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Abstract: Using the co-precipitation method to synthesize (CeO2)0.95(Y2O3)0.05 (YDC) and solid
reaction method to synthesize (CeO2)0.75(ZrO2)0.25 (ZDC), and the crystal structure, micro-structure,
total conductivity and electronic conductivity of the two materials was measured with X-ray diffraction
(XRD), scanning electron microscope (SEM), DC van der Pauw and Hebb-Wagner methods. A limiting
current oxygen sensor was prepared with YDC solid electrolyte and a ZDC dense diffusion barrier
layer by employing platinum pasting bonding. Sensing characteristics of the sensor were obtained
at different conditions, including temperature (T), oxygen concentration (x(O2)) and water vapor
pressure (p(H2O)), and the influence of various conditions on sensing performance was studied.
The long-term stability of the sensor was measured in an oxygen concentration of 1.2% and at a
temperature of 800 ◦C for 120 h. XRD results show that the phase structure of both YDC and ZDC
belongs to the cubic phase. SEM results show that both YDC and ZDC layers are dense layers, which
are then qualified to be the composition materials of the sensor. The limiting current (IL) of the
sensor is obtained and the sensor exhibits good sensing characteristics to satisfy the Knudsen model.
Log(IL·T) depends linearly on 1000/T with a squared correlation coefficient (R2) of 0.9904; IL depends
linearly on x(O2) with an R2 of 0.9726; and sensing characteristics are not affected by p(H2O). It was
found that the oxygen sensor has good long-term stability.

Keywords: limiting current oxygen sensor; YDC solid electrolyte; ZDC dense diffusion barrier; water
vapor pressure

1. Introduction

Electrochemical oxygen sensors are intended for oxygen concentration detection and are very
essential to monitor and control the air fuel ratio (A/F) in industrial boilers and in automotive and
metallurgical industries, which contributes a lot to the combustion process optimization, energy
savings and emission reductions [1–3]. Concentration potential oxygen sensor has been widely
studied in the past. It has high sensitivity near the theoretical air–fuel ratio and has been widely used.
However, since the potential of the sensor is linearly related to the logarithm of the oxygen partial
pressure, the sensor is less sensitive to oxygen concentration outside the theoretical air–fuel ratio
accessory [4,5]. After the application of direct injection lean fuel combustion technology, it is necessary
to measure oxygen concentration in a wide range [6,7]. There is a linear relationship between the
limiting current of oxygen sensors and oxygen concentration in a wide range of oxygen concentrations.
At the same time, the sensitivity of the sensors is high. Therefore, the limiting current oxygen sensor
has successfully attracted public attention [8–10]. The limiting current oxygen sensor includes two
types: pore type and dense type, according to different types of the diffusion barrier. The pores of the
pore type sensor may be blocked by solid particles from the environment, resulting in interference of
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the sensing characteristics. Such a disadvantage of the pore type sensor has driven the dense type to
become a hot research focus [11,12]. Scholars from both domestic China and foreign countries have
conducted many researches and studies on limiting current oxygen sensors. Garzon et al. prepared a
limiting current oxygen sensor constituted of 8 mol% Y2O3 stabilized ZrO2 (8YSZ) solid electrolyte
and La0.84Sr0.16MnO3 (LSM) dense diffusion barrier. The results show that LSM is prone to chemical
reaction with YSZ and cracking [13]. Peng et al. prepared a limiting current oxygen sensor with YSZ
solid electrolyte and Pt/YSZ mixed materials diffusion barrier. The results show that the limiting current
can achieve a plateau when the oxygen concentration range is from 0 to 1.8%, but the application of
precious metal Pt greatly increases the cost [14]. Gao et al. prepared a limiting current oxygen sensor
with La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM) as both a solid electrolyte and dense diffusion barrier. The results
show that the limiting current plateau is obtained in the oxygen concentration range of 1.92%–21%,
which shows good sensing characteristics. However, due to the high cost of raw materials, the complex
preparation process of synthetic materials and the large use of platinum wire leads to the high cost [15].
Therefore, cracks do not easily appear between the solid electrolyte and diffusion barrier; the chemical
stability is good at high temperature, and the cost controls of the sensor are important indicators.
The doping of Y2O3 in CeO2 will increase the oxygen ionic conductivity of the material and become a
solid electrolyte with good mechanical properties [16]. Meanwhile, the conductivity of ZrO2-doped
CeO2 indicates that it has electronic conductivity and can be seen as a dense diffusion barrier [17,18].
Furthermore, the prices of raw materials are low and the synthetic process of synthetic materials is
simple, which is conducive to industrial production. So, a limiting current oxygen sensor was prepared
with YDC solid electrolyte and ZDC dense diffusion barrier, and the sensor may become a promising
material for oxygen sensors due to the good chemical stability and high electrical conductivity.

