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Abstract: Mobile edge computing (MEC) has become more popular both in academia and
industry. Currently, with the help of edge servers and cloud servers, it is one of the substantial
technologies to overcome the latency between cloud server and wireless device, computation
capability and storage shortage of wireless devices. In mobile edge computing, wireless devices
take responsibility with input data. At the same time, edge servers and cloud servers take charge
of computation and storage. However, until now, how to balance the power consumption of edge
devices and time delay has not been well addressed in mobile edge computing. In this paper,
we focus on strategies of the task offloading decision and the influence analysis of offloading
decisions on different environments. Firstly, we propose a system model considering both energy
consumption and time delay and formulate it into an optimization problem. Then, we employ two
algorithms—Enumerating and Branch-and-Bound—to get the optimal or near-optimal decision for
minimizing the system cost including the time delay and energy consumption. Furthermore, we
compare the performance between two algorithms and draw the conclusion that the comprehensive
performance of Branch-and-Bound algorithm is better than that of the other. Finally, we analyse the
influence factors of optimal offloading decisions and the minimum cost in detail by changing key
parameters.

Keywords: MEC; computation offloading; optimal offloading decision

1. Introduction

With the development of mobile communication technologies and the popularity of smart devices,
a wide variety of network devices and applications emerge in an endless stream. The need for network
performance, such as time delay, is getting higher and higher. At the same time, the processing
power of mobile devices is also getting stronger and stronger but they still cannot handle those
applications requiring great computing power. In addition, processing these applications locally faces
another problem, namely the rapid consumption of battery power. Especially for those applications
that need real time replay such as online games or Virtual Reality (VR) games, traditional cloud
computing architecture does not work well in these fields due to relatively remote geographical
distance. These issues severely impact the application’s efficiency and user experiences. In order to
solve the above problems, the industry has proposed mobile edge computing (also known as Fog
Computing). In 2016, European Telecommunications Standards Institute (ETSI) extended the concept
of mobile edge computing (MEC) to Multi-access Edge Computing, extending Edge Computing from
telecom cellular networks to other wireless Access networks (such as WiFi). In short, mobile edge
computing processes workload from wireless devices locally(such as routers, eNodeB etc.) instead of
sending the workload to remote cloud servers. Note that the edge computing does not aim to perfectly
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substitute cloud computing but to complement it. Edge computing just extends cloud computing to
the network edge [1]. In belief, the ‘fog’ is a cloud but closer to the ground.

Although edge computing can provide a rapid response, the capacity of the edge server is still
limited. It is difficult to process the compute-intensive task (e.g., face recognition, video encoding, etc.)
for the edge server. It is impractical to accomplish those tasks by relying on the edge server alone.
In contrast to the edge server, the cloud server has far more computing power than the edge server
but the cloud server cannot provide a rapid response. So we can combine cloud computing with edge
computing in the real production environment. Making the optimal offloading decision therefore
becomes critical. Bad strategy can cause network congestion, energy waste and task timeouts. In other
words, we need to decide where the task is executing. An important contribution of this paper is
building a mathematical model considering both edge server and cloud server in making the optimal
offloading decisions. In addition, the combination of edge and cloud can save a mount of economic
cost in Internet of Things (IoT). According to the Wikibon IoT Project, Cloud + Edge Computing is 36%
of the cost of Cloud-only Computing when the reduction in data volume is 95%.

