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Abstract: Geospatial products, such as digital elevation models (DEMs), are important topographic
tools for tackling local flood studies. This study investigates the contribution of LiDAR elevation
data in DEM generation based on fixed-wing unmanned aerial vehicle (UAV) imaging for flood
applications. More specifically, it assesses the accuracy of UAV-derived DEMs using the proposed
LiDAR-derived control point (LCP) method in a Structure-from-Motion photogrammetry processing.
Also, the flood estimates (volume and area) of the UAV terrain products are compared with a
LiDAR-based reference. The applied LCP-georeferencing method achieves an accuracy comparable
with other studies. In addition, it has the advantage of using semi-automatic terrain data classification
and is readily applicable in flood studies. Lastly, it proves the complementarity between LiDAR and
UAV photogrammetry at the local level.
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1. Introduction

Projected increases of heavy rainfall, based on climate models, are expected to aggravate local
floods [1]. Thus, effective spatial tools are required by governments and societies to take action
against increasing exposure to natural hazards [2]. Geospatial products, such as digital elevation
models (DEMs) are useful topographic representations of space and have some specifics for flood
studies [3,4]. In a further explanation, the DEM concept has been considered in the same way proposed
by Polat et al. [5], which refers to DEM as the Z-dimension of the terrain digitally. There is also the
digital surface model (DSM) that include natural and man-made objects. Highly detailed terrain
modelling is usually produced from data obtained by active sensors such as airborne light detection
and ranging (LiDAR) [6,7]. The bare ground representation in the form of DEM from these sources
is the basis of urban [8–10] and peri-urban local flood studies [11]. LiDAR technology have as main
advantages of its laser energy penetration to the ground, for instance, through canopies [7]; however,
the cost and complexity of the data acquisition involved implies that such airborne data is not always
easy to update, or sometimes is only partially available [5].

The development of photogrammetry techniques based on Structure from Motion Multi-View
Stereo (SfM-MVS) of images acquired by low-cost cameras in unmanned aerial vehicle systems (micro
UAV, ≤ 2 kg) has seen a strong development in the last decade [12]. This, together with the SfM-MVS
processing in a single workflow, allows the DSM and DEM generation [13,14]. Although one of its main
technical drawbacks is the time required for image processing [15]. However, the (relative) flexibility
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in image acquisition and the increasing offer of robust SfM-MVS processing software, have made UAV
photogrammetry a valid low-cost alternative to piloted airborne LiDAR technology [5,14]. Studies
show that image based UAV-derived DEMs are comparable to LiDAR for fluvial flood assessment
applications [16–19], such as flood extent and volume estimations. Leitao et al. [20] showed that is
possible to obtain detailed DEMs in urban environments from image based UAV platforms with quality
comparable to LIDAR data (in terms of the difference between DEMs), and found that a realistic
representation (resolution < 1 m), plays a fundamental role in the surface flow modeling. Therefore, it
concludes that micro UAVs are a useful solution for describing urban landscapes. In the literature there
are more examples of the functionality of UAV images in 2D urban hydrodynamic modelling [21,22],
flood risk management and emergency response [23,24], and mapping of difficult-to-access areas [25].
It is widely accepted that the UAV-derived DEM accuracy from SfM-MVS, i.e., aerial or terrestrial
photogrammetry processing, is influenced by flight design and planning factors, such as GSD (ground
sample distance), inclusion (or not) of oblique images, sensor and camera lens, flight pattern and
georeferencing method, etc. [26]. As a rule of thumb in UAV photogrammetry, vertical accuracy for a
DEM obtained must be between one and three times the GSD of input imagery [27–29]. The impact of
the georeferencing method on the accuracy of SfM-MVS products is critical, and also well established
in the literature. Georeferencing is usually classified as: (i) direct, by means of UAV navigation (GPS/

IMU) instruments, and sometimes corrected in real time by GPS-RTK [30,31]; and (ii) indirect, through
established ground control points [32]. Usually, the classical indirect georeferencing is considered the
most accurate method [33]. Depending on the size of the UAV SfM-MVS project, ground control point
determination can become a challenging task due to its time-intensive nature [34], and constraints
found on the terrain [14].

