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Abstract: This paper presents fault diagnosis logic and signal restoration algorithms for vehicle
motion sensors. Because various sensors are equipped to realize automatic operation of the vehicle,
defects in these sensors lead to severe safety issues. Therefore, an effective and reliable fault detection
and recovery system should be developed. The primary idea of the proposed fault detection system
is the conversion of measured wheel speeds into vehicle central axis information and the selection of
a reference central axis speed based on this information. Thus, the obtained results are employed to
estimate the speed for all wheel sides, which are compared with measured values to identify fault and
recover the fault signal. For fault diagnosis logic, a conditional expression is derived with only two
variables to distinguish between normal and fault; further, an analytical redundancy structure and a
simple diagnostic logic structure are presented. Finally, an off-line test is conducted using test vehicle
information to validate the proposed method; it demonstrates that the proposed fault detection and
signal restoration algorithm can satisfy the control performance required for each sensor failure.

Keywords: fault detection; sensor fault; signal restoration; intelligent vehicle; autonomous vehicle;
kinematic model

1. Introduction

The desire for convenient and safe passenger transportation has increased the need for automated
and intelligent automobiles. Consequently, the function of autonomous navigation has been introduced
for passenger safety and convenience, and various in-vehicle devices such as ultrasonic sensors,
radars, cameras, and actuators have been installed to detect the surrounding environment, recognize
information, and control the motions of the vehicle. In addition, speed sensors, steering angle
sensors, gyroscopes, and acceleration sensors can be installed to measure the vehicle operation state
and movement and to use the gathered information for control. If faults occur in these sensors or
actuators during automatic running, the vehicle may deflect from its route or fail to conduct the precise
operation required for control, which may lead to an accident. To prevent accidents caused by these
faults, technologies applying the soft computing method in fault detection (FDI) and fault tolerant
control (FTC) of vehicles are garnering attention in academia and industry. In conjunction with these
developments, various ideas and techniques for FDI/FTC methods, including neural network and fuzzy
approaches, are presented [1–3]. To this end, the main purpose is to prevent or mitigate deterioration
of the control performance of the system caused by a failure. In the field of fault diagnosis, various
studies have been conducted to compensate or detect the fault sensor information by combining it
with information of various sensors [4–6]. In a system in which a vehicle is driven by an electric motor,
a frequency domain analysis technique may be applied in the fault diagnosis of the electric motor,
whereas a frequency component analysis usually deals with the diagnosis of physical faults in rotating
machinery [7].
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Although studies on fault detection are particularly important for the aircraft sector [8–13], as even
minor aircraft faults can lead to serious accidents, the increasing interest in autonomous vehicles has
inspired numerous investigations of fault detection in the automotive sector [14–23]. Na et al. [24]
applied residual sensitivity as a threshold for predicting the occurrence of vehicle sensor failure, while
Emirler et al. [25] employed a virtual sensor featuring a velocity-scheduled Kalman filter to characterize
vehicle kinematics and estimate the yaw rate. Huang and Su [26] devised a model-based fault detection
and isolation scheme considering disturbance and noise to diagnose single sensor faults in intelligent
navigation systems, while analytical redundancy and nonlinear transformation were also used to
generate residual values used to detect embedded sensors in intelligent vehicles [27].

