorithms is to determine individual
values of currents on the basis of characteristic parameters of current, voltage, or any combination of
both of these signals. Information about the operating states of individual appliances and estimations
of their energy consumption are obtained by a sophisticated analysis of collected waveforms. The main
challenge of NIALM is to develop methods of signal analysis which provide knowledge about the
behavior of electrical appliances. This is crucial for proper system operation. The hardware of a
complete NIALM system does not need to be extended with new devices in the monitored area.

The general architecture of a nonintrusive appliance load monitoring system is presented in
Figure 2.

Sensors 2019, 19, x 3 of 25 

 

Electricity is transferred in the form of voltage. Under the action of voltage, the current flows 

through a specific receiver. The goal of electrical signal processing algorithms is to determine 

individual values of currents on the basis of characteristic parameters of current, voltage, or any 

combination of both of these signals. Information about the operating states of individual appliances 

and estimations of their energy consumption are obtained by a sophisticated analysis of collected 

waveforms. The main challenge of NIALM is to develop methods of signal analysis which provide 

knowledge about the behavior of electrical appliances. This is crucial for proper system operation. 

The hardware of a complete NIALM system does not need to be extended with new devices in the 

monitored area. 

The general architecture of a nonintrusive appliance load monitoring system is presented in 

Figure 2. 

 

Data 

acquisition

Characteristic 

values
calculation

Event 

detection

Power 

System

Signatures 
of monitored 

appliances

Identification 

result

NIALM 

Sensor

Event 

classification

. 

Figure 2. General architecture of a nonintrusive appliance load monitoring system. 

The first stage is a NIALM sensor, the main purpose of which is to transform the quantity of 

interest (e.g., current or voltage) into voltage with a range appropriate for the acquisition equipment. 

In the data acquisition stage, measuring signals are converted from analog to digital samples and 

saved in the memory. The sampling frequency of the recording hardware determines the type of 

characteristic values extracted from measured signals. Examples of characteristic values are: average 

power, harmonics of current, wavelet transform coefficients, root mean square (RMS) power. 

Characteristic value is calculated on the basis of recorded samples. The majority of methods employ 

more than one characteristic value. The set of characteristic values should be unique for every 

monitored appliance. The third stage is event detection based on analysis of the characteristic value 

vector. In the simplest scheme, an event is detected when the difference in two subsequent 

characteristic values is above the determined detection threshold. A characteristic value used often 

for event detection is the envelope of the current signal. Because multiple appliances work 

simultaneously during online operation, most methods identify only the device that has recently 

changed its state. The sequence of correct identifications allows which appliances were operating in 

the household in the particular moment of time to be determined. The characteristic values 

calculated after the event detection are calculated for the group of currently operating appliances, 

and cannot be used instantly for identification. Instead, the system also stores the set of characteristic 

values prior to the analyzed event. In this way, it is possible to calculate the features for the 

particular appliance as the difference between two vectors, calculated after the previous f(t–1) and 

the last event f(t): 

𝒇𝑖(𝑡) = 𝒇(𝑡) − 𝒇(𝑡 − 1), (1) 

The event classification stage compares the calculated vector of characteristic values fi(t) with the 

signatures of the monitored appliances. A signature is the vector of characteristic values calculated 

under controlled appliance operating conditions, i.e., when each appliance was turned on 

individually. As the result of event classification stage, the set of appliances actually operating is 

determined and individual energy consumption is calculated.  

It should be noted that the signal analysis methods can be varied. They take into account 

characteristic values calculated either when the operating state of an appliance changes, or when 

Figure 2. General architecture of a nonintrusive appliance load monitoring system.

The first stage is a NIALM sensor, the main purpose of which is to transform the quantity of
interest (e.g., current or voltage) into voltage with a range appropriate for the acquisition equipment.
In the data acquisition stage, measuring signals are converted from analog to digital samples and saved
in the memory. The sampling frequency of the recording hardware determines the type of characteristic
values extracted from measured signals. Examples of characteristic values are: average power,
harmonics of current, wavelet transform coefficients, root mean square (RMS) power. Characteristic
value is calculated on the basis of recorded samples. The majority of methods employ more than one
characteristic value. The set of characteristic values should be unique for every monitored appliance.
The third stage is event detection based on analysis of the characteristic value vector. In the simplest
scheme, an event is detected when the difference in two subsequent characteristic values is above the
determined detection threshold. A characteristic value used often for event detection is the envelope
of the current signal. Because multiple appliances work simultaneously during online operation,
most methods identify only the device that has recently changed its state. The sequence of correct
identifications allows which appliances were operating in the household in the particular moment of
time to be determined. The characteristic values calculated after the event detection are calculated for
the group of currently operating appliances, and cannot be used instantly for identification. Instead,
the system also stores the set of characteristic values prior to the analyzed event. In this way, it is
possible to calculate the features for the particular appliance as the difference between two vectors,
calculated after the previous f (t–1) and the last event f (t):

fi(t) = f(t) − f(t− 1), (1)

The event classification stage compares the calculated vector of characteristic values fi(t) with the
signatures of the monitored appliances. A signature is the vector of characteristic values calculated
under controlled appliance operating conditions, i.e., when each appliance was turned on individually.
As the result of event classification stage, the set of appliances actually operating is determined and
individual energy consumption is calculated.

It should be noted that the signal analysis methods can be varied. They take into account
characteristic values calculated either when the operating state of an appliance changes, or when
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operating state is determined. Analyses at both mentioned types of operating state can be performed
using methods belonging to one of three groups:

• Group I (fundamental 50 Hz harmonic group, LF, RMS)—analysis methods exploiting RMS of
signals or the amplitude of the first current and voltage harmonic collected with a sampling
frequency from fractions of Hz to several Hz.

