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Abstract: In order to cut down influence on the uncertainty disturbances of a linear motion single
axis robot machine, such as the external load force, the cogging force, the column friction force,
the Stribeck force, and the parameters variations, the micrometer backstepping control system, using
an amended recurrent Gottlieb polynomials neural network and altered ant colony optimization
(AACO) with the compensated controller, is put forward for a linear motion single axis robot machine
drive system mounted on the linear-optical ruler with 1 um resolution. To achieve high-precision
control performance, an adaptive law of the amended recurrent Gottlieb polynomials neural network
based on the Lyapunov function is proposed to estimate the lumped uncertainty. Besides this, a novel
error-estimated law of the compensated controller is also proposed to compensate for the estimated
error between the lumped uncertainty and the amended recurrent Gottlieb polynomials neural
network with the adaptive law. Meanwhile, the AACO is used to regulate two variable learning
rates in the weights of the amended recurrent Gottlieb polynomials neural network to speed up
the convergent speed. The main contributions of this paper are: (1) The digital signal processor
(DSP)-based current-regulation pulse width modulation (PWM) control scheme being successfully
applied to control the linear motion single axis robot machine drive system; (2) the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network
with the compensated controller being successfully derived according to the Lyapunov function to
diminish the lumped uncertainty effect; (3) achieving high-precision control performance, where an
adaptive law of the amended recurrent Gottlieb polynomials neural network based on the Lyapunov
function is successfully applied to estimate the lumped uncertainty; (4) a novel error-estimated
law of the compensated controller being successfully used to compensate for the estimated error;
and (5) the AACO being successfully used to regulate two variable learning rates in the weights of the
amended recurrent Gottlieb polynomials neural network to speed up the convergent speed. Finally,
the effectiveness of the proposed control scheme is also verified by the experimental results.

Keywords: ant colony optimization; backstepping control; Gottlieb polynomials neural network;
Lyapunov function; linear motion single axis robot machine

1. Introduction

A linear motion single axis robot machine that can achieve rapid rates of acceleration by use of
electromagnetic force has few features which are of merit [1–3], such as being simple fabric, having
no adverse reaction, little friction, elated velocity, elated pushed force, and elated precision in a
long-distance location and so on. A linear motion single axis robot machine consists of some of magnets
that create constant magnetic fields, and some windings that create the traveling magnetic fields.
A number of applications of the linear motion single axis robot machine include checking the camera
moving unit, ink jet printer, chip mounter, checking the device, a high-speed screw-tightening unit,
a high-speed loading/unloading robot, and material handling systems [1–3].
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One of the control methods for the large state feedback linearizable systems include the
backstepping techniques [3–5]. The design of tracking and adjustment strategies can provide a
systematic skeleton. Moreover, to extend to the estimation of unknown parameters of the system,
the adaptive backstepping methods [6,7] were put forward to estimate some unknown parameters
of the system. Furthermore, some adaptive backstepping controllers were used for some linear
machines [8,9] to estimate uncertainty. In addition, some neural networks [10–12] have been used
for the nonlinear systems to estimate unknown parameters for uncertainty. Therefore, the adaptive
backstepping controllers, combined with some neural networks [13–15] are generally applied to control
the nonlinear systems so as to estimate some uncertainties and enhance system robustness. However,
these methods are only limited to the bounded region, and have never showed any compensated
mechanics or technology. Thus, the motivation of the proposed micrometer backstepping control
system, by means of the amended recurrent Gottlieb polynomials neural network and AACO with
the compensated controller for a linear motion single axis robot machine mounted with a linear
optical-ruler sensor with 1 um precision and three Hall sensors, provides an estimated method and
error compensation mechanism which can be used to enhance the robustness of the system under
parameter variations and external force disturbances to raise the control precision.

Due to lesser computational complexity and faster convergent speed, the polynomials-function
neural networks [16,17] have recently been proposed to reduce computational costs, while some parts
of the polynomials-function neural networks were used to estimate some unknown parameters or
the lumped uncertainty. Owing to uncertain actions, the control performance of the linear motion
single axis robot machine drive can have a serious influence. The micrometer backstepping control
system using an amended recurrent Gottlieb polynomials neural network [18–20] and altered ant
colony optimization (AACO) [21,22] with the compensated controller has thus been put forward to
control the motion position of the linear motion single axis robot machine to track periodic references.

This paper presents the micrometer backstepping control system using an amended recurrent
Gottlieb polynomials neural network and AACO with the compensated controller, which has an error
estimated law with an adaptive law, to control the linear motion single axis robot machine drive system
so as to enhance the robustness of the system under the parameter variations and the external load force
disturbances. The amended recurrent Gottlieb polynomials neural network with an adaptive law is too
proposed to adapt the value of the lumped uncertainty. Besides, the compensated controller with an
adaptive law by use of the novel error estimated law is also proposed to compensate for the estimated
error between the lumped uncertainty and the amended recurrent Gottlieb polynomials neural network.
Moreover, the AACO is used to regulate two variable learning rates in the weights of the amended
recurrent Gottlieb polynomials neural network to speed up the convergent speed. The important
contributions of this paper are: (1) The digital signal processor (DSP)-based current-regulation pulse
width modulation (PWM) control scheme being successfully applied to control the linear motion
single axis robot machine drive system; (2) the micrometer backstepping control system using an
amended recurrent Gottlieb polynomials neural network with the compensated controller being
successfully derived according to the Lyapunov function to diminish the lumped uncertainty effect;
(3) achieving high-precision control performance, where an adaptive law of the amended recurrent
Gottlieb polynomials neural network based on the Lyapunov function is successfully applied to
estimate the lumped uncertainty; (4) a novel error-estimated law of the compensated controller being
successfully used to compensate for the estimated error; and (5) the AACO being successfully used to
regulate two variable learning rates in the weights of the amended recurrent Gottlieb polynomials
neural network to speed up the convergent speed. Finally, the effectiveness of the proposed control
scheme is also verified by the experimental results.
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2. Materials and Methods