In these fault-related studies, when a fault is detected, the fault signal has been largely recovered
using either direct or analytical redundancy [28]. In practical environments, analytical redundancy
methods are studied and used because of the low cost or installation space required. This analytical fault
detection method can be divided into a data-based method and signal model, a model-based method,
and knowledge-based method [13]. The data-based method and signal model are applied to compare
and analyze the characteristics of data [29]. The model-based method is based on the mathematical
model of the target system [30]. Knowledge-based methods are implemented using expert systems or
fuzzy logic [31]. Among these methods, the model-based method that is acknowledged in this paper
is classified into parity equations [32,33], parameter estimation methods [34], and observer-based
methods [35,36]. In addition, this study focuses on fault detection and signal restoration for sensors
detecting vehicle motion (e.g., speed, steering angle, and rotational angular velocity sensors), assuming
that only one sensor can fail at a given instant, such that the sensor fault detection and restoration
algorithm can be applied. In this regard, real-time fault diagnosis and signal estimation of major
sensors have been extensively researched [37–46]; major methods and research trends for fault detection
have been introduced and investigated by Miljkovic [47]. When attempting to diagnose the case where
several sensors are mounted on a vehicle, residuals are generated for the diagnosis from each sensor
and threshold is applied to each diagnosis; here, the number of thresholds is equal to the number of
sensors to be diagnosed [18,24,26]. Therefore, each of the corresponding threshold values must be
carefully set for the appropriate fault diagnosis of each sensor; otherwise, the result may affect the fault
identification of other sensors. In the proposed method, it is possible to identify six sensor faults with
only two threshold values and conditional expressions. As a result, the possibility of diagnostic error
due to the threshold setting can be considerably reduced.

To prepare for unexpected sensor failure, this study develops a method for signal duplication
using the analytical redundancy method based on the information provided by sensors installed in the
vehicle and a mathematical vehicle model. Moreover, the analytical redundancy method is employed
to realize fault detection and signal restoration.

It is difficult to apply existing research results to other vehicles because existing study have a
complex logic structure with different types and numbers of sensors applied to the target vehicle.
In addition, existing studies have difficulty in practical application because they have a multi-variable
structure in which the judgment logic of failure is complex. These results do not demonstrate the
effect of the actual running on the failure of each sensor. Furthermore, their research results do not
demonstrate the effectiveness of their performance by applying a restored signal for each fault.

This study aims to detect main sensor faults in real time to guarantee occupants’ safety in a
vehicle automatically following a designated route without a driver. A vehicle model-based fault
detection and signal restoration method is proposed, and the information provided by the failed sensor
is restored to create a time margin in which the vehicle control system can conduct normal safety
control procedures. To judge the fault of each vehicle sensor, one first needs to identify a suitable
comparison standard. Therefore, the velocity and direction components in the central vehicle axis are
defined as the central information on vehicle motion. In the absence of abnormalities in each sensor,
the central axis speeds estimated by each vehicle sensor should have the same value. Moreover, if the
center speed is correct, it can be used to estimate individual wheel speeds, and the calculated values
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should match actual wheel speeds if each sensor is normal. A kinematic model is designed to convert
the speed of each wheel into the central axis speed. In this process, relationships for estimating the
central axis speed using a steering angle or a gyroscope are defined, and fault classification conditions
obtained by applying these are derived.

To validate the proposed method, defects are simulated independently for each normal sensor
signal. The signal of the normal sensor is compared with the restored signal, and the resulting error is
presented. Additionally, it is confirmed that when the fault signal is restored and applied to the position
estimation of the autonomous vehicle, the results of path tracking error are within the valid range.

In summary, the contribution of this study is as follows:

• By conducting studies on fault diagnosis and restoration based on the major motion sensors
that are installed in most vehicles, the possibility that this study can be used in several vehicles
has increased.

• A vehicle kinematic model based on the central axis of the vehicle, which is used to detect faults
and restore fault signals using a structure in which the failure of each sensor does not affect each
other, is proposed.

• In the logic for fault detection, finally, a simple diagnostic logic structure is presented; this structure
helps discriminate between normal and fault and distinguishes a specific fault using a conditional
expression of only two variables.

2. Fault Detection and Recovery

2.1. Configuration of the Autonomous Vehicle

The target vehicle has four speed sensors, one steering angle sensor, and one gyroscope for vehicle
control (Figure 1) [48]. It is assumed that two or more sensors are not defective at the same time, i.e.,
only one fault is assumed to occur at any moment.
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Figure 1. Vehicle sensor configuration.