• Group II (fundamental 50 Hz and its harmonics group, MF, harmonics)—analysis methods
exploiting instantaneous values of signals (samples) collected with a sampling frequency from
1 kHz to dozens of kHz.

• Group III (high-frequency group, HF)—methods exploiting instantaneous values of signals
collected with a sampling frequency from dozens of kHz to several dozen MHz.

Within each of the above groups, current and/or voltage signals are analyzed in several stages,
similar to those presented in Figure 2. Analysis methods can be grouped by the duration of the analysis
window. Moreover, there are methods exploiting steady-state operating states (SS) and transient states
(TS) when appliance operating states change [7].

The aforementioned methods are described in the following sections with the use of the
measurement setup shown in Figure 3. Power supply voltage and aggregate current were measured
and recorded. Measured voltage was applied for a set of three appliances switched on and off apart
from each other.
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2. Group I (LF) Measurement Methods

Signals analyzed with the use of methods of group I (LF) can be evaluated using the
following Equations:

IRMS =

∫ t0+T

t0

i2(t) dt, (2)

PRMS =

∫ t0+T

t0

i(t)u(t) dt, (3)

where i(t) is the current signal; u(t) is the voltage signal; T is the time of analysis, which lasts one period
of the fundamental harmonic or a multiple of one period; IRMS is the RMS value of the current; and
PRMS is the RMS value of the power. It should be mentioned that RMS values derived from power meter
are a mean value of many RMS evaluated in a 1 second or 0.5 second time interval. Signals analyzed
using methods of group I are presented in Figure 4. It presents the result of measurements performed
in the set of three electrical appliances detailed in Table 1, supplied from one common voltage of 230 V
AC (50 Hz).
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Table 1. Tested appliances.

# Name Producer Type Max Power

A LED bulb Osram AB30526 17 W
B Hair dryer Apollo SUA-2000-SIL 2000 W
C Vacuum cleaner Zelmer ZVC425HT 1000 W

The LED bulb (A) was switched at the moment 1. Next, at the moment 2, hair dryer (B) is
switched on. Moment 3 indicates the vacuum cleaner (C) switching on. Moments 4, 5, and 6 indicate
the time points at which the appliances were switched off, respectively: LED bulb, hair dryer, and
vacuum cleaner.
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By using the presented signals, analyses using the following methods were performed. In relation
to the power grid voltage frequency of 50 or 60 Hz [8–10], analysis in a low-frequency range allows
extraction of the parameters of the waveforms averaged over several periods. Generally, LF methods are
based on analysis of power changes between steady states [11]. The most frequently used parameters
of power are the average power [8,12–16], reactive power [17,18], and power factor [12]. The detected
changes are often plotted as points in two-dimensional space. The obtained points can be assigned to
groups with approximately the same changes of power. Groups with the same value but the opposite
sign of change correspond to turning on and off the same appliance. In numerous publications, hidden
Markov models (HMM) and their variants [19–23] have been applied for analyzing power changes.
Baranski and Voss [11] presented an identification method based on fuzzy clustering and genetic
algorithm, while a temporal mining approach was proposed in Reference [24]. The idea of representing
a dataset of power values using a graph defined by a set of nodes and a weighted adjacency matrix
has been introduced in References [13,25], among others. Appliances with a finite number of states
are often considered finite state machines (FSM) [3,26]. The main constraint of LF methods is their
inability to distinguish appliances with similar power. For this purpose, more sophisticated acquisition
hardware is exploited.

3. Group II (MF) Measurement Methods

If signals u(t) and i(t) (see Figure 3) are measured with the use of an appropriate measuring
device with a sampling frequency in the range 1000 S/s to 20 kS/s, these signals will be observed as is
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presented in Figure 5. The waveforms presented in Figure 5 were acquired in moment 3 (see Figure 4),
and the only difference is that the scale of time is more accurate. Thanks to this approach, there were
visible changes in signals completely invisible for LF methods, which were particularly evident in the
example of the LED bulb signals (moment 1), presented in Figure 6. LF methods are not suitable for
analyzing signals that are so distorted with respect to a 50 Hz sinusoidal signal.
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The majority of household appliances are nonlinear, e.g., computer or LED lamp. Hence, the current
waveforms of these appliances contain significant harmonic distortion. The fact of harmonic distortion
was employed in the design of NIALM methods. Parameters characterizing appliances are commonly
determined on the basis of current harmonics obtained from the complex Fourier spectrum. Usually,
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the first 11–13 harmonics are used in the analysis, so in order to capture the microscopic parameters,
it is necessary to have measurements with a sampling frequency of at least 1.5 kHz. The sample
signature of an electrical appliance contains information about the amplitude [27] and the phase [28] of
the subsequent current harmonics. In some works, power parameters have also been included [29].
The distribution of amplitudes and phases of individual harmonics depends on the set of appliances
currently operating. The basis for identification algorithms is a comparison of signature parameters
calculated from measurement data and labels of individual appliances collected during system training.
Neural networks are often used as a classifier. In the input layer of the neural network, information
about the harmonics of the electric current is entered, while in the output layer, the appropriate
appliance category is obtained.

In Reference [30], the real and imaginary parts of the odd harmonics of the current were features
characterizing devices. A number of experiments were carried out comparing the operation of three
types of neural networks: radial basis function (RBF), multi-layer perceptron (MLP), and support
vector machine (SVM). The presented experimental results show that average classification accuracy of
developed method was about 85%.

