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Abstract: This paper proposed a new novel method to adaptively detect gait patterns in real time
through the ground contact forces (GCFs) measured by load cell. The curve similarity model (CSM)
is used to identify the division of off-ground and on-ground statuses, and differentiate gait patterns
based on the detection rules. Traditionally, published threshold-based methods detect gait patterns
by means of setting a fixed threshold to divide the GCFs into on-ground and off-ground statuses.
However, the threshold-based methods in the literature are neither an adaptive nor a real-time
approach. In this paper, the curve is composed of a series of continuous or discrete ordered GCF data
points, and the CSM is built offline to obtain a training template. Then, the testing curve is compared
with the training template to figure out the degree of similarity. If the computed degree of similarity
is less than a given threshold, they are considered to be similar, which would lead to the division of
off-ground and on-ground statuses. Finally, gait patterns could be differentiated according to the
status division based on the detection rules. In order to test the detection error rate of the proposed
method, a method in the literature is introduced as the reference method to obtain comparative
results. The experimental results indicated that the proposed method could be used for real-time gait
pattern detection, detect the gait patterns adaptively, and obtain a low error rate compared with the
reference method.

Keywords: ground contact forces; force sensitive resistors; curve similarity model; threshold method;
similarity distance

1. Introduction

Gait pattern detection is an effective way to monitor and analyze the condition of human
walking [1]. Gait analysis plays an important role in the fields of lower limb rehabilitation robot,
assisting exoskeleton human–machine coupling systems, and daily life assistance [2]. On the basis of
the specific objective of gait analysis, various sensor platforms and algorithms have been developed to
classify all or some gait phases, including force sensors [3–6], inertial sensors [7–9], foot switches [3],
and electromyography (EMG) sensors [10].

Recently, a large number of new sensors and their signal processing methods have been used
for gait recognition. A gait recognition system in loose clothing has been proposed in the works
of [11,12], where four sets of flexible piezoelectric sensors were embedded in both knee and hip parts
on the patient’s pants. Mileti et al. designed a pair of shoes with an Inertial Measurement Unit (IMU)
and foot switches on each foot for gait quality assessment [13]. Zhou et al. combined color sensors,
depth sensors, and inertial sensors for gait data collection and gait recognition [14]. Among the
sensor platforms, force sensor platforms, such as load cell, which could be located in shoe soles to
measure the ground contact force (GCF), may represent the gold standard method for gait analysis [15].
The electrical resistance change of a load cell is proportional to the GCF acted by the human foot.
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As reported in another paper [16], the measuring value changes of load cell could be correlated directly
to the gait patterns because each gait pattern has a unique GCF pattern.

In order to achieve gait analysis, different sensor fusion and machine learning methods have
been presented, such as fuzzy logic [17], support vector machine (SVM) [18], hidden Markov models
(HMM) [19,20], naive Bayes classification (NBC) [16], neural network (NN) [17,21], and Gauss mixture
model (GMM) [18]. Tian [22] uses the VICON MX 3D gait system to collect the joint angle values of the
hip, knee, and ankle in these five gaits and performs gait recognition based on coalitional game-based
feature selection and extreme learning machine (ELM).

Generally, the division of gait phases is based on the threshold method, which sets a threshold to
divide the GCF into on-ground and off-ground statuses. Catalfamo et al. [23] and Lopez-Meyer et al. [6]
calculate the threshold with the maximum and minimum GCFs of gait cycles, which meant that the
GCF should be post-processed after data acquisition. Mariani et al. [5] used 5% body weight for
threshold computation with the result that the weight of each subject should be obtained prior to the
experiments. Lie Yu et al. [24] and Jing Tang et al. [25] declared that the methods in the works of [5,23]
were not adaptable to different people and different walking speeds. The faster the same person walks,
and the larger the GCF value, it is difficult to achieve real-time gait phase accurate detection by simply
using the threshold method. Therefore, Yu et al. proposed the proportional method (PM), which
calculates the sums and proportions of GCFs for gait pattern detection [24]. Two proportional factors
were optimized and selected for all subjects in all experiments, and this PM achieved a high average
reliability. Tang et al. presented the self-tuning triple-threshold algorithm (STTTA), which searched
out GCF extremes in real time for threshold computation [25]. Three initial threshold values were
set for all subjects in all experiments, while three adjustable thresholds would be obtained to adapt
the human walking with a detection accuracy of almost 90%. According to Yu and Tang’s research
results, the accuracy of real-time gait phase detection is close to 90%, but in the actual exoskeleton
robot cooperative control, especially in the process of weight bearing and speed varying walking,
the accuracy of gait phase detection could not meet the real-time control requirements of the robot.
Meanwhile, some people would land first on their heels, while others would land first on their balls,
resulting in simple proportional methods finding it difficult to adapt to the different types of walking
patterns of people.

The GCF signals of time series are considered as a curve, which means that the GCF points are
considered as a function of time. In view of this, this paper proposes a gait pattern detection method
based on the curve similarity model (CSM), and the GCF points in a time interval are taken as a curve
to study. In the gait cycle, the GCF curve over a period of time can distinguish between different gait
patterns. In particular, the pattern of GCF curve changes during gait phase switching can be used as an
indicator to detect the next new gait phase. This paper presents a gait detection mode method based
on the curve similarity model, including the definition of curve similarity, gait curve template, and
its construction and application in gait detection. Zheng et al. [26] defined the curve similarity using
the absolute value integral of the difference between two functions as the distance measure of two
curves. In this paper, the curve similarity model is used to realize the detection of specific gait patterns.
Specifically, the curve is composed of a series of discrete ordered GCF data points, and the CSM is built
by a small amount of offline data in order to train two kinds of curve templates, which are used to
detect off-ground and on-ground statuses, respectively.

Similarly, in real-time gait detection, the GCF signal at the current and past intervals is used as
a test curve, and is continuously compared with the gait template curve to calculate the similarity
distance between the test curve and the template curve. If the similarity distance is smaller than a
given threshold, the state represented by the gait template curve is the gait state at the current time
and the subsequent time until the next gait state is detected to change.