Using existing elevation data, for example from airborne LiDAR, can be an alternative for
georeferencing a UAV photogrammetric project. The literature shows the complementarity between
LiDAR, as an alternative source for ground control points, and photogrammetry of airborne
imagery [35–38]. Liu et al. [35] and James et al. [37] suggested the use of non-physical or virtual
control points called “LiDAR-derived control points”. This complementarity has been recently exploited
with high-resolution imagery by a multi-rotor UAV platforms and terrestrial LiDAR data for 3D city
modelling [39]. Persad et al. have proposed the use of LiDAR data and SfM-MVS image processing for
modelling applications and DEM generation in a deltaic area [40,41]. However, there is no reference that
shows the contribution of LiDAR data in DEM generation from fixed-wing UAV imagery, especially in
flood assessment applications for estimation of areas and volumes. To validate the present contribution, it
is necessary to compare UAV photogrammetric products with independent external elevation data [42,43]
and with standard reference surfaces (e.g., LiDAR) for flood analysis [16,20]. If this complementarity is
confirmed, the use of existing airborne remote sensing data (e.g., LiDAR databases) will prove to be an
alternative georeferencing method for UAV researchers and flood specialists in order to obtain useful
DEMs for local-level studies.

This work aims to investigate if LiDAR elevation data can be used in DEM generation from
fixed-wing UAV imagery for flood applications. More specifically, it aims to (i) assess the accuracy
achieved in DEM from the SfM-MVS processing chain using LiDAR-derived control points (LCPs);
(ii) test the performance of two software applications used for DEM processing and (iii); compare flood
estimations of volume and area between DEMs based on UAV and LiDAR data (reference).

This paper is organized as follows: Section 2 describes the equipment employed and the methods
followed: UAV surveys, LCP collection, image processing for DSM and DEM generation (SfM software
comparisons), flood applications and assessment methods. Section 3 discusses the accuracy of the
method, and then, after its validity is confirmed, the flood results. Section 4 is devoted to the discussion,
and Section 5 presents the conclusions.
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2. Equipment and Methods

2.1. Case Study Description

The broader location of the study area is the Northwest part of the coastal city of Riohacha
(Colombian Caribbean), shown in Figure 1. This zone is bounded to the North by the Caribbean Sea,
to the East by the Ranchería river delta and to the South and West by the inner-city districts. The area
under study is a peri-urban zone with the lowest elevations in m above sea level (a.s.l.) within the
city bounds, highly exposed to fluvial and pluvial urban floods. The terrain is characterized by a flat
relief with occasional undulations; terrain elevations range from 8 m in the South, down to values
near 0 m a.s.l. in the North (the coastline). The choice of the study area is based on two criteria: first,
local interest due to its high exposure to severe storm flooding, as occurred in the course of El Niño-La
Niña (2010/2011) [44,45]; second, the availability of previous hydrological and LiDAR elevation data,
outlined by the red and blue lines in Figure 1. Additionally, the Riohacha context was selected as an
emblematic case of emerging cities with high population growth rates and vulnerability to natural
hazards thus raising scientific interest as shown in Nardini and Miguez [44].
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Figure 1. Map of the selected study area and location of control points for DEM generation. Hydrologic
sub-basin (red dashed polygons) and numbers (bold type) were delineated and coded from local flood
simulations performed by Nardini and Miguez [44].

2.2. Methodology

The methodology consists of four stages (Figure 2): Stage 1 describes the survey planning and
LCPs determination; Stage 2 describes the image processing. Stages 3 and 4 are the main focus of
this study.

2.2.1. Stage 1. Flight Planning, UAV-Based Surveys and LCPs (Proposed Method)

UAV flights were carried out within the framework of a collaborative humanitarian mapping
project, “Mapatón por La Guajira” in February 2016 [46]. The main UAV flight objectives were: (1) To
generate an orthophoto for object digitalization under the OpenStreetMap standard; (2) to survey
an area greater than the one previously available in elevation and hydrological datasets for UAV
flood research (Figure 1). The eBee™ SenseFly UAV platform was used in this study (Appendix A,
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Table A1). The system is equipped with consumer-grade on-board Global Positioning System (GPS) and
inertial measurement Unit (IMU) modules for autonomous navigation and further image geotagging.
The payload was a non-metric RGB camera with a CMOS active pixel sensor technology.Sensors 2019, 19, x FOR PEER REVIEW 4 of 21 
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Figure 2. General outline of the methodology.