In Reference [31], a slightly different approach was applied. The spectrum distribution in
sub-bands distributed linearly or logarithmically in the range from 0 Hz–5 kHz was calculated.
Jaccard distance was used to assess the similarity of classified examples with the training data. A high
identification accuracy was achieved. However, the algorithm was only tested with devices switched
on individually.

A spectral envelope for estimating the power of variable speed drive (VSD) with a bulb operating
in background was used in Reference [32]. The spectral envelope can also be used in the analysis of
transient states. Shaw et al. [1] proposed a method of transient spectrum analysis which may be
applied both in AC power grids and DC power supply in automotive applications.

A different approach was proposed by Lang, Fung, and Lee. They proposed the taxonomy of
electrical appliances based on voltage–current (V-I) trajectories [33]. In this method, graphs of current
are drawn as a function of voltage. The features distinguishing devices are the shape parameters of these
graphs. The authors described some features of trajectory shape which corresponded to parameters of
electrical signals (e.g., the number of self-intersections as related to harmonic content). An investigation
of a trajectory-based load monitoring system was presented in Reference [34]. An identification
accuracy of about 75% was achieved.

4. Group III (HF) Measurement Methods

If we look more precisely at the phenomena occurring when appliances change their state, we will
see that current and voltage measured according to Figure 3 contain high-frequency (HF) components
not harmonic with the 50 Hz fundamental frequency of the power supply. Information about appliances’
state changes may be included in these HF components. HF components are the response of appliance
impedance to the instantaneous voltage of a power grid present at the moment of switching on an
appliance. Therefore, a wide frequency band should be used for analysis. The waveforms presented in
Figure 4 are expanded in Figure 7.

One group of HF methods are those characterizing transient states during switching on/off of
electrical appliances. Due to the high sampling frequency of recorded data, it is necessary to apply
an appropriate acquisition system that allows for initial reduction of the data, e.g., by detecting the
moment of state change and recording only a significant part of the signal for further analysis [35].
Waveforms registered in transient states (TSs) very often differ significantly in shape, even if they
have been measured for the same device. This makes it necessary to collect many examples of TSs, so
that it might be possible to characterize them with universal and robust features. Therefore, before
developing an identification system, it is necessary to prepare an appropriate database containing
many TSs registered for different devices [36].
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In Reference [37], a NIALM system sampling current and voltage with a frequency of 1 MHz
was presented. Authors observed that TSs after switching on appliances lasted for different times,
depending on the type of device. A vector of harmonics comprised from alternating real and imaginary
parts of the complex Fourier transform and partial least-square regression applied to raw waveform
data were recognized as the most robust features. Classification was directly related to simple statistical
hypothesis testing. To improve the classification accuracy, a fusion of classifiers using both types
of features was used. In the laboratory, the method allowed perfect accuracy to be obtained, but
in a real household environment, a decrease of classification accuracy was observed, especially for
low-power devices.
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The voltage signal sampled at 5.21 MHz was used to analyze the energy consumption in
Reference [38]. As the method is based solely on the analysis of transient states, the basic component
(60 Hz) and its harmonics were filtered with the Notch IIR filter. Two sets of features were prepared.
The first one, based on continuous wavelet transform (CWT), is a vector containing energy for
selected scales and signal duration. The second feature set constitutes parameters calculated from
short-term Fourier transform (STFT): averages of the individual complex Fourier spectrum components
and the number of time windows. In the experiments performed, three selected appliances were
tested. The STFT based method achieved an accuracy of 70%, while the use of CWT ensured 80%
identification accuracy.

In most electronic appliances, switched mode power supplies (SMPS) are used. Such a solution
is more effective than a classical transformer in terms of size, weight, and cost. Moreover, in
the case of a transformer, the power is constant, whereas electronic appliances with SMPS get
current pulses containing a large number of harmonics. Therefore, important signals contained in the
high-frequency band also appear in steady states (SS). SMPS generate a high-frequency electrical noise
(EMI—electromagnetic interference) during operation. The measuring system should be adjusted
to extract EMI components from steady-state signals. The measurement setup from Figure 3 was
modified by adding a high-pass filter in the voltage measurement path cutting of the fundamental
50 Hz frequency of the power grid voltage. It is presented in Figure 8. An example of signals measured
in this measurement setup is presented in Figure 9. High-pass filter inclusion causes a phase delay of
the voltage signal.
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The EMI noise is specific for different electronic appliances and can be used for the identification [39].
The continuous noise is a narrowband with characteristic center frequency for different appliances.
The frequency for which the level of noise is the highest is called the switching frequency and can be
modeled with a normal distribution. For appliance identification, in this method, the use of switching
frequency and normal distribution parameters has been proposed. These parameters are different for
each appliance and are saved in an appliance library. The appliances are identified using k-Nearest
Neighbor and parameters saved in the appliance library. The NIALM system that uses electromagnetic
interference for appliance identification was proposed by Gupta and co-workers [39] and expanded by
operating state type identification in Reference [40].

Sensors 2019, 19, x 9 of 25 

 

appliances are identified using k-Nearest Neighbor and parameters saved in the appliance library. 

The NIALM system that uses electromagnetic interference for appliance identification was proposed 

by Gupta and co-workers [39] and expanded by operating state type identification in Reference [40].  

 

NIALM

HF Sensor

V

Appliance

A

Appliance

B

Appliance

C

u(t)

A
i(t)

High-Pass

filter

Power 

System

 

230 V AC

50 Hz

 

Figure 8. The block diagram of electromagnetic interference (EMI) measurement setup. 

 

Figure 9. Current and high-pass (HP)-filtered voltage measured during LED bulb operation. 