2.2. Influence of Sensor Fault

The sensor mounted on the vehicle strongly influences the safety of automatic operation. First, the
vehicle controller determines the vehicle position during driving in automatic mode and controls the
speed and steering angle to reach the destination based on the fusion of various sensors. The positional
information of the vehicle is important for driving control and can be estimated by fusing landmark
information, GPS information, and vehicle motion sensor information. The vehicle control system
selects a certain point in the vehicle and controls the speed and position of this point to match the
desired reference. For example, when the central axis of rear wheels is used as the control reference
point in a straight-running vehicle, the calculated speed becomes half of the actual speed if the simple
average of the left and right rear wheel speeds is used and one of the corresponding sensors fails.
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Moreover, when this information is used for position estimation, the calculated position deviates from
the actual position. If the gyroscope fails in a curved path, and the information provided by this
device is used for position estimation, the vehicle running direction is not calculated correctly, and the
resulting position error causes a deviation in route guidance control. Finally, depending on the failure
situation, a fault of the steering angle sensor may cause a path-following error or deviation from the
traveling path.

2.3. Architecture of Fault Detection

The main idea behind sensor fault detection and signal restoration process is the conversion of the
speed of each wheel to the central axis speed of the vehicle. If all sensors are normal, all calculated
central axis speeds should be identical, whereas different values should be obtained in the case when
any sensor fails. Thus, this difference can be used as a sensor fault indicator. Moreover, once a fault is
found, the speed of each wheel can be estimated from the center axis speed determined as normal, and
the faulty signal is recovered by replacing the speed of the defective wheel with the estimated speed.
In this case, steering angle information is used to convert the speed of each wheel to the central axis
speed. If there is an error in the steering angle sensor, the calculated value is also erroneous, which
highlights the importance of knowing whether the steering angle sensor is normal or not. Therefore,
two methods are used to calculate the central axis speed. Specifically, the input variables are divided
into the cases of steering angle usage and usage of gyroscope-provided information on rotational
angular speed. This strategy allows one to detect speed sensor, steering angle sensor, and gyroscope
faults and to restore the affected signals even if either the steering angle sensor or the gyro sensor is
abnormal. The employed procedure is illustrated in Figure 2.
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2.4. Vehicle Geometry for Kinematic Estimation

Figure 3 depicts the situation in which the central axis of the vehicle moves around the center of
rotation (o) to define the kinematic motion of the vehicle and associated parameters.
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In the above figure, β is the side slip angle, δf is the front wheel steering angle, δfl is the front left
wheel steering angle, δfr is the front right wheel steering angle, lf is the distance from the front axle to
the vehicle central axis, lr is distance from the rear axle to the central axis, lx is the distance from the
front axle to the rear axle, ly is front or rear axle width, lb is the half-width of ly, νc is the speed at the
central axis, ω is the yaw rate, R is the instant radius at central axis, νfl, νfr, νrl, and νrr are speeds of the
front left, the front right, the rear left, and the rear right wheels, respectively.

2.5. Virtual Redundancy of Sensors and Errors

Formulas to convert the vehicle wheel speed to the central axis speed are proposed. The velocity
and direction of the central axis are obtained based on the steering angle or gyroscope information.

2.5.1. Central Axis Speed Estimation Based on Steering Angle

When the steering angle information and gyroscope information are fused together in the fault
detection formula, it becomes difficult to distinguish between each of the corresponding faults.
Therefore, to differentiate the steering angle fault from the gyroscope fault, the vehicle central axis
speed is calculated from the wheel speed, the steering angle, and vehicle parameters excluding the
gyroscope information. First, the side slip angle and curvature are obtained from Equations (1) and (2),
respectively, using the front wheel steering angle and vehicle parameters.