In order to find a balance between flight objectives and available funding, 3 flights were agreed
upon with the UAV pilot. The resulting GSD for each flight was of ~10.3 cm/pixel (∼325 m AGL).
A careful local risk analysis was carried out based on the Colombian UAV regulation ([47], September
2015) to assure that the flight design was safe. The assessment determined that the risk was minimal if
executed in the early hours of the day when there are no piloted operations, and wind velocities are
low. After inspecting the flight area and selecting a safe take-off and landing site, a platform inspection
was carried out to rule out in-flight loss of control. After this, the programmed flights were executed by
the pilot in accordance with the local UAV regulations. The flight plan execution, in-flight monitoring
and camera trigger were managed by the eMotion flight mission software (Lausanne, Switzerland),
which is able to handle multiple flights, and further geotag images during post-flight processing [48].
Images and flight data were stored and saved for processing at Stage 2. Technical parameters for the
UAV-Based surveys are in Table 1.

Table 1. Summary of technical parameters for UAV-based imaging surveys on the study area.

Parameter Result

Imagery acquisition date: 17/02/2016 (6 to 10 am); cloudy day and low wind velocity [46].
Flight plan area 5.37 km2 (537 ha). Flight 1: 0.9 km2; flight 2: 2.2 km2 and flight 3: 2.2 km2 (see Figure 1):

Ground sample distance, GSD ~ 10.3 cm/ pixel (single image footprint on the ground ~473 m × 355 m)
Flight height: ~ 325 m AGL (height above ground level). Reported by on-board GPS flight log

Overlap/ grid pattern/ strips 80% (longitudinal)/ simple grid [24]/ 19 overlapping strips captured at nadir angle
Number of flights/images: 3 flights, one of 8 min and two of 20 min each, approximately 467 images acquired



Sensors 2019, 19, 3205 5 of 20

Figure 3 shows general methodology of the proposed georeferencing procedure. Control point
determination in Stage 1 was in turn divided into two steps.
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First, five ground control points (GCPs, Figure 1, green triangles) were determined with a
millimetric precision total station (Figure 3a), and were used exclusively for the geometric correction of
the orthomosaic by using the SfM processing chain (Figure 2). The orthomosaic resolution was set to
1 × GSD (10.3 cm/pixel); a maximum of 20.6 cm in horizontal error is assumed (2 × GSD) [26]. The
georeferenced orthomosaic was used as input to extract positional X,Y control point coordinates.

Second, with the aim of densifying well-defined control points, manual identification of surface
features in the generated orthomosaic was performed, with the support of a shaded relief map [37]
(Figure 3b). Positional X,Y control point coordinates of surface features were determined using ArcMap,
from ArcGIS® Software (Redlands, CA, USA). These control points were all characterized by being
located on plain terrain, easily recognizable, and were taken as stable over the period between the
capture of the LiDAR (2008) and UAV datasets (2016). Altimetric Z values of final LCPs were extracted
from the reference LiDAR DEM (2008) for each control point (X,Y) coordinate labeled. The ArcGIS®

“Extract values to points” tool (with the option “Interpolate values at the point locations” selected),
was used to assign the Z value for each control point. The total number of LCPs with known X,Y,Z
coordinates distributed in the study area was set to 13; this value is near the recommended range
suggested in the literature [16,49]. Lastly, these 13 LCPs were used in Stage 2 to generate the final
DEMs (and DSMs) from SfM-MVS UAV-based image processing.

The LiDAR dataset was acquired in 2008 by the Colombian maritime national authority, DIMAR,
for a coastline survey. The sensor used was a Leica ALS540 mounted on a Cessna 402B piloted platform,
flying at an altitude of approximately 900 m AGL [50]. The horizontal LiDAR nominal point spacing
reported was between 1 and 1.3 m, with a final density of approximately 0.7 points/m2. A “Model
key point” ground classification was performed with the proprietary LiDAR contractor software
MARS® [51], with a density of around 0.25 points/m2. Based on the above metadata, we assume that
the LiDAR dataset falls within the vertical accuracy of ASPRS 20 cm class [42] and quality level QL3
(≤20 cm RMSE), according to USGS specifications [52]. The expected accuracy of modern LiDAR (e.g.,
vertical <10 cm RMSE, see Zhang et al. [53]), should fall within the high accuracy classes by USGS and
ASPRS standards. The description of the orthometric height correction of the 1 m TIN-based LiDAR
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DEM (and DSM) are found in Escobar et al. [54]. The LiDAR-based DEM (as well as the DSM), was
also included in the assessment in order to verify its accuracy as control surface for LCP extraction.