Finally, the gait patterns could be differentiated according to the status division based on the
detection rules. In order to test the detection error rate of the proposed method, a method in the
literature is introduced as the reference method to obtain comparative results.
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2. Method

2.1. Subjects and Procedures

This study included twenty-four subjects of average age 23.1 ± 3.2 years and average mass
68.2 ± 7.6 kg with no history of foot diseases or limitations. The study was approved by Beijing Sport
University Institution Review Board (Re.-No. 2019007H). Before the experiments, the subjects gave
their written informed consent for participation in this study as the purpose was explained in detail to
each of them and their safeties could be ensured.

To validate our research, a gait phase detection system was designed as pictured in Figure 1.
Two sets of load cells (LOSON LSH-10, LOSON Instrumetation, Nankin, China) were severally located
in the insole of ball and heel. The load cell signals were collected at a sample frequency of 2000 Hz
through 16-bit AD converters. A pressure tester (TLS-S1000W, Jinan Zhongchuang Industry Test
System Co., Ltd., Jinan, China) is used to calibrate the load cell such that the amplified output signal
within a range of 0–5 V correlates with the measured mass of 0–200 kg [27]. After data acquisition and
sensor calibration, the GCF signals were filtered by average filter with a cut-off frequency of 100 Hz to
eliminate the unnecessary high frequency noise.
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Figure 1. Two load cell mounted severally in the ball and heel, and a lid is used to enlarge the
contact area.

Each subject was asked to perform five trials to wear the designed shoes (i.e., seen in Figure 1) to
walk on a treadmill. The five trials were performed for 30 s each at a designated constant speed of
2 km/h, 3 km/h, 4 km/h, 5 km/h, and 6 km/h in turn. According to the adult’s step size of 60 cm~80 cm,
the duration of each gait cycle at a speed of 2~6 km/h is about 1000~2000 ms. The slower the speed, the
longer the gait cycle. Each subject took an average of 110 steps at different speeds with 150 s. Using the
same acquisition device, we selected 10 subjects from the above-mentioned 24 subjects for continuous
shift 60 s walking experiments, using real-time data for online gait phase detection.

2.2. Gait Pattern Detection Algorithm

Generally, a complete gait cycle could be divided into two main phases, that is, stance phase and
swing phase. As two sets of load cell were mounted in each shoe, four types of gait patterns could be
differentiated. Specifically, when the foot fully contacts the ground, the gait pattern is the stance phase.
When the foot totally leaves the ground, the gait pattern is the swing phase. The transitions between
the stance and swing phases are gait events. When the ball leaves the ground and the heel contacts
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the ground, the gait pattern is heel strike. When the ball contacts the ground and the heel leaves the
ground, the gait pattern is heel-off.

Usually, the division of contacting or leaving the ground is made through setting a threshold.
Several drawbacks existed for threshold-based methods, which have been summarized in detail in the
works of [21,28]. To solve these problems, this paper used the curve similarity model to implement the
status division of contacting or leaving the ground.

If this curve similarity model is built, a curve consisting of several GCF points would be
discriminated to be on-ground or off-ground status. The key to this model is to determine the start
point of each status so that the GCF will be discriminated to be in the same status for a subsequent
period of time until the next different gait starting point is detected. Meanwhile, if more GCF points
are used, the curve similarity model would gain better results. However, more computation resource
would be costed. In this paper, four GCF points are utilized to build the curve similarity model.

2.2.1. Global Threshold Method and Its Disadvantage

By setting a threshold Thr, GCFs can be divided into on-ground and off-ground statuses:

G(i) =
{

1, T(i) ≥ Thr
0, T(i) < Thr

(1)

where T(i) is the GCF at i-th point and Thr is the threshold.
The Lopez–Meyer [6] method calculates the mean values of the maximum and minimum threshold

of GCFs as the Thr for gait detection. The mathematical expressions are as follows:
TMAX = 1

n

n∑
i=1

Tmax(i)

TMIN = 1
m

m∑
i=1

Tmin(i)

Thr = TLopez = α× (TMAX − TMIN) + TMIN

. (2)

The scale factor is obtained by the leave-one-out method, which is used in gait detection system.
In this paper, set α = 0.094. Usually, m is not equal to be n. At the most, the GCF has only one maximum
and only one minimum value in a complete gait cycle. However, an incomplete gait cycle would lead
to only one Tmax or Tmin. Therefore, an abnormality will occur in the gait discrimination.

Although the threshold value is intuitive, the sensor detection pressure is related to the wearer’s
weight and walking posture, and it is easy to generate abnormal values, which can be clearly seen
in Figure 2. Therefore, when using the threshold method for gait detection directly, it is necessary to
eliminate these abnormal conditions. If window filtering is used, the system detection delay will be
increased in a real-time system.
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The GCF value change is related to the walking speed. As seen in Figure 3, when the walking
speed changes from 2 km/h to 6 km/h, the GCF value gradually increases, and the corresponding Thr
also gradually increases. Therefore, for variable speed walking, the threshold of Thr is uncertain.
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Combined with the above analysis, it can be seen that the threshold method is simple to
calculate, but the stability and reliability need to be improved in real-time calculation. In the post-view
after-the-fact analysis, combined with window filtering, it can be used as a reference for gait detection
for comparative analysis.

2.2.2. Starting Flag of on-Ground and off-Ground Statuses

The starting time of each status was determined by comparing GCFs with the threshold calculated
through the Lopez–Meyer method [6].

Obviously, the threshold was only used in the training of the curve similarity model. As depicted
in Figure 4, a curve consisting of four GCF points is obtained referring to the threshold. x(i) is GCF at the
starting flag of on-ground status, while x(i− 1), x(i− 2), and x(i− 3) are the GCFs identified as off-ground
status. If this curve could be recognized accurately, the on-ground status would be differentiated
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initially. The future GCFs with a long period after x(i) would also be judged to be on-ground status.
Meanwhile, if the ending flag of on-ground status could be recognized, the on-ground status would be
differentiated totally.