As shown in Figure 1, this architecture is composed of a lot of cellular networks and a core cloud
server with unlimited computational capacity. The cellular networks have some wireless devices
(WDs) that are directly connected to a base station with strong but still limited computational capacity.
The WD’s computation task can be executed in three ways: executing locally, offloading it to the
edge server and offloading it to the cloud server. For simplicity, we use ‘thing computing’, ‘edge
computing’ and ‘cloud computing’ to represent them respectively. This architecture is called Combined
Fog-Cloud (CFC) [2,3] or Fog-to-Cloud (F2C) [4]. A typical application of this architecture is Vehicular
Networking (VN) [5]. In the VN the fog servers are hosted by Road Side Units (RSU). In this way,
the fog servers (RSU) can provide single-hop mobile links for vehicles to achieve lower delay and
delay-jitter compared to directly connecting to a remote cloud server. This will greatly improve the
Quality of Service (QoS) of VN applications. In this paper, we will formulate a system model and
employ two methods to obtain the optimal or near-optimal decision to minimize the system cost,
including the time delay and energy consumption in one cellular network.

Although MEC is not as mature as cloud computing [6], there has been a lot of research on MEC.
Deng [3] first mathematically formulates the task offloading decision problem. It decomposes the
primal problem into three sub-problems of corresponding subsystems, which can be independently
solved. The author compared the energy consumption and system delay between cloud computing,
edge computing and cloud-edge computing. In addition, Huang [7], Li [8], Deng [9] and Kao [10] built
the mathematical model and formulate it into an optimization problem to get the minimum system cost
including time delay and energy consumption. Li [8] has proposed a Deep Reinforcement Learning
based algorithm to tackle task offloading in MEC. Huang [7] has proposed a deep learning based
algorithm for MEC and it uses multiple parallel Deep Neural Networks (DNNs) to generate offloading
decisions. Both of them make use of artificial intelligence (AI) technology and achieved significant
results. Xavi [4] has proposed a layered MEC model and introduced the advantages and disadvantages
of this architecture and Xavi [4] focuses on the coordinated management of MEC. There is much similar
research, such as in References [11–16]. All of them solve a binary computation offloading problem in
nature, namely the architecture they have proposed only includes cloud server or edge server. To meet
the needs of the production environment, we must combine cloud computing with edge computing
according to the previous discussion. In addition, all the above authors only focus on how to make
the optimal offloading decision and do not analyse the influence of model parameters variation on
offloading decisions in detail. In this paper, we study the variation of optimal offloading decisions and
minimize system costs based on three types of offloading decisions (executing locally, edge computing
and cloud computing) under different key parameters. Although the real MEC environment is more
complex than the mathematical model proposed in this paper, the simulating result still has directive
significance to a certain degree. The main contributions of this paper are highlighted as follows:
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• We propose a fog-cloud system model considering both energy consumption and time delay
and formulate it into an optimization problem.We employ two algorithms, Enumerating and
Branch-and-Bound, to get the optimal or near-optimal decision for minimizing the system cost
including the time delay and energy consumption.

• We compare the performance of two algorithms and draw the conclusion that the comprehensive
performance of the Branch-and-Bound algorithm is better than that of the other.

• We analyse the influence factors of optimal offloading decisions and the minimum cost in detail
by changing key parameters and the analysis results can direct real production.

The rest of this paper is organized as follows. In Section 2, we present the system model including
the network model, task model and computing model. In Section 3, we described the formulation of
our optimization problem. In Section 4, we introduce our method in detail. In Section 5, we show the
simulation results. Finally, we conclude this study in Section 6.

Figure 1. Mobile Edge Computing Architecture.

2. System Model

2.1. Network Model

Based on Figure 1, we only study one cell (an area served by one fog server), the set of WDs in the
same cell is denoted as N = {1, 2, . . . , N} and we use n to represent the WD in the set N whose index
is n. Based on N , we proposed an offloading action vector A and defined it as A = {a1, a2, . . . , an}
where an represent the offloading decision, respectively—namely the real offloading decision of WD
n. We denote an ∈ {0, 1, 2} to represent three conditions (executing locally, edge computing and
cloud computing) respectively, so we have an = 0, an = 1, an = 2 to represent local execution, edge
computing and cloud computing, respectively. The computation capacity of WD n is denoted as f l

n
(the CPU frequency (Ghz)). Accordingly, the computation capacity of Edge Server and Core Cloud
Server are denoted as f e and f c, respectively.