2.1. Model of Linear Motion Single Axis Robot Machine

The d-q axis model of the linear motion single axis robot machine by use of a synchronous rotating
reference frame can be described as follows [3]:

vqs = R1siqs + Lqsdiqs/dt +ωes(Ldsids + λpms) (1)

vds = R1sids + Ldsdids/dt−ωesLqsiqs (2)

where vds , vqs are the d-axis and q-axis voltages; ids, iqs are the d-axis and q-axis currents; R1s is the
phase winding resistance; Lds , Lqs are the d-axis and q-axis inductances; ωes = Ps ωrs is the electrical
angular velocity; ωrs is the angular velocity of the mover; and λpms is the permanent magnet flux
linkage. Besides,

ωrs = πvrs/δ (3)

ve = Ps vrs = 2δ fes (4)

where Ps is the number of pole pairs; vr is the linear velocity; δ is the pole pitch; ve is the electrical
linear velocity; and fes is the electrical frequency. The electromagnet-pushed force [3] is given by

Fe = 3πPs[λpmsiqs + (Lds − Lqs) idsiqs]/2δ (5)

Then, the electromagnetic-pushed power [1–3] is given by

Pe = Feve = 3Ps[λpmsiqs + (Lds − Lqs) idsiqs]ωes/2 (6)

and the dynamic equation of the mover in the linear motion single axis robot machine drive system is
given by

Msdvr/dt + Dsvr = Fe − Fl − Fr − F f − Fc (7)

where Fe is the electromagnet-pushed force; Ms is the total mass of the moving element system; Ds

is the viscous friction; Fl is the external load-pushed force which satisfies the condition |Fl| ≤ mp;
Fr = kasign(vr) is the Stribeck effect force; F f = kbsign(vr) is the coulomb friction force; and Fc is the
cogging force from the slotting and the finite length of the iron-cored stator.

2.2. Drive System of Linear Motion Single Axis Robot Machine

The linear motion single axis robot machine is made up of a linear motor and a linear slider.
A linear motor-driven linear slider module is equipped with a stainless-steel cover strip to prevent
particles from entering or exiting. The basic control approach of the linear motion single axis robot
machine drive system adopted the field orientation [1–3]. For the field-oriented control, the rotor
flux is produced by the d-axis only, while the current vector is generated by the q-axis. When ids is
equal to zero and the flux linkage λpms is a fixed value, then the electromagnet-pushed force Fe is
proportional to i∗qs from (5) and (6). The electromagnetic force is linearly proportional to the q-axis
current when the d-axis flux is constant in (5), where the maximum force per ampere can be achieved.
The electromagnet-pushed force equation from (5) can be rewritten by [3],

Fe = 3πPsλpmsiqs/(2δ) = K f i∗qs (8)

where K f = 3πPsλpm/(2δ) is the electromagnetic-pushed force coefficient, and i∗qs is the command of
the electromagnetic-pushed force current. The makeup of a field-oriented linear motion single axis robot
machine drive system is shown in Figure 1. The linear motion single axis robot machine drive system
incorporates a linear motion single axis robot machine, a ramp comparison current-controlled pulse
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width modulation (PWM) voltage source inverter (VSI), a field-orientation mechanism, a coordinate
translator, a speed control loop, a position control loop, a linear-optical ruler, and three Hall
sensors [3]. The detection of the motion position was used by a linear-optical ruler with 1 um
resolution. The detection of the permanent magnet (PM) position was used by three Hall sensors
with three signals as U, V, and W. The output signals of three Hall sensors, which consist of the Hall
elements and the associated electronics elements, are the rectangular analog signals [3]. Some different
sizes of iron disks were used to change the mass of the mover and viscous friction of the motion mover
of the linear motion single axis robot machine.
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Figure 1. Makeup of linear motion single axis robot machine and drive system.

The digital signal processor (DSP) control system by TMS32C32 chip was used to execute
the field-oriented control. With the implementation of field-oriented control [1–3], the simplified
block diagram of the linear motion single axis robot machine drive system is shown in Figure 2.
The specifications of the linear motion single axis robot machine are given as 220 V, 3.1 A, 0.6 kW,
50.8 N, with 0.1 m distance, 0.02 m width. For the convenience of the controller design, the speed
and position signals were set at 1 V = 200 µm/s and 1 V = 200 µm. The electrical parameters of the
linear motor of the linear motion single axis robot machine are given as Ms = 2.1 kg = 0.1812 N · s/V,
Ds = 81.62 kg/s = 5.021 N/V, K f = 32.2 N/A.
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Figure 2. Simplified block diagram of linear motion single axis robot machine drive system.

2.3. Micrometer Backstepping Control System Using an Amended Recurrent Gottlieb Polynomials Neural
Network and AACO with the Compensated Controller

By using (7) and (8), the dynamic equation for the linear motion single axis robot machine drive,
including the external load force, the cogging force, the column friction force, the Stribeck effect force,
and the parameters’ variations can be represented as:

.
xr = hrxr + lrUA + ∆hrxr + ∆lrUA + nr(Fl + Fr + F f + Fc) = hrxr + lrUA + fu (9)

where ar is the motion position of the linear motion single axis robot machine,
.
ar = vr = xr is the

motion velocity of the linear motion single axis robot machine, and hr = −Ds/Ms, lr = K f /Ms > 0
and nr = −1/Ms are three real numbers. fu = ∆hrxr + ∆lrUA + nr(Fl + Fr + F f + Fc) is the lumped
uncertainty that includes the external load force, the cogging force, the column friction force, the Stribeck
effect force, and the parameters’ variations. UA = i∗qs is the control intensity of the linear motion single
axis robot machine drive system—that is, the command of electromagnetic-pushed force current.