Sensors 2019, 19, x FOR PEER REVIEW 6 of 23 

x(i) is GCF at the starting flag of on-ground status, while x(i − 1), x(i − 2), and x(i − 3) are the GCFs 
identified as off-ground status. If this curve could be recognized accurately, the on-ground status 
would be differentiated initially. The future GCFs with a long period after x(i) would also be judged 
to be on-ground status. Meanwhile, if the ending flag of on-ground status could be recognized, the 
on-ground status would be differentiated totally. 

 
Figure 4. A curve consisting of four GCF points is used to identify the starting flag of on-ground 
status or the ending flag of off-ground status. 

However, the ending flag of on-ground status is extremely similar to the starting flag of off-
ground status, as pictured in Figure 5. Obviously, a one point difference existed between the two 
flags. If the starting flag of off-ground status is identified, the ending flag of on-ground status could 
be deduced. As shown in Figure 5, a curve consisting of four GCF points is acquired referring to the 
threshold. x(i) is GCF at the starting flag of off-ground status, while x(i − 1), x(i − 2), and x(i − 3) are 
the GCFs identified as on-ground status. Similarly, if this curve could be identified accurately, the 
off-ground status would be differentiated initially. The future GCFs with a long period after x(i) 
would also be judged to be off-ground status. Additionally, the ending flag of off-ground status 
could be deduced according to the recognition of the starting flag of on-ground status, as 
demonstrated in Figure 4. 

 
Figure 5. A curve consisting of four GCF points is used to identify the starting flag of off-ground 
status or the ending flag of on-ground status. 

Figure 4. A curve consisting of four GCF points is used to identify the starting flag of on-ground status
or the ending flag of off-ground status.

However, the ending flag of on-ground status is extremely similar to the starting flag of off-ground
status, as pictured in Figure 5. Obviously, a one point difference existed between the two flags. If the
starting flag of off-ground status is identified, the ending flag of on-ground status could be deduced.
As shown in Figure 5, a curve consisting of four GCF points is acquired referring to the threshold.
x(i) is GCF at the starting flag of off-ground status, while x(i − 1), x(i − 2), and x(i − 3) are the GCFs
identified as on-ground status. Similarly, if this curve could be identified accurately, the off-ground
status would be differentiated initially. The future GCFs with a long period after x(i) would also be
judged to be off-ground status. Additionally, the ending flag of off-ground status could be deduced
according to the recognition of the starting flag of on-ground status, as demonstrated in Figure 4.
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Figure 5. A curve consisting of four GCF points is used to identify the starting flag of off-ground status
or the ending flag of on-ground status.

Thus, the status division could be made by recognizing the starting flags of on-ground and
off-ground statuses according to Figures 4 and 5. The curve similarity model is built to identify the
two flags, which is described in the following section.
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2.2.3. Curve Similarity Model

Before building this model, a curve consisting of four GCF points should be constructed, noted
as L =

〈
x(i), x(i− 1), x(i− 2), x(i− 3)

〉
. However, according to actual experiments, if only four GCF

points were used to establish the model, it would lead to many detection mistakes. Therefore, scale
difference was added to extend this curve, which could be rewritten as follows:

L =
〈
x(i), x(i− 1), x(i− 2), x(i− 3), L(k)

〉
, (3)

where L(k) is the k-scale difference of L; and the range of k is selected to be 1, 2, and 3 in this model.
Then, L(k) could be expanded as follows:

L(k) =
〈
x(1)(i), x(2)(i), x(3)(i), x(1)(i− 1), x(2)(i− 1), x(1)(i− 2)

〉
, (4)

where x(k)(i) = x(i) − x(i − k) is the k-scale difference of the sequence at x(i), and Equation (4) could be
described as follows:

L(k) =

〈
x(i) − x(i− 1), x(i) − x(i− 2), x(i) − x(i− 3),
x(i− 1) − x(i− 2), x(i− 1) − x(i− 2), x(i− 2) − x(i− 3)

〉
. (5)

After curve extension, the model should be constructed and noted as ϕ(L), where ϕ(L) is the
transformation function. Curve similarity theory is used to measure the degree of similarity between
two curves. Firstly, given two curves, LA and LB, the similarity distance between them could be
expressed as follows:

d =
∣∣∣φ(LA) −φ(LB)

∣∣∣, (6)

where d is the similarity distance between two curves, and |�| is the absolute distance. For d, given a
threshold ε, if d ≤ ε, the curves LA and LB are proven to be similar. Otherwise, they are not.

According to Equations (3) and (5), there are ten elements in curve L, including four GCF point and
their scale differences. In order to describe the curve similarity model in an understandable manner,
the curve L is rewritten as follows:

L =
〈
x1, x2, · · · , x j, · · · , x10

〉
x1 = x(i), x2 = x(i− 1), x3 = x(i− 2), x4 = x(i− 3),
x5 = x(i) − x(i− 1), x6 = x(i) − x(i− 2), x7 = x(i) − x(i− 3),
x8 = x(i− 1) − x(i− 2), x9 = x(i− 1) − x(i− 3), x10 = x(i− 2) − x(i− 3)

. (7)

To transform every element of L in the same dimension, Gaussian function is selected to be the
transformation function ϕ(L), which could be described as follows:

φ(L) =
〈
ϕ(x1),ϕ(x2), · · · ,ϕ(x j), · · · ,ϕ(x10)

〉
ϕ(x j) = exp(

−(x j−µ j)
2

2δ2
j

)
, (8)

where φ(xj) is the transformation function of xj. Meanwhile, µj and δj are the average value and
standard deviation of xj, respectively.