5. Extra-High-Frequency (EHF) Measurements 

Signals measured in the measurement setup presented in Figure 3 contain components with 

frequencies higher than those discussed in Section 4. Other frequency components up to GHz are 

included in current and voltage signals. Some measurable amplitudes of extra-high-frequency (EHF) 

components originate from very-high-frequency (VHF) radio transmitters. It can be suspected that 

information characteristic for electrical appliances is included in this frequency range. So far, no one 

has conducted such research. Current and voltage signals were measured with a sampling frequency 

of 2 GHz using an Agilent InfiniiVision oscilloscope. Figure 10 presents the steady-state operation of 

an LED bulb (A), while Figure 11 presents a transient state during LED bulb (A) switching on. The 

scale of current magnitude in Figure 10 and Figure 11 is different. 

Figure 8. The block diagram of electromagnetic interference (EMI) measurement setup.

Sensors 2019, 19, x 9 of 25 

 

appliances are identified using k-Nearest Neighbor and parameters saved in the appliance library. 

The NIALM system that uses electromagnetic interference for appliance identification was proposed 

by Gupta and co-workers [39] and expanded by operating state type identification in Reference [40].  

 

NIALM

HF Sensor

V

Appliance

A

Appliance

B

Appliance

C

u(t)

A
i(t)

High-Pass

filter

Power 

System

 

230 V AC

50 Hz

 

Figure 8. The block diagram of electromagnetic interference (EMI) measurement setup. 

 

Figure 9. Current and high-pass (HP)-filtered voltage measured during LED bulb operation. 

5. Extra-High-Frequency (EHF) Measurements 

Signals measured in the measurement setup presented in Figure 3 contain components with 

frequencies higher than those discussed in Section 4. Other frequency components up to GHz are 

included in current and voltage signals. Some measurable amplitudes of extra-high-frequency (EHF) 

components originate from very-high-frequency (VHF) radio transmitters. It can be suspected that 

information characteristic for electrical appliances is included in this frequency range. So far, no one 

has conducted such research. Current and voltage signals were measured with a sampling frequency 

of 2 GHz using an Agilent InfiniiVision oscilloscope. Figure 10 presents the steady-state operation of 

an LED bulb (A), while Figure 11 presents a transient state during LED bulb (A) switching on. The 

scale of current magnitude in Figure 10 and Figure 11 is different. 

Figure 9. Current and high-pass (HP)-filtered voltage measured during LED bulb operation.

5. Extra-High-Frequency (EHF) Measurements

Signals measured in the measurement setup presented in Figure 3 contain components with
frequencies higher than those discussed in Section 4. Other frequency components up to GHz are
included in current and voltage signals. Some measurable amplitudes of extra-high-frequency (EHF)
components originate from very-high-frequency (VHF) radio transmitters. It can be suspected that
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information characteristic for electrical appliances is included in this frequency range. So far, no one
has conducted such research. Current and voltage signals were measured with a sampling frequency
of 2 GHz using an Agilent InfiniiVision oscilloscope. Figure 10 presents the steady-state operation of
an LED bulb (A), while Figure 11 presents a transient state during LED bulb (A) switching on. The
scale of current magnitude in Figures 10 and 11 is different.
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Figure 11. EHF voltage and current recorded with frequency sampling of 2 Gs/s during LED bulb (A)
switching on (TS).

It is also worth mentioning that there are alternative methods of estimating electricity consumption
without measuring electrical signals. The concept of device activity detection using radio frequency
interference emission was presented in Reference [41]. This method takes advantage of the fact
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that electrical appliances during operation generate electromagnetic fields around their enclosures.
A suitable broadband antenna sensor and data acquisition system allows this disturbance to be recorded
and characterized [42]. Similarly, in Reference [43], the acoustic noise produced during operation was
used to identify the type of device.

6. Comparison of Nonintrusive Appliance Load Monitoring Methods

The accuracy of load disaggregation methods is strongly related to the number of monitored
appliances. The smaller the number of devices used for the experiment, the greater the probability of
a correct energy disaggregation. Similarly, a larger set of tested appliances requires more complex
processing algorithms. Therefore, in order to obtain a complete overview of the state of the art in
NIALM, the classification accuracy of individual appliances should be analyzed with regard to the
type and number of all tested appliances in each experiment. Only this approach allows the suitability
of methods in practical applications to be assessed.

Various quality measures have been used in published studies. There are various objective
evaluation metrics under the umbrella of classification accuracy. The authors do not always precisely
define how the accuracy of identification was determined. The quality of the load disaggregation in
NIALM can be assessed on the basis of:

• accuracy of classification of events in the monitored area, where an event is a change of operating
state of a particular appliance,

• accuracy of reconstructing operating states of particular appliances in every observed moment
of time,

• accuracy of electricity consumption disaggregation expressed in physical quantity, e.g., in kWh, in
each considered observation interval.

The most common method of accuracy evaluation in the classification issue is the confusion
matrix. Confusion matrices afford the number of examples classified correctly and the number of
examples assigned to an inappropriate class. In the field of NIALM, class means usually the same
as appliance. Evaluation measures calculated from confusion matrices are: precision, recall, and
F-measure. A detailed introduction to these measures, used widely in data mining and machine
learning, is provided in Reference [44]. Application of a confusion matrix in NIALM issue was
proposed in Reference [6], while in Reference [45], a study of the classifier parameters adaptation to
NIALM-specific problems was provided. Depending on the processing algorithms used, evaluation
metrics may be applied to the overall system performance or to the individual processing steps.
Examples of evaluation metrics distinguishing event detection and classification are described in
Reference [46].