The tracking error of the motion position is defined by:

q1 = am − ar = zd − z (10)

Differential (10) is:
.
q1 =

.
zd −

.
z =

.
am −

.
ar =

.
zd − xr (11)

The stabilizing function is defined by:

γ1 = m1q1 +
.
zd + m2ν (12)

where m1 and m2 are two real numbers greater than zero, and ν =
∫

q1(τ)dτ is the integral function [3].
The virtual tracking error of motion position is defined by

q2 = xr − γ1 (13)

By use of (9) and (13), the differential of (13) is given by

.
q2 =

.
xr −

.
γ1= (hrxr + lrUA + fu) −

.
γ1 = hr(q2 + γ1) + lrUA + fu −

.
γ1 (14)

The control objective is to track the reference trajectory am = zd(t) asymptotically. In advance for
practical applications, the lumped uncertainty fu is difficult to know. Because the lumped uncertainty
fu is difficult to measure in practical applications, and the upper bound f u > fu is difficult to know,
an amended recurrent Gottlieb polynomials neural network uncertainty observer has been proposed
to adapt the value of the lumped uncertainty, fu. In consequence, the micrometer backstepping
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control system using an amended recurrent Gottlieb polynomials neural network and AACO with the
compensated controller, which is shown in Figure 3, is proposed for tracking of the reference trajectory
am = zd(t) under the lumped uncertainty fu, assuming that zd(t),

.
zd(t), and

..
zd(t) are all bounded

functions. Additionally, the estimation of the rehabilitated error Q is compensated for by the controller
with an adaptive law to compensate for the observed error that is based on the Lyapunov function to
further guarantee the stable characteristic of the whole control system. Furthermore, in order to train
the amended recurrent Gottlieb polynomials neural network effectively, an online parameter training
methodology and the updated law was derived by means of the Lyapunov stability theorem and the
gradient descent method. In order to raise convergent speed, the AACO was used to regulate two
variable learning rates in the weights of the amended recurrent Gottlieb polynomials neural network.
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Figure 3. Micrometer backstepping control system using an amended recurrent Gottlieb polynomials
neural network and altered ant colony optimization with the compensated controller.

The makeup of the proposed three-layer amended recurrent Gottlieb polynomials neural network,
which is made up of the input layer, the hidden layer, and the output layer, is shown in Figure 4.

All signal actions in every node of the three layers can be described as follows:

dn1
i (N) =

∏
k

h1
i (N)z1

ik h3
k(N − 1),h1

i (N) = dn1
i (N), i = 1, 2 (15)

dn 2
j (N) =

2∑
i=1

h1
i (N) + ρh2

j (N − 1), h2
j (N) = GL j(dn2

j (N),λ), j = 0, 1, 2, · · · , (m− 1) (16)

dn3
k (N) =

m−1∑
j=0

z2
kj h2

j (N),h3
k(N) = dn3

k(N), k = 1 (17)

where N denotes the number of iterations.
∏

and Σ are the multiplication operator and the summation
operator, respectively. c1

1 = q1 and c1
2 = q1(1− z−1) = ∆q1 are the tracking error and the tracking error
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increment, respectively. z1
ik and z2

kj are the recurrent weight from the output layer to the input layer

and the connective weight from the hidden layer to the output layer, respectively. h1
i , h2

j , and h3
k are

the output value from the input layer, the output value from the hidden layer, and the output value
from the output layer, respectively. ρ is the self-feedback gain of the hidden layer. For the Gottlieb
polynomials [18–20], GLn(x,λ) is the argument of the polynomials with −1 < x < 1, and n is the order
of expansion. The zero-, first-, and second-order Gottlieb polynomials are given by GL0(x,λ) = 1,
GL1(x,λ) = −0.5e−2λ(−1 − x + xeλ), and GL2(x,λ) = −0.5e−2λ(−2 − 3x + 2xeλ − x2 + 2x2eλ − e2λx2

+

e2λx), respectively. The higher-order Gottlieb polynomials may be generated by Gottlieb [18–20].
Two activation functions h1

i and h3
k were adopted in the linear functions.
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Figure 4. Makeup of the three-layer amended recurrent Gottlieb polynomials neural network.

The output value h3
k(N) of the amended recurrent Gottlieb polynomials neural network can be

denoted by:
h3

k(N) = f̂u(ψ) = ψTo (18)

where ψ =
[
z2

10 z2
11 · · · · · · z2

1,m−1

]T
is the collections of the adjustable parameters of the amended

recurrent Gottlieb polynomials neural network, and c3
j (N) = h2

j (N) represents the jth input to the node

of the output layer, and o =
[
c3

0 c3
1 · · · · · · c3

m−1

]T
, in which h2

j is determined by the selected Gottlieb

polynomials and −1 ≤ h2
j ≤ 1.

The minimum rehabilitated error is defined by:

Q = fu − f̂u(ψ∗) = fu − (ψ∗)
To (19)

where Q is the minimum rehabilitated error, and the absolute value of Q is less than a small positive
constant σ. That is, |Q| ≤ σ; ψ∗ is the best weight vector that can achieve the minimum rehabilitated
error. To develop the adaptive law of the amended recurrent Gottlieb polynomials neural network and
error-estimated law, the Lyapunov function is given by

gb = 0.5q2
1 + 0.5q2

2 + 0.5m2ν
2 + 0.5σ̃2/χ+ 0.5(ψ−ψ∗)T(ψ−ψ∗)/η1 (20)

where χ and η1 are positive real numbers. Define the estimated error by

σ̃ = σ̂− σ (21)
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where σ̂ is the estimation value of σ. By use of (11), (12), (13), (14), and ν =
∫

q1(τ)dτ, the derivative of
the (20) can be written by

.
gb = q1

.
q1 + q2

.
q2 + m2ν

.
ν+

σ̃
.
σ̃
χ

+
(ψ−ψ∗)T .