β = tan−1
( lr tan(δ f )

l f + lr

)
, (1)

C =
1
R

=
cos(β) tan(δ f )

l f + lr
. (2)

The central axis speed can be obtained from Equation (3) to Equation (6) using individual wheel
speeds and Equations (1) and (2).
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vc, f l =
v f l√(

cos(β)
cos(δ f )

)2
+ lb2C2 − 2lbC cos(β)

, (3)

vc, f r =
v f r√(

cos(β)
cos(δ f )

)2
+ lb2C2 + 2lbC cos(β)

, (4)

vc,rl =
vrl√

(cos(β))2 + lb2C2 − 2lbC cos(β)
, (5)

vc,rr =
vrr√

(cos(β))2 + lb2C2 + 2lbC cos(β)
, (6)

where C is the curvature at the central axis, and νc,ij is the central axis speed calculated based on
individual vehicle wheel data. In a straight section, the speed of each wheel is the same, whereas in a
curved section, the speed inside the curvature radius is lower than that on the outside, as shown in
Figure 4.
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The central axis speed satisfies the condition of Equation (7) when all wheel speed and steering
angle sensors are normal and hence afford almost identical speed values, as shown in Figure 5.
In practice, small differences may occur depending on road conditions and vehicle characteristics,
as indicated by the maximum error in Figure 5. Here, maximum error refers to the maximum value of
Equation (9). In the vehicle test under normal conditions, the maximum error was measured to be
within 0.1 m/s.

vc, f l = vc, f r = vc,rl = vc,rr. (7)
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Therefore, if the central axis speed error exceeds a predetermined threshold value, the sensor
or another part are considered to be abnormal, i.e., such an error may be indicative of an abnormal
pressure difference between wheel tires, wheel slippage, wheel encoder abnormality, steering angle
error, or communication abnormality.

The steering angle information is included in Equation (1) to Equation (6), i.e., if the steering angle
information is defective, all calculated central axis speeds may be erroneous. Therefore, if the steering
angle information is assumed to be normal and there is a defect in the speed sensor information,
the following procedure is followed to select two judged-to-be-normal speeds from the four calculated
central axis speeds. The two most closely matched central axis speeds are selected using Equations (8)
and (9).

(vci,min, vcj,min) = min(Ev), i ∈
{
f l, f r, rl

}
, j ∈

{
f r, rl, rr

}
, i , j, (8)

with
Ev = [ev12 ev13 ev14 ev23 ev24 ev34],

ev12 =
∣∣∣vc, f l − vc, f r

∣∣∣, ev13 =
∣∣∣vc, f l − vc,rl

∣∣∣, ev14 =
∣∣∣vc, f l − vc,rr

∣∣∣,
ev23 =

∣∣∣vc, f r − vc,rl
∣∣∣, ev24 =

∣∣∣vc, f r − vc,rr
∣∣∣, ev34 =

∣∣∣vc,rl − vc,rr
∣∣∣. (9)

The selected two central axis speeds are averaged (Equation (10)) as

vcr =
(
vci,min + vcj,min

)
/2. (10)

Next, the obtained average is used to estimate the speed of each wheel (Equation (11) to
Equation (14)):

v̂ f ls = vcr

√(
cos(β)
cos(δ f )

)2

+ lb2C2 − 2lbC cos(β), (11)

v̂ f rs = vcr

√(
cos(β)
cos(δ f )

)2

+ lb2C2 + 2lbC cos(β), (12)

v̂rls = vcr

√
(cos(β))2 + lb2C2 − 2lbC cos(β), (13)

v̂rrs = vcr

√
(cos(β))2 + lb2C2 + 2lbC cos(β). (14)
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The thus obtained estimated speed of each wheel should match the measured speed of the wheel
if there is no fault in each sensor. For the purpose of fault detection, the error between the estimated
and the measured wheel speed is calculated as in Equation (16), and the largest among these errors
(defined as in Equation (15)) is used as a condition variable value for detecting sensor defects.

asmax = max(Evs), (15)

with
Evs =

[
ev f l ev f r evrl evrr

]
,

ev f l =
∣∣∣v̂ f ls − v f l

∣∣∣
ev f r =

∣∣∣v̂ f rs − v f r
∣∣∣

evrl = |v̂rls − vrl|

evrr = |v̂rrs − vrr|

(16)

2.5.2. Central Axis Speed Estimation Using the Gyroscope

To distinguish between steering angle and gyro faults, gyro information is used instead of steering
angle information in the calculation of the central axis speed. For this purpose, the steering angle
is estimated from the gyroscope information, wheel speed, and vehicle parameters, and the central
steering angle is estimated using Equation (17) to Equation (20).