It should be noted that the introduced evaluation metrics apply to the classification of detected
events. The imperfection of them is that all consider only the moments of event occurrence, i.e.,
moments of operating state change. Under certain NIALM operating conditions, operating states
may change at large intervals, e.g., at night. In this case, more important for evaluation would be the
accuracy of reconstruction of the power of particular appliances in each observation interval, because
one of the main goals of NIALM research is to determine which devices consume the most energy.
Evaluation of NIALM by comparing the disaggregated energy consumption expressed in kWh to
the total energy consumption was proposed in Reference [23]. A comprehensive approach to quality
measures used in NIALM was presented in Reference [47].

Another issue is the preparation of testing data. NIALM methods are often tested initially when
appliances are turned on and off individually, and no appliance is operating in the background [34].
However, this is not a sufficient testing scheme. Testing data should be aggregate signals of power,
current, or voltage and current recorded during operation of tested appliances switched on/off in a
certain scenario. This scenario of switching on and off appliances is often referred to as a sequence.
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Scenarios should include a variety of appliances state change combinations. This ensures that the
considered method is evaluated in most possible operating conditions. Unfortunately, testing scenarios
have often been collected in houses or flats, where appliances were switched on/off randomly.
Moreover, appliances were often switched on/off when one or even zero appliances were operating in
the background. As an example, in Reference [48], the washing machine identification was performed
with high accuracy, but the figure presenting the testing sequence shows that only one appliance was
operating in the background.

The mentioned issues suggest that reliable evaluation of NIALM method is demanding. Moreover,
comparing different methods is more demanding. However, we have tried to determine groups of
appliances which may be classified with the use of particular NIALM methods.

A literature review has been carried out in order to identify groups of appliances that can be
classified in one area with the use of a given method. Due to the fundamental differences in the
architecture of systems using data with different sampling frequencies, the analysis was divided
into three groups: LF, MF, and HF. On the basis of the literature review, the methods used for load
disaggregation in relation to the types of devices have been presented. The results are collected in
Tables 2 and 3 (LF and MF accordingly), containing, on one hand, a set of appliances monitored
successfully in one area, and on the other hand, the methods used for load disaggregation listed as
references to source articles. If more than one testing set was used by the authors, it was marked with
consecutive letters in brackets "(a)" etc. No publication that would meet the criteria adopted during
the analysis was found within the HF group.

Table 2. Groups of appliances possible to classify properly using selected low-frequency (LF) methods.

Source Appliance [49]
(a)

[49]
(b) [21] [50]

(a)
[50]
(b)

[50]
(c) [15] [25]

(a)
[25]
(b)

[25]
(c)

[25]
(d)

[25]
(e) [51] [19] Our Study

[52]

Air conditioner + N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. + N.A. N.A. N.A. N.A. N.A.
Bath outlet N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. + N.A.
Bulb N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. +

Dishwasher N.A. + + N.A. + + + N.A. + N.A. + N.A. + N.A. N.A.
Dryer N.A. N.A. N.A. + + + N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Electronics N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. + N.A. N.A. N.A. N.A. N.A.
Fridge N.A. N.A. + N.A. + + N.A. + + + N.A. + + N.A. N.A.
Fan N.A. N.A. N.A. + N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Furnace + N.A. N.A. N.A. N.A. + + N.A. N.A. N.A. N.A. N.A. N.A. + N.A.
Freezer N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. + + N.A. N.A. N.A.
Heater N.A. N.A. N.A. + N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Iron N.A. N.A. N.A. N.A. N.A. N.A. + N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Kettle N.A. N.A. + N.A. N.A. N.A. N.A. N.A. N.A. N.A. + + N.A. N.A. +

Kitchen outlet N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. + + N.A. N.A. + N.A. N.A.
Lighting N.A. + N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A.
Microwave N.A. N.A. + N.A. + + N.A. + + + + + + + +

Oven N.A. N.A. N.A. N.A. + N.A. + N.A. N.A. N.A. N.A. N.A. + N.A. N.A.
Stove N.A. N.A. N.A. N.A. N.A. N.A. + N.A. + + N.A. N.A. N.A. N.A. N.A.
Washing Machine
(washer-dryer)

N.A. + N.A. N.A. N.A. N.A. + + N.A. N.A. + + + + N.A.

Number of + 2 3 4 3 5 5 6 3 5 6 5 5 6 4 3

Because the authors used different evaluation metrics, no percentage accuracy results are presented.
It was only specified for each appliance whether it was possible to classify the appliance using a given
method in the specific background according to authors’ conclusions. Therefore, for more information,
please see the source papers. A review of the literature covered about 100 sources. Only a few of them,
listed in the tables, contained evaluations of classification of particular appliances. The table legend is
as follows: "+" means that appliance was in the testing set and was classified properly. "N.A." means
that the particular appliance was not tested.

The presented results show there is a lack of universal methods able to recognize dozens of any
type of appliance, which is crucial in practical applications. Therefore, we still need further study in
the field of NIALM.
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7. Our Approach to Low-Frequency NIALM

In our first approach to NIALM systems, active power was measured with a frequency sampling
of 1 Hz using a Christ CLM 1000PP ELEKTRONIK power sensor. Power samples were processed using
hidden Markov models (HMM) adopted to NIALM, among others in References [19,20]. In our study,
additive and differential factorial HMMs and an approximate inference algorithm (AFAMAP—additive
factorial approximate MAP) were used. Cplexqp function from IBM ILOG CPLEX was used for
optimization. The architecture of the proposed NIALM is presented in Figure 12. We performed
experiments using many appliances. The results led to the following conclusions. Firstly, accurate
identification is possible when the nominal power of the tested appliance is high enough (>40 W).
Secondly, the difference in power draw of appliances must be noticeable. Examples of appliances
for which this method operates properly are: electric kettle, light bulb, and microwave. We have
recognized the following problems in the LF NIALM approach:

• low-power appliances, e.g., energy-saving light bulbs, were not recognized properly,
• the system was confused when two appliances with similar nominal power were tested,
• when variable power load was operating in the background, identification was inaccurate.
• appliances with variable power, e.g., washing machine, induced false event detection as the result

of rough current and power draw.