ψ

η1

= q1(−γ1 −m1q1 −m2ν− q2 + γ1) + q2[(hr(q2 + α1) + lrUA + fu) −
.
γ1] + m2ν

.
ν+

σ̃
.
σ̃
χ

+
(ψ−ψ∗)T .

ψ

η1

= q1(−m1q1 − q2) + q2[(hr(q2 + γ1) + lrUA + fu) −
.
γ1] +

σ̃
.
σ̃
χ

+
(ψ−ψ∗)T .

ψ

η1

(22)

Then, from (22), the control strength UA of the micrometer backstepping control using the amended
recurrent Gottlieb polynomials neural network and AACO with the compensated controller is
designed by

UA = l−1
r [q1 −m2q2 − hr(q2 + γ1) − f̂u(ψ) −Uc +

.
γ1] (23)

Substituting (23) into (22), the following equation can be obtained by

.
gb = −m1q1

2
−m2q2

2 + q2( fu − f̂u(ψ) −Uc) +
σ̃

.
σ̃
χ

+
(ψ−ψ∗)T .

ψ

η1

= −m1q1
2
−m2q2

2 + q2( fu − f̂u(ψ∗)) − q2( f̂u(ψ) − f̂u(ψ∗)) − q2Uc +
σ̃

.
σ̃
χ

+
(ψ−ψ∗)T .

ψ

η1

= −m1q1
2
−m2q2

2 + q2Q− q2(ψ−ψ
∗)To− q2Uc +

σ̃
.
σ̃
χ

+
(ψ−ψ∗)T .

ψ

η1

(24)

In order to make
.
gb ≤ 0, the adaptive law for

.
ψ, the compensated controller Uc with error-estimated

laws, and the adaptive law of the estimated error
.
σ̂ are designed as:

.
ψ = η1 q2 o (25)

Uc = σ̂sgn(q2) (26)
.
σ̂ =

.
σ̃ = χ

∣∣∣q2
∣∣∣ (27)

Substitute (21), (25), (26), and (27) into (24). Then, (24) can be rewritten by

.
gb = −m1q1

2
−m2q2

2 + q2Q− q2(ψ−ψ
∗)To− q2σ̂sgn(q2) +

(σ̂−σ)χ|q2|
χ +

(ψ−ψ∗)Tη1 q2 o
η1

= −m1q1
2
−m2q2

2 + q2Q−
∣∣∣q2

∣∣∣σ̂+ (σ̂− σ)
∣∣∣q2

∣∣∣
= −m1q1

2
−m2q2

2 + q2Q− σ
∣∣∣q2

∣∣∣
≤ −m1q1

2
−m2q2

2 +
∣∣∣q2

∣∣∣(|Q| − σ)
≤ −m1q1

2
−m2q2

2
≤ 0

(28)

Define the following term:
τ(t) = m1q2

1 + m2 q2
2 ≤ −

.
h2 (29)

Then, ∫ t

0
τ(τ) dτ ≤ h2(q1(0), q2(0)) − h2(q1(t), q2(t)) (30)

Because h1(q1(t), q2(t)) is nonincreasing and bounded, and h1(q1(0), q2(0)) is bounded, then
.
τ(t) is bounded and τ(t) is uniformly continuous [23,24]; thus, lim

t→∞
τ(t) = 0 and lim

t→∞

∫ t
0 τ(τ) dτ < ∞

by using Barbalat’s lemma [23,24]. Moreover, q1 and q2 will converge to zero as t→∞ ; then ar will
converge to am and vr will converge to

.
zd as t→∞ . In consequence, the stability of the micrometer
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backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO with the compensated controller can be guaranteed. Additionally, to improve the discontinuous
effect of the compensated controller, a smooth approximation of the sign function for k > 0 can be
represented by

sgn(q2) ≈
(ekq2 − e−kq2)

(ekq2 + e−kq2)
(31)

A cost function that describes the online training algorithm of the amended recurrent Gottlieb
polynomials neural network is defined by [25,26]:

w1 = q2
2/2 (32)

By exploiting the gradient descent method, the adaptive law of the connective weight is given by

.
z2

kj = η1 q2o ∆ − η1
∂w1

∂h3
k

∂ h3
k

∂ z2
kj

= −η1
∂w1

∂h3
k

h2
j (33)

The above Jacobian term of the controlled system can be rewritten as∂w1/∂ h3
k = −q2. The recurrent

weight z1
ik from the Jacobian term of the controlled system is given by

.
z1

ik = −η2
∂w1

∂ z1
ik

= −η2
∂w1

∂ h3
k

∂h3
k

∂ h2
j

∂ h2
j

∂ h1
i

∂h1
i

∂ z1
ik

= η2 q2z2
kjGL j(·)r1

i (N)h3
k(N − 1) (34)

To improve convergence, the altered ant colony optimization (AACO) is proposed for adjusting
two learning rates to obtain two optimal learning rates of the weights in the amended recurrent
Gottlieb polynomials neural network. In the basic ant colony optimization (ACO) algorithm [21,22],
the pheromone updated values and the probabilistic choice of solution are two important parameters.
In the pheromone updated values, the evaporation rate and the length of the best tour are two important
factors. In order to improve the pheromone updated rule, the AACO algorithm is proposed and works
as follows.