We assume the bandwidth between WD n and the edge server is denoted as bw
n . Besides,

we assume the bandwidth of edge server, core network and core cloud server is large enough so
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the bandwidth does not become the bottleneck, which means the transport delay (the time transmitting
data from network card to the transmission media) produced by the edge server, core network and
core cloud server can be neglected but the propagation delay (the time of signal propagation from
end to end) of the core network cannot be neglected because the geographical distance between edge
server and cloud server is relatively far in general. For simplicity, we assume that the propagation
delay from the fog server to the cloud server is equal to the propagation delay from the cloud server
to the fog server. So we use t to represent the total propagation delay of the core network in a cloud
computing. In the real system, we can get t by ping command or other more precise method. According
to Chen [11] and Zhang [17] the download data rate is very high in general and the data size of the
result is much smaller than that of input data, so the delay and energy consumption at download step
are neglected in the rest of this paper.

2.2. Task Model

We assume that every WD has one task to process at the same time, we use Bn to represent the size
of the data to be transferred. We use Dn to denote the task size expressed as the total number of CPU
cycles required to accomplish the computation task. Dn reflects the amount of computing resource
required to finish the task. There is a liner relation between Bn and Dn [8]. It can be represented as

Bn = θDn (1)

We assume that whether executed by UE n locally or on the MEC server, the size of Dn remains
the same.

We assume the task cannot be divided into partitions to be processed on different devices, which
means that each WD should execute its task by local computing or offloading computing.

2.3. Computation Model

(1) Local Computing Model: If the n-th WD chooses to execute its task locally, we define Tl
n as

the local execution delay of WD n which only includes the processing delay of local CPUs. The local
execution delay Tl

n is

Tl
n =

Dn

f l
n

(2)

Then, we define El
n as the energy consumption when executing its task locally. The El

n is

El
n = Tl

n ∗ Pd =
Dn ∗ Pd

f l
n

(3)

where Pd represents the power of a Wireless device when a task in a wireless device is executed locally
and we assume the power of WDs is identical.

Combining the time (2) and energy (3) cost, the total cost of local computing can be given as

Ql
n = αEl

n + βTl
n (4)

where α and β represent the weights of time and energy cost of task and the weights satisfy 1 ≤ α ≤
100, 1 ≤ β ≤ 100.

(2) Edge Computing Model: If WD n chooses to offload a task and execute it on the edge server,
we define Te

n as the time cost of the edge computing of the WD n when it chooses to offload a task to
the edge server and it consists of two parts, Te

n,t and Te
n,p. The Te

n,t is the transmission delay and it is
expressed as

Te
n,t =

Bn

bw
n

(5)
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And Te
n,p is the processing delay of edge server, it can be represented as

Te
n,p =

Dn

f e (6)

according to (5) and (6) the Te
n is

Te
n = Te

n,t + Te
n,p (7)

Similarly, the energy cost of edge computing Ee
n is composed of the transmission energy

consumption Ee
n,t and the idle consumption of WD Ee

n,i as well, and their representation as flow

Ee
n,t = Te

n,t ∗ Pt (8)

Ee
n,i = Te

n,p ∗ Pi (9)

where Pt is the transmission power of the WD n and Pi is the idle power and we assume both are
constants. So the Ee

n is
Ee

n = Ee
n,t + Ee

n,i (10)

Combining the time (7) and energy (10) cost, the total cost of offloading computing can be given as

Qe
n = αEe

n + βTe
n. (11)

(3) Cloud Computing Model: If WD n chooses to offload a task and execute it on the cloud
server, we define Tc

n as the time cost and Ec
n as the energy cost under this policy. Tc

n still includes
Tc

n,t and Tc
n,p. Note that the Tc

n,t is equal to the Te
n,t. In addition, Tc

n includes an extra delay caused by
data transmission between the edge server and core cloud server. Because the geographical distance
between the edge server and core cloud server is so far that the delay cannot be neglected, generally
speaking. So we define it as a constant t because the transport delay can be neglected. We define Tc

n,p
as

Tc
n,p =

Dn

f c . (12)