δ̂ f 1 = cot−1
(
cot(δ̂ f l1) +

lb
lx

)
, with δ̂ f l1 = sin−1

(
ωlx
v f l

)
, (17)

δ̂ f 2 = cot−1
(
cot(δ̂ f r1) −

lb
lx

)
, with δ̂ f r1 = sin−1

(
ωlx
v f r

)
, (18)

δ̂ f 3 = cot−1
(
cot(δ̂ f l2) +

lb
lx

)
, with δ̂ f l2 = tan−1

(
ωlx
vrl

)
, (19)

δ̂ f 4 = cot−1
(
cot(δ̂ f r2) −

lb
lx

)
, with δ̂ f r2 = tan−1

(
ωlx
vrr

)
, (20)

where ω is the rotational angular velocity measured by the gyroscope. The estimated front-center
steering angles should be equal to each other as shown in Equation (21) if there are no faults in the
speed sensor and gyroscope.

δ̂ f 1 = δ̂ f 2 = δ̂ f 3 = δ̂ f 4 = δ f . (21)

If the gyroscope is fault-free, a fault of the speed sensor should result in a difference between
some estimated steering values. Therefore, to select the steering angle with the smallest error due to
the defect, two estimated steering angles with the smallest error among the estimated steering angles
(δ̂ f 1, δ̂ f 2, δ̂ f 3, δ̂ f 4) are determined using Equations (22) and (23).(

δ̂ f i,min, δ̂ f j,min

)
= min(Eδk), i ∈ {1, 2, 3}, j ∈ {2, 3, 4}, i , j, i〈 j, (22)

with
Eδk = [eδ12 eδ13 eδ14 eδ23 eδ24 eδ34],

eδ12 =
∣∣∣δ̂ f 1 − δ̂ f 2

∣∣∣, eδ13 =
∣∣∣δ̂ f 1 − δ̂ f 3

∣∣∣, eδ14 =
∣∣∣δ̂ f 1 − δ̂ f 4

∣∣∣
eδ23 =

∣∣∣δ̂ f 2 − δ̂ f 3

∣∣∣, eδ24 =
∣∣∣δ̂ f 2 − δ̂ f 4

∣∣∣, eδ34 =
∣∣∣δ̂ f 3 − δ̂ f 4

∣∣∣ (23)

The selected estimated steering angles are averaged (Equation (24)), and the obtained value is
used as the estimated front wheel steering angle.

δ̂ f =
(
δ̂ f i,min + δ̂ f j,min

)
/2. (24)
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If the front steering angle is estimated using the gyroscope information, a process identical to that
used for central axis speed estimation, as described in the previous section, is applied. The speed at
each vehicle center is calculated using the speed of each wheel and the estimated steering angle. Next,
the side slip angle and curvature are obtained as in Equations (25) and (26), respectively, using the
estimated steering angle and vehicle parameters.

β = tan−1

 lr tan(δ̂ f )

l f + lr

, (25)

C =
1
R

=
cos(β) tan(δ̂ f )

l f + lr
. (26)

The central axis speed can be obtained using Equation (27) to Equation (30) by considering
individual wheel speeds, Equations (25) and (26).

vc, f l =
v f l√(

cos(β)
cos(δ̂ f )

)2
+ lb2C2 − 2lbC cos(β)

, (27)

vc, f r =
v f r√(

cos(β)
cos(δ̂ f )

)2
+ lb2C2 + 2lbC cos(β)

, (28)

vc,rl =
vrl√

(cos(β))2 + lb2C2 − 2lbC cos(β)
, (29)

vc,rr =
vrr√

(cos(β))2 + lb2C2 + 2lbC cos(β)
. (30)