First, the probabilistic choice of answer [21,22] is defined by:

b(di j
∣∣∣bs ) =

(ηi j)
γ(υi j)

ς

[
∑

di j∈U(bs)
(ηil)

γ(υil)
ς]

, ∀di j ∈ U(bs) (35)

where U(bs) is the available neighborship that is designated the present fractional answer, bs; υi j is
the heuristic magnitude regarding the part di j; ηi j is the pheromone magnitude regarding the part di j;
γ can determine magnitude of the pheromone message that belongs to the real number parameter
with greater than zero. ς can determine the magnitude of the heuristic message that belongs to a real
number parameter greater than zero. The ants put in the answer regarding part di j to their fractional
answer bs by shifting from zenith i to zenith j, then the ants could attain their ending zenith and finish
their entrant answers. The pheromones are preliminarily equal to all zeniths, and design a small
magnitude greater than zero. In each tentative, all ants establish their answers until they have either
attained the target situation, or the trial outrides some pre-determined limits. Secondly, the renewed
rule of the pheromone is as below:

ηm,i j(N + 1) = (1−φm)ηm,i j(N) + φm

M∑
k=1

∆ηm, k, best, i j, m = 1, 2∀di j ∈ U(bs) ∈ Str (36)

where Str is the set of total contender answers originated in the tentative. φm ∈ (0, 1], m = 1, 2 is the
evaporation rate in connection with the pheromone magnitude ηm,i j, m = 1, 2 regarding the learning
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rate ηm(t), m = 1, 2. The magnitude of ∆ηm, k, best, i j, m = 1, 2 responds to the number of pheromones
in the ant k retained on the zeniths that the ant k has inquired. Thirdly, the variation magnitude is
denoted as below:

∆ηm, k, best, i j =
1√

[hm,k − (1− cm)]cm
−

1√
[hm,max − (1− cm)]cm

, m = 1, 2 (37)

where hm,k, m = 1, 2 is the step count at the ant k needed to attain the target situation; cm, m = 1, 2
is the sampling time using seconds; and hm,max, m = 1, 2 is the maximum value of steps affirmed by
a tentative. The magnitude of (1− cm), m = 1, 2 is available for making the number of pheromones
deposit to be closed equal to 1/cm, m = 1, 2 when the ant attains the target in exactly one step.
The second term in (37) confirms that the pheromones are not renewed when the tentative is ended at
the maximum value of time steps and the ant has not yet attained the target. It makes sure that the
whole number of pheromones deposited is maximized if all ants search for the shortest route.

In a word, based on two adaptive laws, (33) and (34), for the connective weight adjustment and
the recurrent weight adjustment with two optimal learning rates η∗m(t), m = 1, 2, the online tuning
algorithms of the amended recurrent Gottlieb polynomials neural network are derived. Moreover,
the weight estimation errors of the amended recurrent Gottlieb polynomials neural network are
fundamentally bounded [27]. The weight estimation errors of the amended recurrent Gottlieb
polynomials neural network are bounded, which are required to ensure that the control signal
is bounded.

Remark 1. The key point of the proposed design is to utilize the Lyapunov function for constructing the novel
micrometer backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO with the compensated controller in (23), which reduces the input dimensions of the amended recurrent
Gottlieb polynomials neural network controller.

Remark 2. The amended recurrent Gottlieb polynomials neural network approximation holds only in a compact
set. Thus, the obtained result is semi-global, in the sense that they hold for the compact sets, and there exists a
controller with a sufficiently large number of amended recurrent Gottlieb polynomials neural network nodes,
such that all the closed-loop signals are bounded.

3. Results

The block diagram of the linear motion single axis robot machine drive system by use of the DSP
control system is presented in Figure 1. An experimental set-up picture of the linear motion single axis
robot machine drive system is shown in Figure 5.

To demonstrate the control performance of the proposed control systems, two cases are provided
in the experimentation here. One is the rated case that does not add any load weight onto the mover,
and the other is the parametric variation case, which adds the load weight with a 6.3 kg iron disk
onto the mover (i.e., it adds to the mover mass with about three times the rated case). The control
objective was to drive the mover to move 200 µm, periodically. The experimental results by means of
the micrometer backstepping control system using a switching function with an upper bound, which
is shown in Figure 6, under the periodic step command and the sinusoidal command in the rated case
and the parametric variation case are shown in Figures 7 and 8, respectively. The motion responses
of the mover in the rated and parametric variation cases are shown in Figure 7a,c, and Figure 8a,c;
the associated control intensities are shown in Figure 7b,d and Figure 8b,d, respectively. Though
fine0tracking responses can be obtained by means of the micrometer backstepping control system
using the switching function with an upper bound, the oscillation in the control intensity of the linear
motion single axis robot machine drive system are bigger due to a large control gain and upper bound.
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Figure 6. Micrometer backstepping control system using switching function with upper bound.