In this paper, the researchers used co-precipitation method to synthesize YDC and solid reaction
method to synthesize ZDC; and the characterization for the crystal structure, micro-structure, total
conductivity, and electronic conductivity of the two materials was conducted. A limiting current
oxygen sensor was prepared with YDC solid electrolyte and ZDC dense diffusion barrier by employing
platinum pasting bonding. The impacts of temperature, oxygen concentration as well as water vapor
pressure on the sensing characteristics of the oxygen sensor were studied, and the long-term stability
of the oxygen sensor was also conducted.

2. Experimental

(CeO2)0.95(Y2O3)0.05 (YDC) was synthesized by co-precipitation method with analytical reagents
Ce(NO3)3·6H2O (purity 99.95%), Y(NO3)3·6H2O (purity 99.99%) and NH3·H2O (purity 0.1 M) without
prior purification treatment. (CeO2)0.75(ZrO2)0.25 (ZDC) was synthesized by solid reaction method with
analytical reagents Ce2(CO3)3·xH2O (purity 99.99%), ZrOCl2·8H2O (purity 99.9%) and H2C2O4·2H2O
(purity 99.99%) without prior purification treatment. The above two synthetic methods have a low
synthesis temperature, which is conducive to energy saving and emission reduction. Firstly, weigh
reagents Ce(NO3)3·6H2O and Y(NO3)3·6H2O, and dissolve the reagents in distilled water by intense
agitation. Drip reagent NH3·H2O into nitrate salt solution and continuously stir the mixture until a pH
of 9 is reached. Wash the obtained precipitate with distilled water and ethanol, then dry it at 70 ◦C,
and calcine at 800 ◦C for 2 h to obtain YDC solid solution powder. Secondly, weigh the stoichiometric
reagents Ce2(CO3)3·xH2O, ZrOCl2·8H2O and H2C2O4·2H2O, and mill them with agate beads for 96 h.
Add 7 wt% Tween 60 into the above reagents at the 48th h. Calcine at 600 ◦C for 4 h to obtain ZDC
solid solution powder. Analyze the crystal structure of YDC and ZDC powders by XRD technology
(Philips PW3040/60, Amsterdam, Netherlands). Press the YDC and ZDC powders and sinter them
at 1600 ◦C for 6 h in air to obtain sintered bodies for testing. Characterize the micro-structure of
sintered bodies YDC and ZDC by SEM equipment (Zeiss, Jena, Germany). The total conductivity and
electronic conductivity of ZDC were measured by DC van der Pauw and Hebb-Wagner method with
electrochemical workstation (LK98BII, Beijing, China) according to Reference [4]. Ionic conductivity
was obtained by subtracting electronic conductivity from total conductivity.
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Prepare a limiting current oxygen sensor with YDC solid electrolyte (diameter 9.28 mm and
thickness 0.86 mm) and ZDC dense diffusion barrier (diameter 8.40 mm and thickness 1.60 mm) by
employing platinum pasting bonding, as shown in Figure 1. Test and record the current-voltage
(I-V) characteristics of the oxygen sensor by electrochemical station (LK98BII, China) under different
temperatures T, oxygen concentrations x(O2) and water vapor pressures p(H2O). Adjust the oxygen
concentration by mixing different portions of argon and oxygen to get different Ar/O2 ratios. Pass
dry Ar/O2 through LiCl·H2O saturated solution to adjust p(H2O) according to References [19–21].
Long-term stability of the sensor was measured in oxygen concentration of 1.2% and at temperature of
800 ◦C for 120 h. The total flow rate of Ar/O2 flows was about 100 mL·min−1. Figure 2 demonstrates
the I-V characteristics testing system according to Reference [18].
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3. Results and Discussion

3.1. YDC and ZDC

The crystal structure of the YDC and ZDC powders is shown in Figure 3a. It can be seen that
YDC and ZDC are cubic phase CeO2, and a small amount of ZrO2 diffraction peaks are found in ZDC.
The unit cell constants of YDC and ZDC were calculated by GSAS software refinement, as shown
in Figure 3b,c [22]. The unit cell constant of YDC is a = b = c of 5.416 Å and the unit cell volume of
158.841 Å3. The unit cell constant of ZDC is a = b = c of 5.404 Å and the unit cell volume of 157.783 Å3.
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The unit cell constant and unit cell volume of YDC are larger than that of ZDC due to the Y ion radius
being larger than the Zr ion radius.
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Figure 3. (a) Crystal structure of the YDC and ZDC, (b,c) unit cell constants of YDC and ZDC. Figure 3. (a) Crystal structure of the YDC and ZDC, (b,c) unit cell constants of YDC and ZDC.