For the reasons presented, we decided to design a universal laboratory that would be able to
perform experiments with methods exploiting both current and voltage signals sampled with frequency
modifiable in wide range.

Table 3. Groups of appliances possible to classify properly using selected medium-frequency
(MF) methods.

Source Appliance [53] [48] [54] [55] Our Study
[56]

CFL (compact fluorescent lamp) N.A. N.A. + N.A. +

Charger + N.A. N.A. N.A. N.A.
Electronic N.A. + N.A. N.A. N.A.
Fan N.A. N.A. + + N.A.
Fluorescent light + N.A. N.A. N.A. N.A.
Furnace N.A. + N.A. N.A. N.A.
Hairdryer N.A. N.A. N.A. N.A. +

Heater N.A. N.A. + N.A. N.A.
Incandescent light + N.A. N.A. + +

Iron N.A. N.A. + N.A. +

Kettle N.A. N.A. N.A. + +

Kitchen outlet N.A. + N.A. N.A. N.A.
Laptop N.A. N.A. + N.A. N.A.
LED N.A. N.A. N.A. N.A. +

Microwave N.A. + N.A. N.A. N.A.
PC + N.A. N.A. + N.A.
Vacuum cleaner N.A. N.A. N.A. N.A. +

Washing Machine N.A. + N.A. N.A. N.A.

Number of + 4 5 5 4 7
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8. Architecture of the NIALM Laboratory

As a part of our research, the NIALM laboratory was created. The creation was a process that took
more than a year, and required a couple of different approaches, starting from the use of digital fault
recorders (DFR) normally utilized in high-voltage networks for recording of currents and voltages
appearing during various kinds of disturbances. At the beginning of our research, dual speed DFR
(BEN6000) was used. It allows recording of instantaneous values of current and voltage signals with
a sample rate up to 12 kHz. RMS values of currents, voltages, and their derivatives (active power,
reactive power, power factor etc.) were recorded with a speed of 50 samples per second. Numerous
tests performed led us to conclusion that there was a need for other types of recorders that would be
able to record samples with frequencies of tenths of kHz and few MHz simultaneously. Therefore, we
developed two recorders (NIALMREC), one (MF) with a sample rate up to a few hundred kHz, and
the second (HF) operating with frequencies up to 10 MHz. Both devices, based on PC, DAQ cards, and
the LabVIEW program, work according to our wishes. To have the possibility of performing tests in
many locations, we decided to set up a complete measuring system consisting of two recorders in one
movable 19 inch rack, equipped with many electrical sockets for plugging in household appliances.

Moreover, we also decided to have the same power supply environment and the same set of devices
for testing purposes. Because of mentioned reasons, we set up our laboratory in a dedicated room
located in Warsaw University of Technology, where the new supply circuits (electrical installation) were
made according to our requirements. For the purpose of this stationary laboratory, the second measuring
system, composed of two recorders (data acquisition hardware), was made and installed in a 19 inch
rack. As the result, the laboratory consisted of both demonstrator and measurement system functions
to verify the designed system model and automatic identification algorithms contained therein.

8.1. Electrical Installation

The architecture of the electrical installation is presented in Figure 13. Power supply in the form
of three phase voltages (3 × 230 V/400 V), N and PE was connected to socket Z1. The main differential
protection relay DI1 was then installed. One phase voltage (L1) was connected through switch S1 to
the main line, supplying 24 single phase sockets (S1 to S24) via 24 dedicated switches (SW1 to SW24).
Each Sx socket also had connections to N and PE. The current transducer model SCT-013-020 was used
as a current sensor (T7 to T30). In serial to each Sx socket, one current sensor Tx allowing individual
measurement of current was connected. In order to measure the summary currents in each phase, three
current sensors (T4 to T6)—current transducer model SCT-013-020—were connected in serial to the
main supply lines L1, L2, and L3. The MF measuring system could also measure three phase voltages
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using voltage sensors V31 to V33. The MF system also used a very flexible solution of measuring
the channel switching matrix (PP) utilizing an Ethernet network STP (shielded twisted pair) patch
panel, to which all voltages from the current sensors (signals: Is1, Is2, Is3, I1 to I24) and voltage sensors
(signals: U1, U2, U3) were connected in the form of F/UTP cables. In each of those cables, only one
twisted pair of wires (among four) was used to transfer the signal. The signals were then connected to
the desired channels (U0 to U15) of the middle-frequency data acquisition system (DAQ MF) using an
STP patch cord.