The parameters of the micrometer backstepping control system using an amended recurrent
Gottlieb polynomials neural network and AACO with the compensated controller are given as m1 = 9,
m2 = 4, ρ = 0.1, χ = 0.2. The sampling interval of the control processing in the experimentation was
set at 1 msec. Furthermore, to show the effectiveness of the control system with a small number of
neurons, the used amended recurrent Gottlieb polynomials neural network had 2, 4, and 1 neurons
in the input layer, the hidden layer, and the output layer, respectively. The parameter adjustment
process remained continually active for the duration of the experimentation. The experimental results
of the micrometer backstepping control system using an amended recurrent Gottlieb polynomials
neural network and AACO with the compensated controller under the periodic step command and the
periodic sinusoidal command in the rated case and the parametric variation case are shown in Figures 9
and 10. The position responses of the mover in the rated case and the parametric variation case are
shown in Figure 9a,c and Figure 10a,c; the associated control intensities are shown in Figure 9b,d and
Figure 10b,d. However, the robust control performances of the micrometer backstepping control system
using an amended recurrent Gottlieb polynomials neural network and AACO with the compensated
controller under the occurrence of parametric variations for two kinds of different trajectories are in
evidence due to the online adaptive adjustment of the amended recurrent Gottlieb polynomials neural
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network. From the experimental results, the control performances of the micrometer backstepping
control system using an amended recurrent Gottlieb polynomials neural network and AACO with
the compensated controller are fine for the tracking of two periodic commands than the micrometer
backstepping control system using the switching function with an upper bound.
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Figure 7. Experimental results of the micrometer backstepping control system using the switching
function with an upper bound for the periodic step command: (a) mover position in the rated case;
(b) control intensity in the rated case; (c) mover position in the parametric variation case; (d) control
intensity in the parametric variation case.
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Figure 8. Experimental results of the micrometer backstepping control system using the switching
function with an upper bound for the periodic sinusoid command: (a) mover position in the rated case;
(b) control intensity in the rated case; (c) mover position in the parametric variation case; (d) control
intensity in the parametric variation case.
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Figure 9. Experimental results of the micrometer backstepping control system using an amended
recurrent Gottlieb polynomials neural network and altered ant colony optimization (AACO) with the
compensated controller for the periodic step command: (a) mover position in the rated case; (b) control
intensity in the rated case; (c) mover position in the parametric variation case; (d) control intensity in
the parametric variation case.
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Figure 10. Experimental results of the micrometer backstepping control system using an amended
recurrent Gottlieb polynomials neural network and AACO with the compensated controller for the
periodic sinusoid command: (a) mover position in the rated case; (b) control intensity in the rated case;
(c) mover position in the parametric variation case; (d) control intensity in the parametric variation case.
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Finally, the experimental result of the measured mover position response under step force
disturbance with adding load fL = 2 N in the 200 µm is shown in Figure 11 in regard to the micrometer
backstepping control system using the switching function with upper bound and the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO. Experimental results of measured mover position response for the micrometer backstepping
control system using the switching function with an upper bound under step force disturbance
with adding load fL = 2 N in the 200 µm is shown in Figure 11a. The experimental result of the
measured mover position response for the micrometer backstepping control system using an amended
recurrent Gottlieb polynomials neural network and AACO with the compensated controller under
step force disturbance with adding load fL = 2 N in the 200 µm is shown in Figure 11b. From these
experimental results, the transient response of the micrometer backstepping control system using an
amended recurrent Gottlieb polynomials neural network and AACO with the compensated controller
is better than the micrometer backstepping control system using the switching function with an upper
bound under the load force regulation. However, the robust control performance of the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO with the compensated controller was very outstanding in regard to controlling the linear motion
single axis robot machine drive system in the tracking of periodic step and sinusoidal commands under
the occurrence of parameter disturbance and the load force regulation, owing to the online adaptive
adjustment of the amended recurrent Gottlieb polynomials neural network.
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Figure 11. Experimental results of measured mover position response under the step force disturbance
with adding load fL = 2 N in the 200um: (a) for the micrometer backstepping control system using
switching function with upper bound; (b) for the micrometer backstepping control system using an
amended recurrent Gottlieb polynomials neural network and AACO with the compensated controller.

4. Discussion

In addition, Table 1 lists some of control performances for the micrometer backstepping control
system using a switching function with an upper bound, and the micrometer backstepping control
system using an amended recurrent Gottlieb polynomials neural network and AACO with the
compensated controller with regard to the experimental results of the five tested cases.
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Table 1. Performance comparison of control systems.

Performance

Control system and
five tested cases

micrometer backstepping control system using switching function with upper bound
under the periodic step
command in the rated case

under the periodic step
command in the parametric
variation case

under the periodic sinusoid
command in the rated case

under the periodic sinusoid
command in the parametric
variation case

under the step force
disturbance with adding load
fL = 2 N in the 200 µm case

Maximum error of q1 12 µm 16 µm 10 µm 15 µm 28 µm
RMS error of q1 8 µm 11 µm 7 µm 10 µm 17 µm
Precision (Relative standard deviation of q1)
at 200 µm position

198.1 µm (±1.01%) 197.6 µm (±1.57%) 198.6 µm (±1.00%) 197.8 µm (±1.47%) 196.5 µm (±2.09%)

Accuracy (Relative error of q1) at
200 µm position

96.0% (±4.0%) 94.5% (±5.5%) 96.5% (±3.5%) 95.0% (±5.0%) 91.5% (±8.5%)

performance

Control system and
five tested cases

micrometer backstepping control system by using an amended recurrent Gottlieb polynomials neural network and AACO with the compensated controller
under periodic step
command in the rated case

under the periodic step
command in the parametric
variation case

under the periodic sinusoid
command in the rated case

under the periodic sinusoid
command in the parametric
variation case

under the step force
disturbance with adding load
fL = 2 N in the 200um case

Maximum error of q1 10 µm 13 µm 8 µm 12 µm 20 µm
RMS error of q1 6 µm 8 µm 5 µm 7 µm 9 µm
Precision (Relative standard deviation of q1)
at 200 µm position

198.8 µm (±0.91%) 197.9 µm (±1.51%) 199.1 µm (±0.90%) 198.0 µm (±1.40%) 197.1 µm (±2.02%)

Accuracy (Relative error of q1) at
200 µm position

97.0% (±3.0%) 96.0% (±4.0%) 97.5% (±2.5%) 96.5% (±3.5%) 95.5% (±4.5%)
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The maximum errors of q1 under the periodic step command in the rated case for the micrometer
backstepping control system using a switching function with an upper bound and the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO with the compensated controller are 12 µm and 10 µm, respectively.

The root-mean-square (RMS) errors of q1 under the periodic step command in the rated case for
the micrometer backstepping control system using the switching function with an upper bound and
the micrometer backstepping control system using an amended recurrent Gottlieb polynomials neural
network and AACO with the compensated controller are 8 µm and 6 µm, respectively.