So, Tc
n is

Tc
n = Tc

n,t + Tc
n,p + t (13)

the energy cost of cloud computing is very similar to this in edge computing. So, for simplicity, we
directly give the formula as

Ec
n,t = Tc

n,t ∗ Pt (14)

Ec
n,i = (Tc

n,p + t) ∗ Pi (15)

Ec
n = Ec

n,t + Ec
n,i (16)

Combining the time (13) and energy (16) cost, the total cost of cloud computing is

Qc
n = αEc

n + βTc
n (17)

and the sum cost of all users in the MEC offloading system is expressed as

Qall =
N

∑
n=1

( (1− an)(2− an)

2
Ql

n + an(2− an)Qe
n +

an(an − 1)
2

Qc
n
)

(18)

we assume there are N WDs in the cellular network. We interpret the Formula (18) by simulating a
scene with four wireless devices, that is N = 4. In this scene, device 1 chooses to offload tasks to the
cloud server, that is a1 = 2, device 2 chooses to offload tasks to the edge server, that is a2 = 1, device 3
and device 4 choose to execute locally, that is a3 = 0, a4 = 0. We use (18) to calculate the total power
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consumption, that is, Qall = Qc
1 + Qe

2 + Ql
3 + Ql

4. All of the important notations used in this paper can
be found in Table 1.

Table 1. Notations used in this paper.

N the set of WDs
A offloading action vector
an offloading decision of the n-th WD
f l
n the computation capacity of the n-th WD (Mhz)

f e the computation capacity of edge server (Mhz)
f c the computation capacity of cloud server (Mhz)
bw

n the bandwidth between the n-WD and the edge server (Mbps)
t total time delay introduced by core network
Bn the size of the data to be transferred of the n-th WD (MB)
Dn task size expressed as the total number of CPU cycles required to accomplish the computation

task of the n-th WD.
θ a constant Dn = θBn
α a constant Ql

n = αEl
n + βTl

n
β a constant Ql

n = αEl
n + βTl

n
Pd The full power of WD (W)
Pi The idle power of WD (W)
Pt The transmission power of WD (W)
Tl

n the time delay of the n-th WD to executing computation task locally (s)
Te

n the time delay of the n-th WD to executing computation task on the edge server (s)
Tc

n the time delay of the n-th WD to executing computation task on the cloud server (s)
El

n the energy consumption of the n-th WD to executing computation task locally
Ee

n the energy consumption of the n-th WD to executing computation on the edge server
Ec

n the energy consumption of the n-th WD to executing computation task on the cloud server
Ql

n the total cost (the weighted sum of energy consumption and time delay ) of the n-th WD to
executing computation task locally

Qe
n the total cost (the weighted sum of energy consumption and time delay ) of the n-th WD to

executing computation task on the edge server
Qc

n the total cost (the weighted sum of energy consumption and time delay ) of the n-th WD to
executing computation task on the cloud server

Qall the sum of Ql
n, Qe

n and Qc
n

W total upload bandwidth (MBps)

3. Problem Formulation

In this paper, to minimize the total cost include delay and energy cost with our system model is to
minimize Qall . The minimum cost is denoted by Vmin. In this formula there are two variables we have
taken into account. They are an—offloading mode and bw

n —the bandwidth between the WD n and the
edge server. So, we can formulate an optimization problem to minimize Qall , which is expressed as
follows:

Vmin = minimize
A,B

N

∑
n=1

( (1− an)(2− an)

2
Ql

n + an(2− an)Qe
n +

an(an − 1)
2

Qc
n
)

s.t. C1 :
N
∑

n=1
bw

n≤ λ

C2 : bw
n≥ 0, ∀n ∈ N

C3 : an∈ {0, 1, 2}, ∀n ∈ N

(19)

where A = [a1, a2, . . . , an] is the the offloading decision vector and B = [bw
1 , bw