Thus, the gains of µj and δj should be calculated or trained from gait phase labeling data. For LA
and LB, one of them is considered as a reference curve or template curve, which is trained and represents
a classification, while the other is considered as a comparison curve to measure similarity of two
curves. Assuming that LA is the template curve, the obtained xj for LA is equal to µj by coincidence.
Meanwhile, LB is the comparison curve. Then, the similarity distance between LA and LB could be
rewritten as follows:
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d =
∣∣∣φ(LA) −φ(LB)

∣∣∣
=

∣∣∣∣〈ϕ(µ1,µ2, · · · ,µ j, · · ·µ10)
〉
−

〈
ϕ(x1, x2, · · · , x j, · · · x10)

〉∣∣∣∣
=

10∑
j=1

∣∣∣∣∣∣exp(
−(µ j−µ j)

2

2δ2
j

) − exp(
−(x j−µ j)

2

2δ2
j

)

∣∣∣∣∣∣
=

10∑
j=1

∣∣∣∣∣∣1− exp(
−(x j−µ j)

2

2δ2
j

)

∣∣∣∣∣∣
= 10−

10∑
j=1

exp(
−(x j−µ j)

2

2δ2
j

)

(9)

The purpose of building this curve similarity model is to measure the similarity of the reference
curve and comparison curve. Once the comparison curve is similar to the reference curve, the
comparison curve has the same classification as the reference curve. Given a threshold ε, if d ≤ ε, the
curves LA and LB are proven to be similar. Generally, the threshold ε is selected as follows:

0 <
ε
P
≤ 0.2, (10)

where P is the length of L, and equals 10 in this model. Then, ε = 2 is preferable.
As depicted in Figures 4 and 5, the starting flags of on-ground and off-ground statuses should be

recognized. Therefore, two curve similarity models should be constructed severally for on-ground and
off-ground statuses, noted as ϕ(L1) and ϕ(L2). Meanwhile, each model is built through Equation (8),
and the parameters in these models are selected through Equation (10).

The testing data point is noted as the comparison curve ϕ(Lc) and we calculate the similarity
distances as follows: {

d1 = d(ϕ(L1),ϕ(Lc))
d2 = d(ϕ(L2),ϕ(Lc))

. (11)

For ϕ(L1), if d1 is smaller than ε, the testing data point is classified as on-ground status. On the
other side, for ϕ(L2), if d2 is smaller than ε, the testing data point is classified as off-ground status.
However, if the testing data point fails to satisfy both conditions, the testing data point is classified as
its last status.

2.3. Gait Phase Classification by GCF

As mentioned above, detecting the starting flag of off-ground status can determine whether the
gait phrase enters off-ground status, and detecting the starting flag of on-ground status can determine
whether the gait phase enters off-ground status. It is very difficult to capture solely the occurrence of
the starting flags of two statuses because that the range of pressure varies greatly. The range before
and after is used as the interval from which the starting flags of off-ground and on-ground statuses
occur, and the new gait classification is redefined.

In the process from on-ground to off-ground, when the GCF is less than the threshold pressure
and before middle off-ground, we define the status as the initial status of off-ground, referred to as the
initial off-ground. There is a corresponding process from off-ground to on-ground, which is called the
initial on-ground. Its duration range is from the terminal off-ground to the first time when GCF is
greater than the threshold pressure.

From a large number of walking gait pressure curves, this pressure change lasts from 40 to 60 ms,
where the faster the walking, the shorter the duration. We take a continuously changing pressure
curve as our research object, and develop the gait detection model within one gait cycle to four status
detection, that is, the initial off-ground, the off-ground, the initial on-ground, and on-ground statuses
order by order. Here, the on-ground status is labeled as 3, the initial off-ground status is labeled as 1,
the off-ground status is labeled as 0, and the initial on-ground status is labeled as 2. In this way, we
divide a normal walking process into four gait phases that are repeated over and over again, as shown
in Figure 6.
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Therefore, the specific classification of gait phase is as follows:

(1) Traverse a piece of GCF data, calculate Thr;
(2) In each gait cycle, when the gait motion moves from on-ground to off-ground status, the first data

point whose GCF is less than Thr is calculated as the starting position of the initial off-ground
status, and then the delay time tW where the data point is the ending position of the initial
off-ground status, and the subsequent point is taken as the off-ground status;

(3) Likely, when the gait motion moves from off-ground to on-ground status, the first data point
whose GCF is greater than Thr is calculated as the ending position of the initial on-ground status,
and then time tW in advance where the data point is the starting position of the initial on-ground
status, and the subsequent point is taken as the on-ground status;

(4) On the part of abnormal gait tagging data, such as gait mutation, tW is too large or too small, take
the form of manual updating.

Usually, set tW = 40~60 ms, here tW = 50 ms, if one gait cycle is 1000 ms~2000 ms, the maximum
theoretical error of detection is 2.5%~5%.

2.4. Evaluation Protocols of the Gait Phase Detection

In order to evaluate the reliability of the proposed method, the reference method should be
determined. As reported in the work of [6], the Lopez–Meyer method was approved through comparing
itself with the “GAITRite system”, and gained a comparative and reliable confidence of 95%. Therefore,
the Lopez–Meyer method was introduced as the reference method. However, the term of detection
error rate was used to replace the reliability. Then, the detection error rate of this study was determined
by comparing the detection results between the reference method and the proposed algorithm.

Four points are taken as a gait curve, and gait data is traversed. Each training sample contains the
GCF values of four data points as input, and the gait phase classification of the last data point is used
as the classifier output.

In the evaluation protocol of actual detection statuses, the corresponding detection results under
each status are as described in Table 1.
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Table 1. Evaluation of detection with true status.

Detection
True Status

On-Ground (3) Initial Off-Ground (1) Off-Ground (0) Initial Off-Ground (2)

Starting flag of off-ground ×
√ √

* ×

Starting flag of on-ground
√

* × ×
√

Other Keep the last status

The symbol “*” indicates no evaluation. In a gait movement, the actual number of gait phases is
cni. The number of corresponding gait phases detected each time is dni, where the correct detection
number is tni, the missed detection number is mni, the false detection number is fni, and the over
detection number is sni, where i = 1 or 2.