Figure 4a,b shows the SEM images of YDC and ZDC sintered bodies from the cross-section
side, and indicates that the cross-section grain of the sintered body is not obvious and the fracture
is transgranular fracture. Figure 4c,d illustrates that the elemental distributions of YDC and ZDC,
which also clearly show that the molar ratios of Y to Ce and Zr to Ce substantially comply with the
stoichiometric ratios of YDC and ZDC solid solutions, respectively.
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Figure 4. (a,b) SEM images of YDC and ZDC sintered bodies, (c,d) elemental distributions of YDC
and ZDC.

The ionic conductivity of YDC and ionic, electronic conductivity of ZDC are shown in Figure 5 [16].
The electrical conductivities and temperature satisfy the Arrhenius law with an R2 of 0.9978 for ionic
conductivity of YDC, R2 of 0.9992 for ionic conductivity of ZDC, and R2 of 0.9848 for electronic
conductivity of ZDC, respectively. The electrical conductivities of YDC and ZDC meet the requirements
of the solid electrolyte layer and dense diffusion barrier layer of the limiting current oxygen
sensor, respectively.
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3.2. I-V and T

The sensing characteristics of the oxygen sensor were obtained under the conditions of a
temperature range of 710–830 ◦C and an oxygen concentration of 2.50%, as shown in Figure 6. As can be
seen in the figure, the curves mainly contain two areas, namely the ohmic area and the limiting current
plateau area. In area I, the output current increases linearly with the increase of applied voltage, owing
to the ohmic behavior of the YDC layer of the sensor [23]. The ohmic slope has a relationship with the
electrical conductivity of the solid electrolyte. The ohmic slope increases with increasing temperature
due to an increase in the conductivity of the solid electrolyte with an increasing temperature. In area II,
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the slope of the I-V curve changes compared to that in area I, and the current in area II reaches plateau
or close to plateau. Average current in area II is the limiting current value (IL) of the oxygen sensor.
If there is no diffusion barrier, output current in area II will increase as the voltage increases, and the
curve slope will be the same as that in area I. In fact, oxygen will be blocked by the dense diffusion
barrier. The oxygen volume through the solid electrolyte layer will decrease; a new I-V slope will be
generated in area II. The voltage at the junction of the two areas is the initial voltage of the oxygen
sensor, and normally the lower the initial voltage value is, the more sensitive the sensor is. There is a
negative correlation between initial voltage and temperature, meaning initial voltage will decrease as
temperature increases, because the conductivity of the ZDC dense diffusion barrier will increase as
temperature increases.
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At present, the limiting current oxygen sensor with the La0.8Sr0.2Ga0.8Mg0.2O3-δ (LSGM)-based
solid electrolyte and dense diffusion barrier layer has the best sensing characteristics [10,15,24].
The oxygen ion conductivity of LSGM solid electrolyte is high, reaching 0.178 S·cm−1 at 800 ◦C [15];
the ion conductivity and electronic conductivity of the transition metal oxide-doped LSGM dense
diffusion barrier are high [10,24]. The oxygen sensor can obtain a good limiting current plateau at
different temperatures. The limiting current plateau tends to be apparent as the temperature increases,
which is due to the increase of oxygen ion conductivity at high temperatures.