The HF measuring system consisted of dedicated current (T1, T2, T3) and voltage (HFV) sensors.
Sensors’ output voltage signals were connected by coaxial cables to the inputs of the high-frequency
data acquisition system (DAQ HF).
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8.2. Data Acquisition Hardware

One of the assumptions made while developing the laboratory was to provide the possibility of
testing methods based on medium-frequency (MF) and high-frequency (HF) measurements. For this
reason, the data acquisition was performed in two paths using two PCs class Intel i5. The computers
were equipped with fast SSDs for online data processing and large capacity HDDs for data storage.
One computer was equipped with a 16 bit Advantech PCIE-1816H card, sampling in 16 channels
up to 65 kS/s for MF measurements. In the second one, a 12 bit Advantech PCIE-1744AE card was
installed. This Advantech DAQ card allowed sampling with frequencies up to 10 MS/s on two
channels simultaneously, or up to 20 MS/s on a single channel for HF measurements. The NIALM
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high-frequency measurement setup equipped with a NIALM high-frequency sensor (NHFS) is
presented in Figure 14a. Following the measurement setup presented in Reference [39], a high-pass
filter (Figure 14b) was installed in the HF voltage measurement path to eliminate the fundamental
component of high-amplitude voltage when steady-state (SS) characteristics of appliances are extracted.
It should be noted that the PC case via the power outlet was connected to a protective conductor
(PE). Consequently, the acquisition card connector armor providing the measurement signal was also
connected to the protective conductor (Figure 14a). The result is that one of the branches of the filter
was always shorted. The cut-off filter frequency in this system was 25 kHz. The filter consisted of three
CR stages (Figure 14b). The values of elements were, accordingly: C1, C2, C3, C4, C5, C6 = 100 nF,
R1 = 90 Ω, R2 = 600 Ω, R3 = 1000 Ω. In order to ensure the safety of the measurement system,
high-voltage capacitors were used. For measurements of transient states (TS), the filter was removed.
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Figure 14. (a) Schematic diagram of the high-frequency voltage and current measurement setup; (b)
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8.3. Software Supporting Measurement Layer

Software supporting the acquisition cards was implemented in the LabVIEW environment.
The basic function of the software was to save to the file buffers all samples obtained during acquisition
from the current and voltage sensors. In the case of the MF card, it was possible to simultaneously
verify the identification algorithms based on the energy consumption calculated from the current
measurements for individual devices. The software included the following functions:

• Simultaneous acquisition of measurement data from at least two input channels configured to
measure voltage and current,

• Presenting the waveform of the signal from several channels (virtual oscilloscope),
• Presenting Fourier spectra of two measured signals,
• The ability to adjust FFT analysis parameters,
• Writing to files all observed samples of signals as well as calculated spectra.

The main window of the prepared software is presented in Figure 15.
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9. Medium-Frequency Characteristic Values

Using the prepared measurement setup, we were able to verify and develop the implemented
algorithms for data processing and identification in an environment similar to a real place in which a
NIALM system might be installed. In our NIALM system [Patent 1], presented in Figure 16, voltage
and current were recorded with frequency sampling of 2 kHz.
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Figure 16. The proposed NIALM architecture.

Appliance models were developed during the training stage, when devices are turned on
individually. Two waveforms representing 500 ms of current and voltage signals were processed to
obtain a vector of parameters constituting the pattern (label) of an appliance. For better characterization
of appliances, patterns were calculated one hundred times for each appliance. Therefore, the appliance
model consists of many patterns obtained in similar operating conditions. During the experiments,
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we observed that device models based only on current and power parameters did not describe
unambiguously electrical appliances, especially if the same power supply circuit supplied a number of
different appliances. If we exploit only the AC current to determine characteristics of a device, we
assume that the grid is an ideal voltage source, what is not truthful. Therefore, it was necessary to apply
a method for determining parameters of electrical equipment which were not the features of the current
flowing through it, because the current value depends on the supply voltage. Finally, we decided to
use the following pattern, consisting of 133 parameters calculated on the basis of measured voltage
and current signals (the brackets contain their numbers):

• Amplitudes of the first 16 harmonic components of the current (50 Hz, 100 Hz, etc.) (1–16),
• Phase shifts of the first 16 harmonic components of the current (17–32),
• Root mean square (RMS) of the current (33),
• Mean value of the current (34),
• Maximum current value (35),
• DC component in the current (36),
• Mean power (37),
• Values of the active power in the first 16 harmonics (38–53),
• Values of the reactive power in the first 16 harmonics (54–69),
• The first 16 harmonics of the real current components (70–85),
• The first 16 harmonics of the imaginary current components (86–101),
• The first 16 harmonics of conductances (102–117),
• The first 16 harmonics of susceptances (118–133).

Selected features of some appliances are presented in Figures 17 and 18. Some appliances, like the
hairdryer or vacuum cleaner, had unique harmonic content, allowing characteristic parameters to be
distinguished even visually, while appliances with similar power and impedance like the electric kettle
(2200 W) and iron (2200 W) differed slightly in the magnitude of the first current harmonic only (50 Hz).
Another interesting issue was the content of conductance harmonics. Presented in Figure 18b, the graph
for the incandescent lamp had approximately constant magnitudes of conductance harmonics because
resistance content in its impedance was dominant. What is worth emphasizing is that the LED bulb
had a visible increase in the conductance amplitude for higher harmonics, and, moreover, a negative
magnitude of the 450 Hz harmonic. This negative conductance indicates that at this frequency, the LED
bulb generates energy [Patent 2]. This indicator can be used also in recognizing appliances generating
higher harmonics, and hence worsening quality parameters of the power supply voltage and thus
electric energy quality.
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Figure 18. Conductance harmonics (102–117) of (a) LED bulb; (b) incandescent bulb.

Besides acquisition data for particular devices, we also recorded sequences of appliance operation.
Overall current and voltage signals during the operation of multiple appliances switched on and off in
different combinations imitated events in the real environment of system installation. Information
about device states at specific times were attached to waveforms. This allowed verification of the
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correct operation of the identification algorithms. Sequences lasted from 5 to 100 min. Figure 19
presents an example of such a sequence.
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10. Identification Results—MF Methods

The sets of recorded and processed data described above enabled us to perform a number
of experiments aimed at verifying the quality of prepared patterns. We tested several artificial
intelligence algorithms, adjusting their parameters in such a way as to obtain the best results for
appliance identification. Moreover, we prepared a complete online NIALM system able to perform
disaggregation automatically. Below, we briefly present the results of some experiments. In all
experiments, the same six two state devices were considered: power-saving lightbulb, dryer, vacuum
cleaner, mixer, juicer, and kettle. Table 4 lists the identification results for these experiments.