Then, the total error values for gait detection of off-ground and on-ground statuses are defined
as follows:

F1 = (mn1 + f n1)/2
F2 = (mn2 + f n2)/2

(12)

Obviously, tni = cni− mni. At the same time, mni is called the number of missed detections, fni is
also called the number of false detections, and sni is called the number of over detections. When the
number of training samples is fixed, the smaller the F1 or F2, the lower the error rate, the higher the
accuracy of the system, and the better the corresponding curve template.

In the experiments, we mainly evaluate gait detection to solve a classification problem. As a
classification problem, we use classification error rate as a measurement of performance evaluation.
The error rate of each gait phase detection for off-ground and on-ground status, and the total error rate
are defined as

E1 = (mn1 + f n1)/cn1 × 100%
E2 = (mn2 + f n2)/cn2 × 100%
E3 = (mn1 + f n1 + mn2 + f n2)/(cn1 + cn2) × 100%

(13)

At the same time, we also use the method from the literature [27,28] to evaluate the accuracy of
gait phase detection.

E4 =
N∑

k=1
hk/N × 100%

hk =


= 1 c(k) = 0, h(k) = 0
= 1 c(k) = 1, h(k) = 1
= 0 other

(14)

where c(k) is the true gait phase represented by every GCF data point, h(k) is the result of gait phase
detection for every moment, and N is length of all data points. E4 can be considered as the total data
point error rate.

2.5. Development of Gait Phase Classifiers by EC

Note that the quality of curve template is a very important index for gait phase detection. A good
curve template will be able to better distinguish the starting flag of off-ground and on-ground status.
Therefore, the key is to find the optimal parameters of the template curve. We label the collected
gait data for four categories by the Lopez–Meyer method and divide them into a training set and a
testing set. In this paper, an evolutionary computation (EC) algorithm is presented to carry out random
intelligent search. Because the off-ground and on-ground curve templates are independent of each
other, the evolutionary computation will be carried out twice.

The overall idea of evolutionary computation is to generate random PopSize individuals S = {S1,
S2, . . . SPopSize}, each of which corresponds to a set of template curve parameters µ and δ.
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In each iteration search of evolutionary computation, each individual will correspond to a total
detection error value F1 or F2 as Formula (9), where the smaller the total detection error value, the
better the individual. Fitness value is calculated by the sum of all the error values of the training
dataset at one iteration.

The specific Algorithm 1 steps are described as follows:

Algorithm 1. Optimal calculation of curve parameters for CSM

Input: training sample X, the size of individuals PopSize, and the maximum number of generations MaxGen
Output: template curve parameters µ and δ
1: initialization, randomly generate initial populations S
2: for j = 1 to 2*PopSize do
3: S[j]. µ and S[j]. δ←rand()
4: evaluate the fitness value F1 or F2 based on Formula (12) with X
5: end for
6: for k = 1 to MaxGen
7: sort S[1:2*PopSize] according to fitness
8: classify S[1:PopSize] into four categories according to fitness
9: S[1:PopSize/4].kind=1, S[PopSize/4:PopSize/2].kind=2
10: S[PopSize/2: PopSize*3/4].kind=3, S[PopSize*3/4:PopSize].kind=4
11: for i = 1 to PopSize
12: produce kind + 1 descendants SubS from S[j] and kind=S[j].kind
13: evaluate the fitness value F1 or F2 of each SubS based on Formula (12) with X
14: sort SubS according to fitness
15: S[j + PopSize]←SubS[0]
16: end for
17: end for
18: return µ and δ from S[0]

According to the maximum number of generations MaxGen as termination conditions.
Normally, PopSize = 20, MaxGen = 200.

2.6. Real-Time Gait Detection by CSMs

In real-time gait detection, we directly use gait detection by trained two CSMs from multiple
people and different speeds, as shown in Figure 7. Taking the left foot as an example, the real-time gait
detection Algorithm 2 is as follows:

Algorithm 2. The real-time gait detection by CSM

Input: the pressure curve X(k), the template curves L1 and L2, the threshold ε = 2
Output: real-time gait detection results G(k)
1: system initialization, G(1) = 1, G(2) = 1, G(3) = 1, k = 4, the gait is in the ground state
2: repeat
3: Lc←X(k) = [xk−3, xk−2, xk−1, xk]
4: calculate d1 = d(ϕ(L1), ϕ(Lc)) and d2 = d(ϕ(L2), ϕ(Lc))
5: If d1 ≤ ε

6: G(k) = 1
7: elseif d2 ≤ ε

8: G(k) = 0
9: else
10: G(k) = G(k − 1)
11: k = k + 1
12: until system stop
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3. Results and Discussion

There were two different databases for the experiment; one database comes from 24 subjects
including 120 sample files and the other database came from 10 subjects including 10 sample files.
In each sample file, the global threshold method described in Section 2.3 was used to label the data,
and the data of each gait cycle were labeled as four gait phases. Walking at speeds of 2–6 Km/h for 30 s,
a total of 100 gait cycles around would be obtained for each subject.

Because the adoption rate was 100 Hz, labeled gait classification data of 3000 rows would
be generated for training and testing by traversing each sampling point in each sample of first
database. Therefore, our gait classification records for the whole training and testing were about
120 × 3000 = 360,000.

For the first database, we selected some samples as training set and the rest as a testing set. Firstly,
25, 50, and 75 samples from subjects #1~5, #1~10, and #1~15, respectively, were selected as training set
to verify the accuracy and reliability of the model. Secondly, five samples from subjects #1, #4, #9, #12,
and #15 were selected as a training set, and the all subjects were selected as a testing set to verify the
robustness of the model. For each training set, we repeated it 10 times to obtain different models to
verify the reliability and stability of the models. Finally, for the second database, we chose the model
trained to test the generalization performance of the model for continuous variable speed walking.

3.1. Results of Gait Pattern Detection

We used 50 samples from 10 subjects as training data and the rest of the samples as testing data.
The ten elements of L in each gait cycle could be obtained by referring to the threshold calculated
through the Lopez–Meyer method. Then, mean value and standard deviation for each element could
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be calculated. µ and δ from the curve similarity model for off-ground and on-ground status are listed
in Tables 2 and 3, respectively.