2.2.2. Stage 2. Photogrammetric Processing of UAV-Based Imaging for DEM Generation

The Structure from Motion (SfM) algorithms of Multiple-View Stereo (MVS) images were used
to process UAV-based images using LCPs. SfM-MVS photogrammetry is an automated image-based
procedure that simultaneously determines 3D coordinates (structure) by the motion of the camera and
is used for UAV-image based photogrammetry [15,27,55]. In contrast to conventional photogrammetry,
SfM techniques allow the determination of internal camera parameters, as well as its pose, by using
direct georeferencing [56]. In the present study, the most common SfM-MVS software suites were
used: Agisoft PhotoScan® Professional v.1.1.2, and Pix4Dmapper® Pro v.4.1.23 [15,56]. Both are
commercial packages that use similar algorithms [57,58], however, the motivations in this paper were
to estimate the vertical precision and explore the differences in the processing and interaction of the
user with the software. This was one of the fundamental reasons why these SfM-MVS tools were
chosen. The suites use modified known algorithms similar to the widely used SIFT for feature matching
and key-point extraction [59]. Usually, the exterior orientation is possible by employing geotagged
data to perform a bundle block adjustment and an iterative Newton’s computer vision method
(i.e., Gauss-Markov [60]). The georeferenced sparse point cloud is obtained first, then re-optimized
with external control points (absolute georeferencing), and later densified by custom pixel matching
autocorrelation MVS algorithms [61]. Details of the hardware used for image processing are in
Appendix (Table A1). The purpose of using both SfM-MVS suites is to generate accurate UAV-derived
DEMs (and DSMs) employing the same input dataset of geotagged imagery and control points (LCPs).
For the above, two strategies were tested: (a) PhotoScan used as a semi-automated chain process;
(b) Pix4D used as a fully-automated process. The general photogrammetric processing is shown in
Figure 2 (Stage 2). During the sparse cloud generation, no manual edition of outliers and wrong located
points was done. The set of 13 LCPs (Figure 3b) was tagged manually on the imagery dataset for the
re-optimization of the initial photogrammetric procedure. Processing settings for both strategies are
shown in Table 2.

Details for each strategy for DSM and DEM generation are described as follows:
PhotoScan: The workflow followed was Agisoft’s protocol for DEM generation [62]. Based on the

estimated camera positions, PhotoScan calculates depth information for each camera to be combined
into a single dense point cloud [57]. Dense cloud points corresponding to permanent water bodies
were edited out. The ground filtering algorithm applied was the two-step approach based on the
adaptive TIN algorithm described by Axelsson [63]. This algorithm divides data into square grids
wherein a temporary TIN model is created first, and then densified with new points by calculating
distance and angle parameters. The process is iterated, guided by user criteria, until all points of the
terrain model are classified by adjusting the settings of the parameters shown under”Classifying dense
cloud points” in Table 2. DSMs and DEMs were rasterized based on mesh data. The final raster DEM
was created from dense classified “ground” points.

Pix4Dmapper: The software’s graphic user interface allows to follow the workflow in three
steps [58]. The initial step involves a fully automatic iterative proprietary algorithm for bundle block
adjustment and sparse cloud point generation (Step 1). A custom MVS matching algorithm is applied
for sparse cloud densification (Step 2), and then, the inverse distance weighting algorithm (IDW)
interpolation is used for DSM generation (Step 3). The raster DEM was generated by selecting the
“Point cloud classification” parameter (Table 2). Terrain extraction and DEM generation is based on
fully automatic custom machine learning algorithms that classify the dense point cloud generated in
typical semantic class labels, e.g., bare earth, buildings, vegetation and roads [64]. The user has no
prior control in the training of the classification algorithms.
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Table 2. Settings for the SfM-MVS processing chain of UAV-based image with the applied LCPs.