3.3. I-V and x(O2)

Figure 7 demonstrates the I-V characteristic curves of the oxygen sensor in an oxygen concentration
from 0.4% to 1.9% at 800 ◦C. When working, oxygen is adsorbed to the outside surface of the dense
diffusion barrier, then, by absorbing two electrons at the (ZDC/Pt/air) triple phase boundaries at
high temperatures, the absorbed oxygen becomes oxygen ions. Since the diffusion barrier is a mixed
ionic-electronic conductor, the potential applied to both sides thereof is 0. Oxygen ions are transported
from the surface of the ZDC layer to the ZDC/YDC interfaces under the driving of the oxygen pressure
difference. Similarly, oxygen ions become oxygen molecules by losing electrons, and the oxygen
molecules will be released at the triple-phase boundaries. The migration rate of oxygen ions from
ZDC/YDC interfaces to YDC outside surfaces is affected by the voltage applied to the YDC layer.
The oxygen pumping rate increases as the applied voltage increases, and the limiting current plateau
can be obtained when the voltage increases to a certain value and the oxygen pumping rate from the
YDC layer is limited by the oxygen diffusion rate from the ZDC layer. When the pumping rate of the
YDC solid electrolyte is limited by the oxygen diffusion rate of the ZDC dense diffusion barrier and
the voltage increases to a certain value, the limiting current plateau is obtained. The initial voltage is
positively related to oxygen concentration, which is consistent with phenomena of other studies [15,24].
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Similarly, the LSGM-based dense diffusion barrier layer limiting current oxygen sensor has a wide
range of oxygen concentration detection. In Reference [10], the oxygen measurement range of the
Fe2O3-doped LSGM dense diffusion barrier oxygen sensor is 0.2–20.9% at 800 ◦C. In Reference [24],
a limiting current oxygen sensor with a Cr2O3-doped LSGM dense diffusion barrier has an oxygen
concentration range of 0.88–7.23% at 700 ◦C, 0.88–10.94% at 750 ◦C and 1.92–21% at 800 ◦C, respectively.
With the increase of temperature, the range of oxygen measurement increases. However, the raw
materials used in LSGM synthesis are expensive, especially SrO and Ga2O3 (the price of SrO (AR) is
507 dollars per 100 g and the price of GaO (AR) is 231 dollars per 100 g). The synthesis of LSGM solid
solution requires two-step synthesis, which is complicated by repeated grinding and high temperature
calcination at 1450 ◦C. Therefore, it is necessary to continue to explore materials and processes suitable
for industrial production of sensors. The material in this paper is low in price, simple in synthesis and
low in calcination temperature. Although the oxygen measurement range is narrow, the sensitivity
is high.

Figure 8 demonstrates the linear correlation between the limiting current and the oxygen
concentration at the temperature of 800 ◦C with R2 of 0.9726. Refer to Reference [2] for Knudsen
diffusion correlation theory, which is the same as this correlation.

IL =
4FDKSP

RTL
· x(O2) (1)

where DK is the oxygen diffusion coefficient, P the partial pressure difference between electrodes, T the
temperature, F the Faraday constant, R the gas constant, S the total cross-sectional area, and L the
length of the diffusion path, respectively.

Solid state theory of solid ion diffusion mode, diffusion coefficient (DT) and temperature (T) is
as follows:

DT = DO · exp
(
−
ε

kBT

)
(2)

where DO is the constant of the frequency factor, ε the activation energy for the diffusion process and
kB the Boltzmann constant, respectively.
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Equation (3) is obtained by simultaneous Equations (1) and (2):

IL =
4FDOSP

RLT
· x(O2) · exp(−ε/kBT) (3)

Assuming the oxygen concentration is stable, then:

a =
4FDOSP

RL
x(O2) (4)

Equation (5) is obtained by introducing Equation (4) into Equation (3):

IL = a ·
1
T
· exp(−ε/kBT) (5)

Equation (6) is obtained by solving the logarithm of Equation (5):

log IL = A− log T −
ε

kBT
(6)

and then,
B = −

ε
kB

(7)

So we get Equation (8):

log IL = A− log T + B ·
1
T

(8)

Equation (9) is obtained by sorting out:

log(IL · T) = A + B ·
1
T

(9)

Figure 9 demonstrates the linear relationship between log(IL · T) and 1000/T in x(O2) of 2.5%
according to Equation (9) with an R2 of 0.9904. This relationship meets the Knudsen diffusion model.
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3.4. I-V and p(H2O)

Figure 10 demonstrates the effect of p(H2O) on I-V characteristic curves in an oxygen concentration
of 1.2% and at a temperature of 800 ◦C. As can be seen, the sensing characteristics of the oxygen sensor
obtained almost coincide under different p(H2O), indicating that the p(H2O) does not have significant
effect on the I-V characteristics within the test range. Some studies about the influence of p(H2O) on
the limiting current oxygen sensor show that the porous type sensor is affected by p(H2O), while the
dense type sensor is not affected [18,25,26]. The dense type oxygen sensor has excellent selectivity to
oxygen, which is an excellent indicator of the sensor.
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of 800 ◦C.