Table 2. Parameters of curve similarity model (CSM) for off-ground status.

Order 1 2 3 4 5 6 7 8 9 10

µj 53.11 −76.80 22.81 2.34 −26.25 −9.45 −2.47 −98.00 4.88 −68.36
δj 19.82 112.80 51.29 45.95 57.44 54.45 29.67 77.87 24.00 37.81

Table 3. Parameters of curve similarity model for on-ground status.

Order 1 2 3 4 5 6 7 8 9 10

µj −7.27 32.13 8.23 74.03 −7.99 5.70 50.00 18.70 120.00 −3.50
δj 162.78 68.21 52.75 33.85 39.12 31.11 61.04 32.84 33.71 107.32

In the first experiment, with 50 samples of the training set, the EC algorithm searches the
optimal parameters of two CSMs for off-ground and on-ground status, respectively, to minimize the
corresponding F1 and F2 values. µ and δ from two CSMs for off-ground and on-ground status are
listed in Tables 2 and 3, respectively.

Then, the training sets were processed using the selected coefficients to obtain the detection error
rate. Meanwhile, the testing sets from the remaining subjects were processed using the same coefficients.

In this paper, the collected GCFs from the ball and heel were processed using the proposed method,
which are collectively pictured in Figure 8a,b. The starting flags of on-ground status are marked as
a triangle, while those of off-ground status are marked as a circle. It could be clearly illustrated in
Figure 8a that more than one starting flag of on-ground status could be obtained in one gait cycle.
However, this situation would not cause any detection error because the results were still identified as
on-ground statuses. When the status divisions of ball and heel were accomplished, the gait pattern
could be distinguished according to the rules, as shown in Figure 9a,b.Sensors 2019, 19, x FOR PEER REVIEW 14 of 23 
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Figure 10. A subject gait phrase detection at speeds of 2~6 km/h. 
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Figure 10. A subject gait phrase detection at speeds of 2~6 km/h.

As can be seen from Figure 10, with the increase of walking speed, the GCF value gradually
increases. The traditional fixed threshold method has great limitations. Our method can be well
adapted to gait detection at different walking speeds. At the same time, we can adapt to the gait
detection of the other foot by using only one foot data for training.

3.2. Accuracy and Reliability

As the off-ground and on-ground statuses were both identified using the two CSMs, the detection
error rate should be calculated for both statuses. Note that E1 is the detection error rate for off-ground
statuses, E2 is the detection error rate for on-ground statuses, E3 is the total detection error rate, and
E4 is another detection error rate named the total data point error rate. As depicted in Table 4, the
proposed method gains highly low detection error rates when compared with the reference method.
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Table 4. Detection error rates of CSM compared with the reference method by training and testing sets.

Subject Training Subject Testing

E1 E2 E3 E4 E1 E2 E3 E4

#1 0.93% 4.72% 2.82% 6.04% #11 0.77% 0.77% 0.77% 6.50%
#2 0.87% 5.22% 3.04% 6.07% #12 0.86% 4.39% 2.61% 6.09%
#3 0.00% 0.00% 0.00% 6.86% #13 0.93% 1.90% 1.41% 6.96%
#4 0.00% 8.33% 4.17% 7.67% #14 0.93% 0.00% 0.47% 6.91%
#5 0.00% 0.00% 0.00% 7.05% #15 3.33% 0.00% 1.67% 6.62%
#6 0.81% 0.00% 0.40% 6.73% #16 38.89% 0.00% 19.44% 8.63%
#7 0.00% 3.70% 1.85% 6.45% #17 2.17% 0.00% 1.08% 7.73%
#8 1.01% 0.00% 0.51% 6.17% #18 0.00% 0.79% 0.40% 7.15%
#9 0.00% 5.15% 2.59% 8.57% #19 3.17% 0.00% 1.59% 7.61%

#10 2.83% 5.71% 4.27% 7.64% #20 3.60% 7.27% 5.43% 7.58%
Average 0.65% 3.28% 1.97% 6.93% #21 16.42% 3.03% 9.77% 9.15%

#22 0.00% 0.00% 0.00% 6.57%
#23 0.00% 7.69% 3.85% 6.49%
#24 13.04% 4.35% 8.70% 8.87%

Average 8.06% 2.31% 5.19% 7.64%

As can be seen from Table 4, the accuracy of the other subjects for testing is very high according
to our evaluation protocol, except for subjects #16, #21, and #24. Even so, we find that with the
same E4 protocol statistics, the total error rate of several high error rate subjects is less than 10%.
This shows that our proposed model can be well adapted to the traditional way of statistics, with a
strong fault-tolerant performance.

According to the evaluation protocol, E1, E2, and E3 for subject #5 were zero, indicating that
the trained model could accomplish the gait classification perfectly. The corresponding E4 is 6.86%
because of the difference in gait switching positions caused by the two different evaluation protocols.
Furthermore, repeating the above-mentioned experiment ten times with 25, 50, and 75 samples, we
count the overall average rate as an assessment of system accuracy and reliability, as depicted in
Table 5.

Table 5. Detection error rates of CSM compared with the reference method. (a) Twenty-five samples
were trained and the rest of the samples were tested and repeated 10 times; (b) 50 samples were trained
and the rest of the samples were tested and repeated 10 times; (c) 75 samples were trained and the
rest of the samples were tested and repeated 10 times; (d) average statistics of 25, 50, and 75 training
samples and testing results. STTTA, self-tuning triple-threshold algorithm; PM, proportional method.