If each wheel speed and the gyroscope are normal, the calculated central axis speeds should be
equal to each other as shown in Equation (31) (Figure 6).

vc, f l = vc, f r = vc,rl = vc,rr. (31)
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As in the previous case, two speeds with the smallest error selected based on the error between
the central axis speed of the two combinations are averaged (Equation (32)).

vcg =
(
vci,min + vcj,min

)
/2. (32)

The thus obtained value is used to estimate the speed of each wheel using Equation (33) to
Equation (36).

v̂ f lg = vcg

√√ cos(β)

cos(δ̂ f )

2

+ lb2C2 − 2lbC cos(β), (33)

v̂ f rg = vcg

√√ cos(β)

cos(δ̂ f )

2

+ lb2C2 + 2lbC cos(β), (34)

v̂rlg = vcg

√
(cos(β))2 + lb2C2 − 2lbC cos(β), (35)

v̂rrg = vcg

√
(cos(β))2 + lb2C2 + 2lbC cos(β). (36)

The thus estimated speeds of each wheel should match the measured values if there is no defect
in each sensor. For the purpose of fault detection, the error between each estimated wheel speed and
the measured wheel speed is obtained as in Equation (38), and the largest among these errors (defined
as in Equation (37)) is used as a condition variable value for detecting sensor faults.

agmax = max
(
Evg

)
, (37)

with
Evg =

[
ev f l ev f r evrl evrr

]
,

ev f l =
∣∣∣v̂ f lg − v f l

∣∣∣
ev f r =

∣∣∣v̂ f rg − v f r
∣∣∣

evrl =
∣∣∣v̂rlg − vrl

∣∣∣
evrr =

∣∣∣v̂rrg − vrr
∣∣∣.

(38)

2.6. Fault Detection, Identification, and Signal Recovery

To identify sensor faults, Equations (15) and (37), which describe the calculation of maximum
estimated speed and the measured speed error, are used for judgment. The maximum values of each
error (asmax, agmax) and the corresponding limit values (aslimit, aglimit) are used to determine whether
the sensor is faulty.

2.6.1. Fault-Free Sensor Judgment Condition

If the maximum error (asmax, agmax) between the estimated speed and the measured speed is
small, all sensors applied to the relational expression can be viewed as not defective. The maximum
allowable error limit (aslimit, aglimit), which is the defect judgment boundary, is determined based on
the observed results under the condition that all sensors are normal. Herein, limit values of aslimit =

aglimit = 0.025 were selected for the running test of the test vehicle. Therefore, if the maximum error
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(asmax, agmax) is smaller than the above values, all sensors are normal, and if not, a fault is concluded to
be present. This condition is expressed in Equation (39).

i f (asmax ≤ aslimit)∩ (agmax ≤ aglimit)

TRUE : Normal
else

FALSE : Other f ault
end

(39)

2.6.2. Fault Detection and Signal Restoration for Steering Angle Information

If the maximum value (agmax) of the error calculated using gyroscope information is smaller than
the limit value (aglimit), the gyroscope and speed sensor are both viewed as normal. If the maximum
value (asmax) of the error calculated using steering angle information is larger than the limit value
(aslimit), the steering angle sensor is viewed as defective, as there is no defect of the speed sensor under
the preceding condition. This condition is expressed in Equation (40).

i f (asmax ≥ aslimit)∩ (agmax
〈
aglimit)

TRUE : Steering sensor f ault
end

(40)

If a steering angle fault is identified according to the condition of Equation (40), the measured
steering angle sensor information is replaced with the estimated steering angle information calculated
using Equation (24).