2 , . . . , bw
n ] is the

bandwidth allocation. C1 represents the total bandwidth in this system are limited and the total
up-link bandwidth allocated for all users cannot exceed the maximum bandwidth λ. If computation
tasks are aggressively offloaded to the edge server or cloud server, a severe congestion will occur on
the uplink wireless channels, which leads to a significant delay in executing computation tasks. So
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it is necessary to limit the bandwidth.C2 represents the bandwidth allocated to every WD is can not
be negative. C3 represents the offloading decision just has three modes and only takes three values 0,
1 and 2.

The optimization problem (19) is a mixed-integer programming problem, which is difficult to
solve in general. Traditional heuristics and evolutionary algorithms(e.g., Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), etc.)can not directly solve this problem. In this paper, we employ
two methods to solve this optimization problem (19). One is an enumerating algorithm, the other is a
Branch and bound algorithm. In the following Sections the detail of these two methods showing as
follows.

4. Problem Solution

4.1. Enumerating Algorithm

The reason mixed-integer programming problems is difficult to solve is there are some integer
variables in the objective function, nonlinear or integer programming algorithms alone cannot handle
this. In other words, if we take those integer variables with determined values, namely we provide
the offloading mode vector A, the origin optimization problem (19) becomes a common nonlinear
programming problem only with the bandwidth allocation vector B:

minimize
B

N

∑
n=1

( (1− an)(2− an)

2
Ql

n + an(2− an)Qe
n +

an(an − 1)
2

Qc
n
)

s.t. C1 :
N
∑

n=1
bw

n≤ C

C2 : bw
n≥ 0, ∀n ∈ N

(20)

where, towards a common nonlinear programming problem, the python library scipy can solve this
kind problem reliably. So we can produce all possible offloading modes in one decision process, then
use scipy to produce corresponding optimal values for every possible offloading mode and choose the
minimum one as the output. The detailed algorithm is shown in Algorithm 1. We called this algorithm
the Enumerating Algorithm (EA).

Algorithm 1: Enumerating Algorithm.
Input: The number of WDs n, n dimensional task size vector d
Output: Optimal offloading decision vector mod, the minimum cost value min and

bandwidth allocation vector m
1 Initialization: Create objective function Q(x, y, z) and constraint condition, where the x, y, z

represent task size vector, offloading decision vector and bandwidth allocation vector
respectively.;

2 Create variable min (The initial value is set to inf) and mod as the minimum cost and
corresponding offloading decision.;

3 Based on n generate all possible offloading decision matrix m, It has 3n row and n column ;
4 for t = 1, 2, . . . , 3n do
5 Substitute d and m(t,:) into the Q(x, y, z) and we can get the formula Q(z);
6 Substitute Q(z) and constraint condition into optimization function in scipy we can get the

minimized value v1, corresponding offloading decision m1 and bandwidth allocation
vector b1;

7 if v1 < min then
8 min = v1, mod = m1, ba=b1;

9 return min, mod, m;
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The advantage of this algorithm is obvious, that is, it can get a more reliable solution. In this paper,
we consider it the global optimal value but this enumerating algorithm has a serious disadvantage—the
time complexity of this algorithm is O(3n), namely time increases exponentially with the number
of tasks. It is unsuitable for a scenario with a large number of devices but the Branch and Bound
algorithm can get the result relatively rapidly. The time consuming comparison between Enumerating
Algorithm and Branch and Bound algorithms is shown in Section 5.