Precision (Relative standard deviation of q1) at 200 µm position under the periodic step command
in the rated case for the micrometer backstepping control system using the switching function with an
upper bound and the micrometer backstepping control system using an amended recurrent Gottlieb
polynomials neural network and AACO with the compensated controller are 198.1 µm (±1.01%) and
198.8 µm (±0.91%), respectively.

Accuracy (Relative error of q1) at 200 µm position under the periodic step command in the
rated case for the micrometer backstepping control system using the switching function with an
upper bound and the micrometer backstepping control system using an amended recurrent Gottlieb
polynomials neural network and AACO with the compensated controller are 96.0% (±4.0%) and 97.0%
(±3.0%), respectively.

The maximum errors of q1 under the periodic step command in the parametric variation case for
the micrometer backstepping control system using a switching function with an upper bound and the
micrometer backstepping control system using an amended recurrent Gottlieb polynomials neural
network and AACO with the compensated controller are 16 µm and 13 µm, respectively.

The RMS errors of q1 under the periodic step command in the parametric variation case for the
micrometer backstepping control system using the switching function with an upper bound and the
micrometer backstepping control system using an amended recurrent Gottlieb polynomials neural
network and AACO with the compensated controller are 11 µm and 8 µm, respectively.

Precision (Relative standard deviation of q1) at 200 µm position under the periodic step command
in the parametric variation case for the micrometer backstepping control system using the switching
function with an upper bound and the micrometer backstepping control system using an amended
recurrent Gottlieb polynomials neural network and AACO with the compensated controller are
197.6 µm (±1.57%) and 197.9 µm (±1.51%), respectively.

Accuracy (Relative error of q1) at 200 um position under the periodic step command in the
parametric variation case for the micrometer backstepping control system using the switching function
with an upper bound and the micrometer backstepping control system using an amended recurrent
Gottlieb polynomials neural network and AACO with the compensated controller are 94.5% (±5.5%)
and 96.0% (±4.0%), respectively.

The maximum errors of q1 under the periodic sinusoid command in the rated case for the
micrometer backstepping control system using the switching function with an upper bound and the
micrometer backstepping control system using an amended recurrent Gottlieb polynomials neural
network and AACO with the compensated controller are 10 µm and 8 µm, respectively.

The RMS errors of q1 under the periodic sinusoid command in the rated case for the micrometer
backstepping control system using the switching function with an upper bound and the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO with the compensated controller are 7 µm and 5 µm, respectively.

Precision (Relative standard deviation of q1) at 200 µm position under the periodic sinusoid
command in the rated case for the micrometer backstepping control system using the switching
function with an upper bound and the micrometer backstepping control system using an amended
recurrent Gottlieb polynomials neural network and AACO with the compensated controller are
198.6 µm (±1.00%) and 199.1 µm (±0.90%), respectively.
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Accuracy (Relative error of q1) at 200 µm position under the periodic sinusoid command in
the rated case for the micrometer backstepping control system using the switching function with an
upper bound and the micrometer backstepping control system using an amended recurrent Gottlieb
polynomials neural network and AACO with the compensated controller are 96.5% (±3.5%) and 97.5%
(±2.5%), respectively.

The maximum errors of q1 under the periodic sinusoid command in the parametric variation case
for the micrometer backstepping control system using the switching function with an upper bound
and the micrometer backstepping control system using an amended recurrent Gottlieb polynomials
neural network and AACO with the compensated controller are 15 µm and 12 µm, respectively.

The RMS errors of q1 under the periodic sinusoid command in the parametric variation case for
the micrometer backstepping control system using the switching function with an upper bound and
the micrometer backstepping control system using an amended recurrent Gottlieb polynomials neural
network and AACO with the compensated controller are 10 µm and 7 µm, respectively.

Precision (Relative standard deviation of q1) at 200 µm position under the periodic sinusoid
command in the parametric variation case for the micrometer backstepping control system using the
switching function with an upper bound and the micrometer backstepping control system using an
amended recurrent Gottlieb polynomials neural network and AACO with the compensated controller
are 197.8 µm (±1.47%) and 198.0 µm (±1.40%), respectively.

Accuracy (Relative error of q1) at 200 µm position under the periodic sinusoid command in the
parametric variation case for the micrometer backstepping control system using the switching function
with an upper bound and the micrometer backstepping control system using an amended recurrent
Gottlieb polynomials neural network and AACO with the compensated controller are 95.0% (±5.0%)
and 96.5% (±3.5%), respectively.

The maximum errors of q1 under the step force disturbance with adding load fL = 2 N in the 200µm
case for the micrometer backstepping control system using the switching function with an upper bound
and the micrometer backstepping control system using an amended recurrent Gottlieb polynomials
neural network and AACO with the compensated controller are 28 µm and 20 µm, respectively.

The RMS errors of q1 under the step force disturbance with adding load fL = 2 N in the 200 µm
case for the micrometer backstepping control system using the switching function with an upper bound
and the micrometer backstepping control system using an amended recurrent Gottlieb polynomials
neural network and AACO with the compensated controller are 17 µm and 11 µm, respectively.

Precision (Relative standard deviation of q1) at 200 µm position under the step force disturbance
with adding load fL = 2 N in the 200 µm case for the micrometer backstepping control system using
the switching function with an upper bound and the micrometer backstepping control system using an
amended recurrent Gottlieb polynomials neural network and AACO with the compensated controller
are 196.5 µm (±2.09%) and 197.1 µm (±2.02%), respectively.

Accuracy (Relative error of q1) at 200 µm position under the step force disturbance with adding
load fL = 2 N in the 200 µm case for the micrometer backstepping control system using the switching
function with an upper bound and the micrometer backstepping control system using an amended
recurrent Gottlieb polynomials neural network and AACO with the compensated controller are 91.5%
(±8.5%) and 95.5% (±4.5%), respectively.