(a)

No.
Training Testing

E1 E2 E3 E4 E1 E2 E3 E4

1 0.35% 3.30% 1.82% 7.46% 6.53% 5.10% 5.82% 8.96%
2 0.52% 2.95% 1.74% 6.70% 2.54% 4.10% 3.32% 7.65%
3 0.17% 3.47% 1.82% 7.16% 3.45% 3.32% 3.38% 7.83%
4 0.35% 3.99% 2.17% 7.34% 4.31% 2.60% 3.45% 7.85%
5 0.52% 3.99% 2.26% 6.82% 4.76% 2.60% 3.68% 7.34%
6 0.35% 4.69% 2.52% 7.23% 2.86% 4.64% 3.75% 7.94%
7 0.17% 4.86% 2.52% 7.19% 4.13% 3.51% 3.82% 7.91%
8 0.35% 3.99% 2.17% 6.83% 3.04% 3.32% 3.18% 7.39%
9 0.35% 3.13% 1.74% 7.39% 8.30% 4.37% 6.34% 8.13%
10 0.35% 5.03% 2.69% 6.98% 3.94% 2.69% 3.32% 7.46%

Average 0.35% 3.94% 2.15% 7.11% 4.42% 3.44% 3.93% 7.75%
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Table 5. Cont.

(b)

No.
Training Testing

E1 E2 E3 E4 E1 E2 E3 E4

1 0.43% 6.62% 3.52% 8.89% 6.39% 6.85% 6.62% 9.00%
2 1.06% 7.69% 4.37% 7.82% 2.08% 3.36% 2.72% 6.78%
3 1.28% 8.12% 4.69% 7.55% 2.63% 5.53% 4.08% 6.86%
4 1.06% 6.62% 3.84% 6.37% 2.49% 3.36% 2.92% 6.39%
5 2.34% 5.34% 3.84% 8.23% 5.75% 5.31% 5.53% 7.77%
6 0.85% 4.49% 2.67% 7.21% 4.08% 3.76% 3.92% 7.70%
7 0.64% 8.76% 4.69% 8.30% 2.36% 5.94% 4.15% 7.65%
8 0.64% 8.76% 4.69% 8.30% 2.36% 5.94% 4.15% 7.65%
9 0.85% 9.40% 5.12% 8.18% 1.72% 5.58% 3.65% 6.76%
10 0.64% 9.62% 5.12% 8.72% 2.45% 5.99% 4.21% 8.05%

Average 0.98% 7.54% 4.26% 7.96% 3.23% 5.16% 4.20% 7.46%

(c)

No.
Training Testing

E1 E2 E3 E4 E1 E2 E3 E4

1 0.55% 4.51% 2.43% 7.14% 9.38% 4.74% 7.06% 8.23%
2 0.69% 2.63% 1.66% 7.43% 1.54% 5.27% 3.41% 8.22%
3 0.64% 3.44% 2.03% 7.44% 3.74% 2.20% 2.97% 8.21%
4 0.96% 3.01% 1.98% 7.13% 9.93% 2.86% 6.49% 7.99%
5 0.69% 2.79% 1.74% 7.36% 1.76% 2.42% 2.09% 8.00%
6 0.59% 3.65% 2.11% 7.07% 2.09% 4.84% 3.47% 7.86%
7 0.64% 3.65% 2.14% 7.75% 6.83% 3.08% 4.95% 8.11%
8 0.85% 2.74% 1.79% 6.82% 4.63% 2.42% 3.52% 7.67%
9 0.69% 3.71% 2.19% 7.62% 1.87% 1.87% 1.87% 8.10%
10 1.12% 3.17% 2.14% 7.45% 4.63% 1.76% 3.19% 8.06%

Average 0.74% 3.33% 2.02% 7.32% 4.66% 3.15% 3.90% 8.05%

(d)

Sample
Size

Training Testing

E1 E2 E3 E4 E1 E2 E3 E4

25 0.35% 3.94% 2.15% 7.11% 4.42% 3.44% 3.93% 7.75%
50 0.98% 7.54% 4.26% 7.96% 3.23% 5.16% 4.20% 7.46%
75 0.74% 3.33% 2.02% 7.32% 4.66% 3.15% 3.90% 8.05%

Average 0.69% 4.94% 2.81% 7.46% 4.10% 3.92% 4.01% 7.75%

Comparison with PM [24] 10.82%

Comparison with STTTA [25] 10.55%

Form Table 5d, the total average detection error rates were 4.10% and 3.92% for the training
and testing data, respectively. On the other side, both the PM and STTTA methods were used to
compute the detection error rates by E4. As a result, with the same evaluation protocol, 7.75%, 10.82%,
and 10.55% were acquired for the CSM, the PM, and the STTTA, respectively. Experimental results
demonstrated that the proposed method performed better in the application of gait pattern detection
than the methods in the literature [25,26].

For each training model, the generated model parameters were different, and the maximum error
rate using different protocol statistics was less than 10%, which showed that the proposed method was
reliable and effective. Of course, choosing the optimal model to further reduce the gait detection error
rate would be the next step in the future.
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3.3. Robustness and Stability

As the on-ground and off-ground statuses were both identified using the CSM, the detection error
rate should be computed for both status robustness.

For the second experiment, ten repetitive training sessions were conducted to calculate the error
rate of each result, and the results were arranged from small to large according to E3 and E4 values, as
shown in Figure 11.

Sensors 2019, 19, x FOR PEER REVIEW 18 of 23 

3.3. Robustness and Stability 

As the on-ground and off-ground statuses were both identified using the CSM, the detection 
error rate should be computed for both status robustness. 

For the second experiment, ten repetitive training sessions were conducted to calculate the 
error rate of each result, and the results were arranged from small to large according to E3 and E4 
values, as shown in Figure 11. 

 

Figure 11. The average error rate of 10 times is counted, and the results are as follows. STTTA, self-
tuning triple-threshold algorithm; PM, proportional method. 

As seen in Table 6, according to the error rate E4 statistics, the worst case is better than the 
other two methods, while the model training only uses GCF data of one subject at different speeds. 

Table 6. Detection error rates of CSM compared with the reference method by training and testing 
ten times with five samples. 

No. E1 E2 E3 E4 
#1 2.71% 8.95% 5.79% 7.31% 
#4 7.32% 8.82% 8.07% 8.44% 
#9 2.75% 7.40% 5.07% 6.81% 
#12 5.28% 8.47% 6.87% 8.34% 
#15 7.90% 12.09% 9.99% 10.50% 

Comparison with PM [24] 10.82% 
Comparison with STTTA [25] 10.55% 

Obviously, the more data are used for training, the higher the accuracy of the model would be, 
and the better the model adapts to the changes of GCF at different speeds with strong robustness. 
The Table 6 indicates that the CSMs can be trained by only one subject and tested by other subjects 
of different weights. 