4.2. Branch and Bound

Branch and bound is one of the most commonly used algorithms for integer programming
problems. This method can solve not only pure integer programming but also mixed integer
programming. The branch and definition is to search all feasible solution Spaces of the constrained
optimization problem (whose feasible solution is finite number) properly. The total solution space is
usually iteratively divided into smaller and smaller subsets called branches and a target lower bound
(for the minimum problem) is calculated for the solution set in each subset, which is called bound.
After each branch, if the target value of a known feasible solution set cannot reach the current limit,
then the subset is discarded. Thus, many subsets are not considered, which is called pruning. This is
the idea of the Branch and Bound. More detailed information about the algorithm can be found on
Wikipedia. In this work, we use an improved third-party Matlab function to solve this mixed-integer
programming problem (19) directly. We only need to convert (19) into matlab structure and put it
into the Branch and Bound function to solve it. Then we can get the approximate optimal value and
corresponding offloading decision and bandwidth allocation. The time complexity of this algorithm is
between O(n2) and O(2n). Furthermore, our experimental results show that the time consumption of
the Branch and Bound Algorithm is only one tenth of the Enumerating Algorithm. This experimental
result is shown in Figure 2. We discuss the precision of this algorithm in Section 5.

0 20 40 60 80 100 120 140 160 180 200
0

500

1,000

task index

ti
m

e
de

la
y(

s) Branch and Bound
Enumerating

Figure 2. Time consumption.

5. Simulating Results and Analysis

In this section, we use the above two proposed algorithms to solve this mixed-integer
programming problem (19) and get the numerical results. Then we compare the performance of
the two algorithms. We also study the variation trend of the total cost and offloading decision through
multiple simulations. For the setting of system model parameters, we have referred to References [7,8].
In our simulation, we set the number of WD as 9 and assume every device has one task to make a
offloading decision. Then we set the f l

n, f e and f c as 1000 MHz, 3000 MHz and 5000 MHz respectively.
In addition, we set α = 10, β = 1, θ = 100, t = 0.25, W = 150. At last, The Pd, Pt and Pi are set as
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0.5 W, 0.3 W and 0.1 W, respectively. We vary the task size Bn from 500 to 5000. The experimental
environment is:

• CPU:Intel(R) Core(TM) i7-4790 CPU@3.60 GHz
• Memory: 8 G DDR3 1600 MHz
• OS: Windows 8.1

5.1. Performance Comparison

Time consumption is an important indicator for evaluating algorithm performance. As shown in
Figure 2, we have computed 200 tasks and the result is quite clear. The time consumption of the Branch
and Bound (BB) algorithm is much less than the Enumerating Algorithm’s. The average time cost of
both algorithms is 96.9 s and 1142.8 s, respectively. The accuracy rate is another important indicator.
In this paper, we use the cost value generated by the Enumerating Algorithm as the minimum value
and consider the corresponding offloading decision as the optimal decision. So, we use the ratio of
the cost value obtained by Enumerating algorithm to the cost value obtained by Branch and Bound
algorithm as the accuracy rate of the Branch and Bound algorithm and is shown in Figure 3. We can
see that the lower accuracy rate of the Branch and Bound algorithm is higher than 93% and the
average accuracy rate acquired by statistics is 97.63%. It means we only lose the negligible accuracy
rate but we get more than tenfold arithmetic speed compared to the EA. Note that the result is
produced by the System model which only possesses 9 WDs, that is, there is a rapidly growing time
consumption gap between BB and EA as the number of WDs on the same cellular network increases.
In large-scale simulations and industrial applications, for the proposed mixed-integer programming
problem, the Branch and Bound algorithm is much better than the Enumerating Algorithm.

0 20 40 60 80 100 120 140 160 180 200

0.94

0.96

0.98

1

task index

EA
co

st
va

lu
e/

BB
co

st
va

lu
e

Figure 3. The accuracy rate of the Branch and Bound algorithm.

The BB algorithm also can apply to a similar edge computing model to get the optimal offloading
decision if it can be formulated into a mixed-integer programming problem, such as References [7,8,18].
A comparison between the BB and Enumerating Algorithm can be found in References [7,8,18] and we
will carry on the research in the future work.