As a result of the micrometer backstepping control system using an amended recurrent Gottlieb
polynomials neural network and AACO with the compensated controller has smaller tracking error in
comparison with the micrometer backstepping control system using the switching function with an
upper bound from Table 1. According to the tabulated measurements, the micrometer backstepping
control system using an amended recurrent Gottlieb polynomials neural network and AACO indeed
yields better control performance.

Besides, Table 2 enumerates the feature performance comparisons of the micrometer backstepping
control system using the switching function with an upper bound and the micrometer backstepping
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control system using an amended recurrent Gottlieb polynomials neural network and AACO with the
compensated controller in some experimental results.

Table 2. Feature performance comparisons of control systems.

Feature Performance

Control system micrometer backstepping
control system using switching
function with upper bound

micrometer backstepping control
system using an amended recurrent
Gottlieb polynomials neural
network and AACO with the
compensated controller

Oscillation in the control intensity of the linear
motion single axis robot machine drive system

Larger within 20 µm Smaller within 2 µm

Dynamic response of the motion position of
the linear motion single axis robot machine

Faster within 0.01 s Fastest within 0.005 s

Load regulation capability of the linear
motion single axis robot machine

Good (maximum error as 28 µm
with adding load in the 200 µm)

Best (maximum error as 20 µm with
adding load in the 200 µm)

Convergent speed of the motion position of
the linear motion single axis robot machine

Faster within 0.002 s Fastest within 0.001 s

Position tracking error of the motion position
of the linear motion single axis robot machine

Middle with maximum error of
q1 from 10 µm to 16 µm

Small with maximum error of q1
from 8um to 13 µm

Rejection capability for parameters
disturbance of the motion position of the
linear motion single axis robot machine

Good with maximum error of q1
within 16um

Better with maximum error of q1
within 13 µm

Learning rate of the amended recurrent
Gottlieb polynomials neural network

None Vary (optimal rate)

Oscillation in the control intensity of the linear motion single axis robot machine drive system
for the micrometer backstepping control system using the switching function with an upper bound
and the micrometer backstepping control system using an amended recurrent Gottlieb polynomials
neural network and AACO with the compensated controller are larger when within 20 µm and smaller
within 2 µm, respectively.

The dynamic response of the motion position of the linear motion single axis robot machine
for the micrometer backstepping control system using the switching function with an upper bound
and the micrometer backstepping control system using an amended recurrent Gottlieb polynomials
neural network and AACO with the compensated controller are faster within 0.01 s and fastest within
0.005 s, respectively.

Load regulation capability of the linear motion single axis robot machine for the micrometer
backstepping control system using the switching function with an upper bound and the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO with the compensated controller are good (maximum error as 28 µm with adding load in the
200 µm) and best (maximum error as 20 µm with adding load in 200 µm), respectively.

Convergent speed of the motion position of the linear motion single axis robot machine for the
micrometer backstepping control system using the switching function with an upper bound and the
micrometer backstepping control system using an amended recurrent Gottlieb polynomials neural
network and AACO with the compensated controller are faster within 0.002 s and fastest within
0.001 s, respectively.

The position tracking error of the motion position of the linear motion single axis robot machine
for the micrometer backstepping control system using the switching function with an upper bound
and the micrometer backstepping control system using an amended recurrent Gottlieb polynomials
neural network and AACO with the compensated controller are medium with maximum error of q1

from 10 µm to 16 µm and small with a maximum error of q1 from 8 µm to 13 µm, respectively.
The rejection capability for parameters’ disturbance of the motion position of the linear motion

single axis robot machine for the micrometer backstepping control system using the switching function
with an upper bound and the micrometer backstepping control system using an amended recurrent
Gottlieb polynomials neural network and AACO with the compensated controller are good with
maximum error of q1 within 16 µm and better with a maximum error of q1 within 13 µm, respectively.
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The learning rate of the amended recurrent Gottlieb polynomials neural network for the micrometer
backstepping control system using the switching function with an upper bound and the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO with the compensated controller are none and variable (optimal rate), respectively.

The various performances in Table 2 for the micrometer backstepping control system using an
amended recurrent Gottlieb polynomials neural network and AACO with the compensated controller
are better than the micrometer backstepping control system using the switching function with an
upper bound with regard to the oscillation in the control intensity, the dynamic response, the load
regulation capability, the convergent speed, the position tracking error, and the rejection capability of
parameter disturbance.

5. Conclusions

In this paper, the micrometer backstepping control system using the amended recurrent Gottlieb
polynomials neural network and AACO with the compensated controller was proposed to control the
linear motion single axis robot machine drive system under the occurrence of parameter disturbance
for the position tracking of periodic reference inputs. The important contributions of this paper
are as follows: (1) The DSP-based current-regulation PWM control scheme has been successfully
applied to control the linear motion single axis robot machine drive system; (2) the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network with
the compensated controller has been successfully derived according to the Lyapunov function for
diminishing the lumped uncertainty effect; (3) to achieve high-precision control performance, an
adaptive law of the amended recurrent Gottlieb polynomials neural network based on the Lyapunov
function has been successfully applied for estimating the lumped uncertainty; (4) an error-estimated
law of the compensated controller has been successfully used to compensate the estimated error; and
(5) the AACO has been successfully used for regulating two variable learning rates in the weights
of the amended recurrent Gottlieb polynomials neural network to speed up the convergent speed.
The various performances verified by the experimental results in Tables 1 and 2 for the micrometer
backstepping control system using an amended recurrent Gottlieb polynomials neural network and
AACO with the compensated controller are better than the micrometer backstepping control system
using a switching function with an upper bound.
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