So far, the LSGM-based dense diffusion barrier layer limiting current oxygen sensors with the best
sensing performances has not studied the effects of water vapor pressure on the sensing performance
of the sensor [10,15,24]. However, in my previous researches, such as in References [27,28], the sensing
performance of the dense diffusion barrier limiting current oxygen sensor is not affected by water
vapor pressure, because the dense diffusion barrier is oxygen–ion conductive.

3.5. Long-Term Stability

The sensing performance of the limiting current oxygen sensor was tested in an oxygen concentration
of 1.2% and at a temperature of 800 ◦C for 120 h, as shown in Figure 11. Figure 11a represents the
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I-V characteristic curves of the oxygen sensor obtained at different times. It can be found that the
limiting current plateau of the oxygen sensor decreases very little. The limiting current of the oxygen
sensor was plotted with the test time, as shown in Figure 11b. It is found that the limiting current
value decreases slightly. By comparison, we find that the limiting current value of the oxygen sensor in
Reference [27] decreases with the increase of test time, which may be due to the increase of polarization
resistance. Furthermore, in Reference [27], the applied voltage is 0–2.5 V, while in this paper, it is
0–1.5 V. The decrease of the applied voltage is beneficial to the service life of the oxygen sensor, which
is also the reason for the smaller reduction of the limiting current. Further research is needed on the
specific reasons for the reduction of the limiting current value. Long-term stability is an important
index of the oxygen sensor, which is particularly important for industrial production and application.

Sensors 2019, 19, x FOR PEER REVIEW 10 of 12 

performance of the sensor [10,15,24]. However, in my previous researches, such as in References 
[27,28], the sensing performance of the dense diffusion barrier limiting current oxygen sensor is not 
affected by water vapor pressure, because the dense diffusion barrier is oxygen–ion conductive. 

3.5. Long-Term Stability 

The sensing performance of the limiting current oxygen sensor was tested in an oxygen 
concentration of 1.2% and at a temperature of 800 °C for 120 h, as shown in Figure 11. Figure 11a 
represents the I-V characteristic curves of the oxygen sensor obtained at different times. It can be 
found that the limiting current plateau of the oxygen sensor decreases very little. The limiting 
current of the oxygen sensor was plotted with the test time, as shown in Figure 11b. It is found that 
the limiting current value decreases slightly. By comparison, we find that the limiting current value 
of the oxygen sensor in Reference [27] decreases with the increase of test time, which may be due to 
the increase of polarization resistance. Furthermore, in Reference [27], the applied voltage is 0–2.5 V, 
while in this paper, it is 0–1.5 V. The decrease of the applied voltage is beneficial to the service life of 
the oxygen sensor, which is also the reason for the smaller reduction of the limiting current. Further 
research is needed on the specific reasons for the reduction of the limiting current value. Long-term 
stability is an important index of the oxygen sensor, which is particularly important for industrial 
production and application. 

0.0 0.5 1.0 1.5
0

20

40

60

80 (a)

 

 

Test time (h)
 0
 24
 48
 72
 96
 120

Cu
rre

nt
 (m

A
)

Voltage (V)

x(O2)=1.2%

800 ºC

 

-24 0 24 48 72 96 120 144
0

20

40

60

80 (b)  

Li
m

iti
ng

 c
ur

re
nt

 (m
A

)

Time (h)

800 ºC

x(O2)=1.2%

 
Figure 11. (a) I-V curves from 0 to 120 h, (b) limiting current from 0 to 120 h. Figure 11. (a) I-V curves from 0 to 120 h, (b) limiting current from 0 to 120 h.

4. Conclusions

Using the co-precipitation method to synthesize YDC and the solid reaction method to synthesize
ZDC, we prepared a YDC solid electrolyte and ZDC dense diffusion barrier-based limiting current
oxygen sensor by platinum pasting bonding method. XRD results show that YDC and ZDC belong to
the cubic phase structure. SEM results show that the sintered bodies are dense and conform to the
materials for limiting current oxygen sensor. The oxygen sensor has good sensing performance, which
is as follows: log(IL·T) depends linearly on 1000/T with an R2 of 0.9904, IL depends linearly on x(O2)
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with an R2 of 0.9726 and sensing characteristics are not affected by p(H2O), and the limiting current
decreases very little with the increase of test time from 0 to 120 h.
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