PhotoScan (semi-automatic) Pix4Dmapper (automatic)
Parameter Selected/ Value 1,2,3 Parameter Selected/ Value 1,2,3

Align photos Initial processing
Accuracy “High” Keypoint image scale “Full”

Pair selection “Reference” Matching image pairs “Aerial Grid or
Corridor”

Reprojection error (pix) 1 1.97 Reprojection error (pix) 1 0.19

Control point accuracy (pix) 2 0.16 Control point accuracy (pix) 2 0.65
Camera optimization (%) 3 1.90 Camera optimization (%) 3 0.21

Sparse cloud (point/m2) 0.04 Sparse cloud (point/m2) 0.12

Build dense Cloud Point cloud densification
Quality “Medium” Point density “Optimal”

Deep filtering “Mild” Min. number of matched “3”
Dense cloud (point/m2) 6.4 Dense cloud (point/m2) 6.6

Classifying dense cloud points “Ground points” Point cloud classification “Classify Point Cloud”
Cell size (m) “40” - -

Max distance (m) “0.3” - -
Max angle (deg) “5” - -

Ground cloud (points/m2) 2.09 Ground cloud (points/m2) 3.51
Build mesh - -
Source type “Height field (2.5D)” - -
Point classes - -

[Surface mesh] “Created (Never
classified)” - -

[Terrain mesh] “Ground” - -

Build DEM← [from surface mesh] Raster DSM
Source data “mesh” Method “Inv. Dist. Weighting”

Interpolation “Enable (default)” DSM filters [all checked]
Resolution [default value] Resolution “Automatic” [1 × GSD]

40.84 × 40.84 cm 10.35 × 10.35 cm
Build DEM← [from terrain mesh] Additional outputs

Source data “mesh” Raster DTM 4 [checked]
Interpolation “Enable (default)”

Resolution [default value] Resolution “Automatic” [5 × GSD]
40.83 × 40.83 cm 51.73 × 51.73 cm

1 Quality indicator used as a basis for 3D point reconstruction during bundle block adjustment; values ≤ 1 pix are
better. 2 Quality indicator (pix) of control point manually tagged on imagery (mean value for 13 LCPs); pix values ≤ 1
are better (the error is less than the average GSD. 3 Relative difference (%) between initial and optimized internal
camera parameter values (focal distance, pixel), lower values are better. 4 DTM (digital terrain model).

2.2.3. Stage 3. UAV-Derived DEM Accuracy Assessment

To assess how well the UAV-derived DEMs obtained in Stage 2 represent the ground truth,
a number of high precision observations (n = 104) were employed. This dataset (2018) was based on
traditional surveying (millimeter range precision) made available from the city’s urban planning office
(data from a replacement sewage pipe project [65]). The location of these checkpoints is distributed
in the south and north zones of the study area, and is limited to those areas with less probability of
variation (Figure 4), mainly road or street intersections (yellow lines).

This elevation dataset is taken as independent ground truth data in order to perform statistics
of the difference (∆Z) from the observed value of the checkpoint (Z) and the ones from UAV-derived
DSMs and DEMs (PhotoScan, Pix4D). The Z elevation from the checkpoint, as well as those from the
UAV and LiDAR-based models were extracted for the same horizontal checkpoint location using the
ArcGIS extraction toolset “Extract multi values to points”. To make the comparison of elevations in
models possible, the MAGNA-SIRGAS (EPSG 3116) coordinate system reference was applied to all
data sets.

Two methods were tested to assess DSM and DEM accuracy. The first method is based on the
root mean square error, RMSE, which is commonly used under the assumption that the set of {∆Z} is
normally distributed and is located over open areas not prone to outlier influence [42]. The second
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method is a measure of accuracy based on robust estimators, suggested in Höhle et al. [43,66], the
Normalized Median Absolute Deviation (NMAD):

NMAD = 1.4826 · mediani(|∆Zi − m∆Z|), (1)

where m∆Z is the median of the errors, and ∆Zi are the individual errors. NMAD is thus proportional to
the median of the absolute differences between errors and the median error. It is a measure of accuracy
that does not require a priori knowledge of the error distribution function [67] and especially useful in
non-open and built-up terrain [43].