3.4. Generalization Performance 

Using the above-mentioned trained models, we tested and verified ten people walking for 60 s. 
Once the model had been trained, in real-time gait detection, the model’s input depended only on 
the current and past four sampling points of the sole GCF. The two CSM models respectively detect 
the out-of-synchronization flag events, and the detection results start with a new gait phase. 

Figure 11. The average error rate of 10 times is counted, and the results are as follows. STTTA,
self-tuning triple-threshold algorithm; PM, proportional method.

As seen in Table 6, according to the error rate E4 statistics, the worst case is better than the other
two methods, while the model training only uses GCF data of one subject at different speeds.

Table 6. Detection error rates of CSM compared with the reference method by training and testing ten
times with five samples.

No. E1 E2 E3 E4

#1 2.71% 8.95% 5.79% 7.31%
#4 7.32% 8.82% 8.07% 8.44%
#9 2.75% 7.40% 5.07% 6.81%

#12 5.28% 8.47% 6.87% 8.34%
#15 7.90% 12.09% 9.99% 10.50%

Comparison with PM [24] 10.82%
Comparison with STTTA [25] 10.55%

Obviously, the more data are used for training, the higher the accuracy of the model would be,
and the better the model adapts to the changes of GCF at different speeds with strong robustness.
The Table 6 indicates that the CSMs can be trained by only one subject and tested by other subjects of
different weights.

3.4. Generalization Performance

Using the above-mentioned trained models, we tested and verified ten people walking for 60 s.
Once the model had been trained, in real-time gait detection, the model’s input depended only on the
current and past four sampling points of the sole GCF. The two CSM models respectively detect the
out-of-synchronization flag events, and the detection results start with a new gait phase. Therefore, this
model was fully applicable to real-time gait detection. Similarly, the global Lopez method is combined
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with filtering to label the data, and the comparison is performed by PM, STTA, and the CSM method
proposed. The experimental results are as follows Table 7.

Table 7. Detection error rates of CSM compared with the reference method with 10 samples under
variable speed walking.

Sample E1 E2 E3 E4

#1 2.13% 19.15% 10.64% 6.25%
#2 12.00% 26.53% 19.19% 10.23%
#3 7.55% 16.98% 12.26% 8.02%
#4 8.00% 2.00% 5.00% 5.88%
#5 0.00% 3.70% 1.83% 6.90%
#6 2.13% 0.00% 1.08% 5.53%
#7 1.89% 9.62% 5.71% 6.63%
#8 4.17% 31.25% 17.71% 9.60%
#9 1.96% 7.84% 4.90% 6.98%

#10 0.00% 0.00% 0.00% 7.17%

Average 3.98% 11.71% 7.83% 7.32%

Comparison with PM [24] 10.82%

Comparison with STTTA [25] 10.55%

It can be seen in Table 7 that the detection result of #10 is the best. In evaluation mode 1, the
accuracy of the gait detection result is 100%, and the detection result of #2 is the worst. Figures 12
and 13 show the results of all gait tests.

It can be seen in Figures 12–14 that in the real-time gait detection, the CSM method can obtain
better real-time detection results without the new training model. The more training data, the higher
the accuracy of the model detection, and the more versatile it is.

As a machine learning method, it was important to train data with quality and quantity. We chose
multiple model trainings for different sizes of sample files. Although each trained model parameter
was inconsistent, we achieved good accuracy on the testing set as shown in Figures 12–14, which
indicates that the proposed model had good generalization performance.
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3.5. Advantages of the Research

When compared with the reference method, the proposed method could identify the gait patterns
in real time, and obtain lower detection error rates than the methods [27,28] in the literature. If the CSM
is trained well, it is not necessary to determine the threshold separately. The curve model contains a
change process of plantar GCFs for a period of time, which has higher accuracy and robustness.

For a healthy human, gait pattern detection could be used to evaluate walking conditions.
For people with foot diseases, traditionally, gait pattern detection could be used as quantitative
data along with other temporal parameters (i.e., stride width, walking speed, cadence, and walking
symmetry) to diagnose and prescribe patients’ pathological gaits and evaluate walking conditions after
rehabilitation [23]. Meanwhile, gait pattern detection results would be used in several walking-aid
devices, such as exoskeleton robots and smart wearable intelligent devices, or powered prostheses to
help people with walking disabilities.

Gait pattern detection plays an extremely important role to recognize the user’s intentions in the
applications of exoskeleton robots and powered prostheses. Because the foot contacting the ground
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is directly related to classifying the gait patterns, force sensor platforms are commonly utilized with
exoskeleton robots and powered prostheses.

3.6. Limitation of the Research

In our model, the template curve needs to be trained, and the training time of the model is long.
Once the sensor changes, the model needs to be retrained, and it is difficult to adapt quickly. In our
research, only healthy subjects were adopted on flat ground, not taking the pathological subjects into
account. The experiments were done on a treadmill because the method is not suitable for irregular
terrain and stairs walking.

4. Conclusions

This paper presents a curve similarity model as a classifier for real-time gait pattern detection.
The curve is composed of a series of GCF data points, and the CSM is built offline to obtain a template
curve. Then, the testing curve is compared with the template curve to figure out the similarity distance.
The result of the computed similarity distance would lead to the division of off-ground and on-ground
statuses by comparing the GCF with a given threshold. Finally, the gait patterns could be differentiated
according to the detection rules. Under the same evaluation protocol, the proposed CSM acquired
the lowest average detection error rates of 7.75%, when compared with PM (i.e., 10.82%) and STTTA
(i.e., 10.55%). The experimental results demonstrated that the proposed method performed better in
the application of gait pattern detection than the methods in the literature. Moreover, the proposed
method could be used for real-time gait pattern detection and to detect the gait patterns adaptively.
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