2.6.3. Gyroscope Fault Detection and Signal Restoration

If the maximum value (asmax) of the error calculated using steering angle information is smaller
than the limit value (aslimit), both the steering angle sensor and the speed sensor are viewed as normal.
In this case, if the maximum value (agmax) of the error calculated using the gyroscope information is
larger than the limit value (aglimit), one can judge that only the gyroscope is defective, as it follows
from the above that the speed sensor is not defective.

i f (asmax
〈
aslimit)∩ (agmax ≥ aglimit)

TRUE : Gyroscope f ault
end

(41)

If a gyroscope fault is identified according to the condition of Equation (41), rotational angular
velocity is estimated from Equation (42) by applying Equations (13) and (14), which describe the
estimation of rear wheel speeds based on steering angle information.

ω̂ =
v̂rrs − v̂rls

2lb
. (42)

2.6.4. Fault Detection of the Speed Sensor and Signal Restoration

Under the condition that the gyroscope and the steering angle sensor do not fail simultaneously,
the speed sensor is viewed as defective if (i) the maximum value (asmax) of the error calculated based on
steering angle information is greater than the limit value (aslimit), and (ii) the maximum value (agmax)
of the error calculated based on the gyroscope information is greater than the limit value (aglimit) [the
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error of the speed sensor affects both sides]. In this case, when the speed error is larger than the limit
value, fault identification of each speed sensor can be performed as follows.

i f (asmax
〉

aslimit)∩ (agmax
〉

aglimit)

TRUE : Speed encoder f ault
i f (ev f l

〉
aslimit)

TRUE : Front le f t speed encoder f ault
end
i f (ev f r

〉
aslimit)

TRUE : Front right speed encoder f ault
end
i f (evrl

〉
aslimit)

TRUE : Rear le f t speed encoder f ault
end
i f (evrr

〉
aslimit)

TRUE : Rear right speed encoder f ault
end

end

(43)

If a speed sensor fault is identified according to the condition of Equation (43), the value provided
by the defective sensor is replaced with the value estimated using Equation (11) to Equation (14).

3. Results and Discussion

To verify the validity of the proposed algorithm, we performed an off-line test using the sensor
data collected from the test vehicle [48]. The vehicle was set up to run in loop guided 235-m test tracks
in automatic path guided mode, and sensor information was collected during driving. The vehicle
control system collected the signal of magnetic markers embedded in the road and combined it with
vehicle motion sensor information to determine real-time vehicle location/orientation and perform
automatic guidance control. Faults, failures, and malfunctions observed during driving (e.g., those of
the speed sensor, the steering angle sensor, and the rotational angular velocity sensor) may result in
erroneous normal position estimation, guidance control errors, or deviation from the suggested path.
The results of the off-line test showed how each sensor fault affects vehicle control. In addition, the
validity of the proposed method was verified by identifying the defective sensor and replacing the
corresponding signal with the estimated value to show whether one can maintain the normal traveling
orbit within the effective error range.

3.1. Speed Sensor Fault Test

One of the four wheels simulated the fault of one rear right wheel speed sensor from 20 to 80 s.
A zero was injected during this time instead of the normal signal to simulate a failure. Therefore,
the actual speed was known. The faulted signal, the normal signal, and the signal estimated using
Equation (13) are shown in Figure 7, which compares the estimated signal and the normal signal to
show that the sensor signal can be well estimated even if it changes to zero because of failure simulation,
i.e., the normal signal is well restored by the estimator. In this case, the error between the normal value
and the estimated value was within 0.05 m/s. For simulated faults, the rear right wheel speed signal
decreased to 70% of value of the normal signal during the same time interval. Figure 8 compares the
estimated signal with the normal signal for the case in which the measured signal decreased from
normal to 70% when tire pressure loss or puncture was assumed.
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Figure 8. Type 2: Rear right wheel speed sensor fault and estimation.

3.2. Steering Angle Sensor Fault

Only the case where the steering sensor is faulty was considered, and the fault was chosen to
occur between 20 and 80 s. During this period, the steering angle information was changed to zero,
and the signal was estimated using the proposed algorithm and compared with the normal sensor
signal (Figure 9). Because of the fault, the steering angle sensor value was fixed at a constant value for
the same time period. The estimated steering angle information was found to be in good agreement
with the normal steering angle information (Figure 10).
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Figure 10. Type 2: Front steering angle sensor fault and estimation.