In the following experiment, all the experimental results are generated by the Branch and Bound
algorithm.

5.2. Influence Analysis of Model Parameters

Before studying the effects of the parameters, we think it is significant to study the change in the
optimal offloading decision caused by the task size on different scales. We generated another two sets
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of random numbers that obey uniform distribution with 200 entries. One varies from 1 to 50, the other
varies from 10 to 500. The cost value is shown in Figure 4. Their average cost values are 69.5, 6.4533
and 0.6245, respectively. In addition, we counted the number of each decision for each set of tasks and
this is shown in Figure 5. It is obvious that the minimum cost value of the three sets of data fluctuates
around the mean and the greater the variation range of the task size, the greater the fluctuation range.
According to Figure 5, we can conclude that when the task size is generally large the WD tends to
offload tasks to the cloud server to get a lower cost value.

0 20 40 60 80 100 120 140 160 180 200
0

20
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120

task index
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st
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e

task 500-5000
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Figure 4. Cost value comparison.
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Figure 5. The number of each decision for each set of tasks.
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We simulated different real environments by changing the parameters of the model. In this
way, we could quantitatively study the variation of the optimal offloading decision under different
environments. That is of great significance for industrial application, for example, we can dynamically
adjust the number of edge servers or cloud servers according to currently optimal offloading decision
when the environment changes. In this subsection, we consult industrial experts in this field and
refer to relevant cases, finally we select the three most significant parameters α, β and the total upload
bandwidth W. For simplicity, we denote the ratio of α to β as η. In the following experiment, we will
assign specific values to η and W. For simplicity but without loss of generality, we randomly select 10
entries from above three task set as experimental data set. Table 2 lists the possible values of those
parameters.

Table 2. The possible values of parameters.

η [0.01, 0.05, 0.1, 1, 5, 10, 20, 50, 100]

W [10, 20, 50, 100, 150, 200, 500, 1000, 2000]

Figure 6 shows the cost values under different parameters η and W (other parameters keep the
initial value). It is obvious that the cost value is inversely proportional to W and directly proportional
to η (this conclusion can also be drawn through analysing formula (18)).
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W=200
W=500
W=1000
W=2000

Figure 6. The cost values under different parameters.

Figure 7 shows the offloading decision count under different parameters η and W (other
parameters keep the initial value). Each point in the figure represents the sum of WDs (y value)
choosing a certain offloading decision (color) under current parameter(x value). It is obvious that
there are no WDs choosing to offload their task to the edge server when the eta is relatively small,
namely the energy consumption accounts for a small weight in the total cost. That is, we can reduce the
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number of cloud servers and add edge servers to improve system performance and save the financial
expense. As the η increases, the number of three offloading decisions tends to steady and the number
of WDs choosing to offload tasks to edge server is the largest. Based on this, we can deploy more edge
servers to maximize system performance at energy-conscious scenario.

As the W decreases, the number of WDs choosing to execute locally will reduce to zero. That is,
computing tasks are not performed locally. It means that if the bandwidth is big enough the terminal
wireless device requires only very weak computing power to perform most tasks. 5G technology
greatly improves the upload and download bandwidth. If the 5G technology and the mobile edge
computing technology can be effectively combined, this can bring revolutionary change to the industry,
for example, smart phones will become a display device with communication ability and weak
computing power. This can greatly reduce the costs.
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Figure 7. Offloading decision comparison.

6. Conclusions

In this paper, we proposed a global cost model that takes time delay and energy consumption
into account and formulated it into an optimization problem. Then, we employed two algorithms,
enumeration and Branch-and-Bound, to resolve this optimization problem. While satisfying high
accuracy, the Branch-and-Bound algorithm can get the result more quickly so it is more suitable for
practical application. In addition, we simulated the changing trend of unloading decisions in different
environments. In the future, we intend to combine artificial intelligence algorithms to further increase
the speed of operation.
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