Basic statistical analysis for ∆Z, such as mean, standard deviation and median were also employed,
together with histograms and box plots; normality tests for error distributions (∆Z residuals) were
performed (Shapiro–Wilk test).Sensors 2019, 19, x FOR PEER REVIEW 8 of 21 
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In order to compare our DEM performance with similar studies, the assessed vertical error-to-GSD
ratio was determined. This ratio is somewhat of a rule of thumb in the UAV photogrammetry literature
based on RMSE. Its values range from approximately 1 to 3 times the GSD for correctly reconstructed
models [27,68]. Assuming that the LiDAR reference accuracy from where the LCPs were extracted is
≤20 cm (Section 2.2.1), the expected absolute accuracy (RMSE) for the obtained models are within the
range of 20.6 – 30.9 cm (from 2 to 3 times the GSD). Likewise, expected accuracy ranges based on NMAD
are given by Bühler [29] and Zazo [67]. Therefore, the expected ranges are between 11.5–23.7 cm (i.e.,
relative accuracy from 1.1 to 2.3 times the GSD).

2.2.4. Stage 4. Flood Estimations from UAV-Derived DEMs

Finally, to test the performance of flood estimations of UAV-derived DEMs with respect to the
LiDAR reference [16,20], two criteria were considered: first, a comparison based on the calculation
of flood volume (V) and area (A) for a historical extreme event; second, a comparison based on the
similarity of flood accumulation.

First: The percentage differences (errors) in area and volume (VDIF, ADIF) of UAV-based DEMs
were calculated with respect to the LiDAR-based DEM for a local extreme flood event, according to
Equations (3) and (4) [11]:

VDIF =

∣∣∣VPhotoScan,Pix4D − VLiDAR
∣∣∣

VLiDAR
100% (2)

ADIF =

∣∣∣A PhotoScan,Pix4D − A LiDAR
∣∣∣

ALiDAR
100% (3)
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Second: Another criterion used to test the performance of flood estimation is based on the
similarity of areas and volumes between the LiDAR reference and UAV-derived DEMs for each
sub-basin. A and V were estimated for 10 depth-filling time interval (timesteps). These timesteps were
defined as blocks of discrete filling simulations (at a fixed interval), where the flood elevation was
increased in each DEM until it reached its maximum for the extreme flood event. The 10 time steps
were compared to the LiDAR reference using the Bray-Curtis (Sørensen) index [69] for each DEM.
These normalized values range from 0 to 1, where 0 represents exact agreement between two flood
estimation datasets.

The spatial modelling tool used to estimate flood volume and area for a given UAV-derived
DEM was the r.lake.xy hydrological module from GRASS GIS [70]. This module fills the DEM with
a water elevation (H) at a seed point. The seed point elevation (Zsp) for a given flood elevation H
(Zsp + h) is approximately located at the lowest point for each DEM. The flood depth (h) was obtained
from hydrodynamics simulations for a historical flood (which occurred on 18/09/2011) performed
by a MODCEL© model [44,71]. Flood volumes and areas were estimated for each DEM sub-basin
(Figure 1). The corresponding H inputs can be seen in Table 3.

Table 3. H (m) input used for a flood event estimation for each DEM sub-basin.

Sub-Basin Comment 1 LiDAR H PhotoScan H Pix4D H

704 Constituted entirely by urban
cover (0.32 km2); h = 1.22 1.48 1.35 1.80

705 Also constituted by urban
cover (0.19 km2); h = 0.29 1.32 0.79 1.28

703 Adjoining outlet of Sub-basin
603 (0.02 km2); h = 1.78 1.87 1.74 2.02

603 Pond, wetland and urban
cover (0.29 km2); h = 1.63 1.85 2.01 1.63

506 Adjoining inlet of Sub-basin
603 (0.1 km2); h = 1.12 3.15 3.10 3.78

1 Details of simulation flood depth h (m) and sub-basin delineation and its code numbers are explained in Nardini
and Miguez [44].

3. Results

3.1. UAV-Derived DEM Accuracy Assessment

As can be seen in Figure 5, the errors obtained for the considered models (LiDAR, PhotoScan and
Pix4D) are greater for DSMs than for DEMs, with the highest errors obtained with PhotoScan. This
difference in dispersion values may be due to reprojection errors (1.97 in PhotoScan vs. 0.19 in Pix4D)
and camera optimization (1.90% in Photoscan vs. 0.21% in Pix4D).
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The absolute value of the average error for the considered models is below 10 cm, except for the
DSM obtained from PhotoScan, which is 16.5 cm (Figures 5 and 6), although the sign of the average
value indicates that the models are either above or below the employed checkpoints. In addition,
normality tests indicate that errors do not follow a normal distribution (except PhotoScan DEM), which
implies that the RMSE estimators are in this case not suitable. From this, it can be considered that the
obtained mean value of the error is underestimated. It is kept here for comparison only. Given the lack
of normality of the errors, robust estimators are applied (Table 4).
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Table 4. Accuracy measures of LiDAR based and UAV-derived models (checkpoints = 104).