3.3. Gyroscope Fault

Only the case where the gyroscope is faulty was considered, and the fault was chosen to occur
between 20 and 80 s. During this period, the signal was estimated using the proposed algorithm and
compared with the normal sensor signal. Notably, the proposed method allowed for good recovery of
the normal signal. Figure 11 shows the result of estimation based on Equation (42). We also tested the
scenario of a fault when the signal decreased to 50% of the normal signal over the same time interval.
In this case, good signal estimation results were also observed (Figure 12).
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3.4. Influence of Defects in Automatic Running

This test aimed to check the effect of sensor faults on automatic running and to determine whether
the proposed fault detection and signal restoration method is valid. In the case of a running vehicle,
the sensor was configured so that only one fault occurs at the same time.

3.4.1. Fault-Free Driving

The estimated position and tracking control state of the vehicle were checked in the case where all
sensors were normal, and the observed performance was compared to that in the case of sensor fault.
Figure 13 shows the driving trajectory of a vehicle that automatically ran the designed path with that
of the fault-free vehicle.
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3.4.2. Effect of Rear Left-Wheel Speed Sensor Defect during Automatic Driving

The case when only the rear left wheel speed sensor of the vehicle is defective was considered.
When the average of the left- and right wheel speed is used as the center speed, the calculated travel
distance is half of the actual travel distance when one of the speed sensors fails during vehicle operation,
which results in erroneous position calculation and deviation from the traveling path (Figure 14).
As shown in Figure 14, when the speed sensor error occurred before the curve was entered, the vehicle
trajectory gradually deviated toward the inside of the reference path.
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3.4.3. Effect of Gyroscope Defect during Automatic Driving

When a gyroscope fault occurs during vehicle operation, an error is generated in the calculation
of the running direction, which increases the error in the calculation of vehicle position. As a result,
the vehicle deviates from the traveling path. As shown in Figure 15, the vehicle was not able to follow
the travel route because the state of the rotational angular velocity sensor was “zero” before the curve
was entered, and a straight line trajectory was generated.
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Figure 15. Test result for a gyroscope fault.

Figure 16 shows path-following errors of the vehicle under the fault condition of each sensor.
The upper and lower thick solid lines in this figure are the maximum allowable travel error boundaries
on normal driving, equaling 15 cm on the straight line portion and increasing along the curved portion.
Until 40 s before entering the curved section, the vehicle followed the trajectory with an error within
15 cm, but after 40 s, it deviated from the set error margin according to the fault of each sensor.
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Figure 16. Path tracking errors for each sensor fault.

Figure 17 shows the travel path follow-up error for fault signal restoration under each fault
condition. Fault detection and signal restoration were performed 40 s after each sensor fault to afford a
running result within the allowable limit error for the normal running of the vehicle. Consequently,
the effectiveness of fault detection and the recovery method was successfully verified.
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4. Conclusions

In this paper, fault diagnosis logic and signal restoration algorithms for vehicle motion sensors
are presented. To this end, a central axis kinematic model is applied to each wheel speed of the vehicle.
Both steering angle and gyroscope information are considered to distinguish failure effects. For fault
diagnosis logic, we derive a conditional expression with only two variables to distinguish between
normal and fault, and an analytical redundancy structure and a simple diagnostic logic structure are
presented to distinguish specific faults. This study further assumes that only one sensor can fail at any
given instant, which may limit the current scope of application of the proposed fault diagnosis scheme.

To verify the validity of this method, vehicle sensor data are collected under normal driving
conditions, and the algorithm used in the actual vehicle is applied to estimate the vehicle position
and orientation in an off-line test. The risk of automatic driving according to each failure is examined
through the addition of faults to normal sensor information. It is shown that the autonomous vehicle
can satisfy the valid normal driving conditions when the proposed fault detection and signal restoration
method is applied under fault conditions. To improve vehicle safety, the authors plan to investigate
diagnostic methods for multiple sensor faults.
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