In experiments A and B, because of the feature additive criterion described in Reference [46],
among others, non-additive features designed previously were removed from the set of features used
for algorithm testing. Experiments C and D were performed to adjust the optimal parameters of
Random Forest and Rule Induction algorithms [57]. Results listed in [ 4 were reached when Random
Forest was trained with 13 trees, while optimal training configuration for the Rule Induction algorithm
was obtained for α = 10 and β = 0.05. The number of rules was equal to 21. Because there was
no knowledge about parameter significance for the device identification, in experiment E, feature
selection methods limiting the number of parameters to important ones only were applied. Therefore,
two algorithms were exploited: one for reducing the set of features and the second for verifying the
reduction efficiency. The classification accuracy was expected to be the same for both cases, but with
a shorter training time for the second set. The applied Decision Tree classifier achieved an accuracy
of 92.57% for the optimal set of features. In experiment F, a fusion of three classification algorithms
was implemented. Fusion of three classifiers (Decision Tree, Rules Induction, and Random Forest)
minimized the threat of the decision uncertainty when outcomes of the subsequent modules were
equally distributed among different appliance identifiers. The overall ensemble achieved an overall
accuracy of 92.96%.
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Table 4. Overall identification accuracy for several algorithms.

Experiment Identification Algorithm Number of Events Applied Features Identification Accuracy

A kNN 128 34, 36–133 85.69%
B Random Forest 128 34, 36–133 85.69%
C Rule Induction 84 1–69 65.47%
D Random Forest 84 1–69 87.69%

E Decision Tree 175
34, 36–39, 46, 49, 55,
56, 60, 70, 71, 74, 77,
79, 80, 87, 88, 92, 94

92.57%

F Ensemble (DT, RI, RF) 128 1–69 92.96%

11. High-Frequency Experiments

The genesis of our experiments was the research presented in Reference [39]. The aim of the
experiments was to record high-frequency components of a voltage signal, which are probably not the
harmonics of the 50 Hz power supply network frequency, but electromagnetic inference generated by
electrical appliances. We repeated the experiment carried out by American team using the measurement
method proposed in their paper [39]. Although the fundamental harmonic of the voltage signal was
filtered by analog high-pass filter, we were not able to perceive high-frequency voltage components
characteristic for every tested appliance. We observed distinctive amplitudes at some frequencies
only during operation of a few devices (e.g., an old type of LCD monitor). Components of all other
devices were invisible because of high level of the high-frequency signals in the background. Therefore,
we modified the measurement setup by introducing inductance into the electricity transmission line
in order to separate interferences generated by other appliances powered by the same low-voltage
grid. Houses in USA are powered from a single transformer, while, in a European low-voltage grid,
one transformer supplies appliances in several houses, flats etc. Modification of measurement setup
decreased the level of emissions in the background, enabling us to observe differences in the spectra
obtained for different devices. Signals were processed using Wavelet Transform. An example of the
obtained results is presented in Figure 20.
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The conclusion drawn from the performed experiments was that high-frequency electromagnetic
inferences generated by appliances may contain components characteristic for some appliances.
Unfortunately, in a European power grid, it was impossible to observe them because of the high
level of emissions in the background. Therefore, we conclude that the actual challenge is to detect
and identify operation of low-power appliances like energy-saving lamps, LEDs, or switched-mode
power suppliers.

Due to the limited volume of the article, we were not able to include the results of further
experiments based on high-frequency signals recorded during electrical appliance operation.
We developed methods of signal processing allowing different types of appliances to be distinguished
using both SS high-frequency components [Patent 3] and TS high-frequency components [Patent 4] of
voltage or current signals. Acquisition and processing of signals during appliance switching on allows
precise characterization of some appliances, because the amplitudes of transient signals are significant.
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However, steady states may be also a source of high-frequency features characterizing appliances,
provided that the time of occurrence of the high-frequency oscillation is not lost. In both cases, it is
necessary to perform signal analysis at a particular moment of time. That enforces the application of
methods other than the previously applied time–frequency analysis. The introduced topic, along with
a description of the measurement method and examples of our analysis results, will be presented in
our next article.

12. Conclusions

The NIALM system may be an important instrument allowing improvement of effective use of
energy by particular consumers. The NIALM system solutions proposed so far do not allow all types
of devices to be identified in all operating conditions. In particular, there is a lack of experimental
results in which the accuracy of particular appliances was evaluated. In our research, a multilateral
approach [56] analyzing data obtained using various measurement setups was applied. We prepared a
comprehensive NIALM laboratory adapted to perform various experiments. Tests based on a set of over
100 features and many methods of artificial intelligence were conducted. We achieved identification
results similar to those presented by other authors. The performed experiments showed that the use of
frequency analysis of EMI interference in appliance identification devices cannot be implemented in
the European power grid.

We also analyzed high-frequency signals that appear in both steady and in transient states.
The methods of time–frequency analysis that we will present in the next paper will show new features
of devices that can be used to characterize electrical appliances. We have developed a method that
uses high-frequency waveforms caused by introducing an artificial energy receiver for a short time
period, in order to cause disturbance and measure the system’s response to this disturbance. On the
basis of this response, we can specify which appliance was currently switched on.
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