Accuracy Estimators by Assumption of
the ∆Z Distribution:

DSM DEM
LiDAR PhotoScan Pix4D LiDAR PhotoScan Pix4D

Normal
Mean (m) 0.010 0.165 −0.080 −0.089 −0.073 −0.093
Standard deviation, SD (m) 0.373 0.433 0.284 0.166 0.219 0.262
RMSE 1 (m) 0.371 0.462 0.294 0.187 0.230 0.277
RMSE:GSD 2 ratio - 4.5 2.9 - 2.2 2.7
Non-normal (robust method)
Median (m) 0.125 0.172 0.142 0.123 0.131 0.135
NMAD 3 (m) 0.185 0.255 0.211 0.181 0.185 0.200
NMAD:GSD 2 ratio - 2.5 2.0 - 1.8 1.9

1 Root mean square error. 2 GSD (ground sample distance: 10.3 cm/ pix). 3 Normalized median absolute deviation.

The median error for the different models considered is between 10 and 20 cm, being in all cases
positive, which implies that the models are below the employed ground truth checkpoints. As for the
mean error, the highest median is obtained for the PhotoScan DSM. For NMAD the obtained values
are similar for all models, although slightly higher for the DSMs. Values obtained by robust estimators
are adequate for built-up areas, and their use is preferred over standard estimators.

Figure 7 compares absolute and relative values of the expected accuracy of each UAV model
with the standard LiDAR reference. For DSMs the accuracy value of PhotoScan is lower than that
of Pix4D but is found to be near the expected range. For DEMs the values are similar for all models
and the accuracy of PhotoScan is remarkably improved. The average accuracy values lie within the
expected range and are close to the observed ones in the LiDAR reference. DEM accuracy can be
mostly explained by differences in the operator's interaction with the SfM-MVS software.
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Since LiDAR DEM vertical accuracy is 18 cm, it falls within ASPRS/USGS standards, and is also
similar to an empirical assessment by Hodgson [72]. Furthermore, based on the accuracy of our
results, we can conclude that the UAV photogrammetry georeferencing method applied is valid for
DEM generation.

3.2. Flood Estimations from UAV-Derived DEMs

Table 5 shows the results of the flood estimates, measured by volume and area, for each of
the sub-basins and DEM considered (LiDAR reference, PhotoScan and Pix4D SfM-MVS), and their
corresponding area and volume error (Equations (2) and (3)). It is clear that, on average, flooded
volumes and areas obtained for PhotoScan DEM are closer to those of LiDAR. Table 6 summarizes the
estimates of similarity for the progression of the flood. The observed results confirm the above, since
the progression of the flood for PhotoScan DEM is closer to the reference than Pix4D’s.

Table 5. Comparisons of the estimations for a local flood event considered by each DEM.

Sub-Basin
Volume, Area
V (m3), A (m2) LiDAR Pix4D PhotoScan

Pix4D PhotoScan

Difference (%) 2

704 (Urban) V 68,072 61,728 53,699 9.3 21.1
A 166,385 114,940 141,985 30.9 14.7

705 (Urban) V 4,065 185 126 95.4 96.9
A 16,682 941 758 94.4 95.5

703 (Outlet of 603) V 13,986 4,294 7,638 69.3 45.4
A 15,646 5,756 11,793 63.2 24.6

603 (Pond + urban) V 114,311 51,103 106,135 55.3 7.2
A 155,245 21,015 146,596 86.5 5.6

506 (Inlet of 603) V 2,589 5,690 7,180 119.8 177.3
A 7,878 11,206 14,514 42.2 84.2

Difference (absolute)

Total (Σ) 1 V 203,023 123,000 174,778 80,023 28,245
A 361,836 153,858 315,646 207,978 46,190

Overall
difference (%) 2

V 42.5 18.4
A 59.3 16.4

1 Σ = Total V and A, corresponding to the sum of the flooded sub-basins. 2 Computed with Ecs. 2 and 3.

Figure 8 shows the flood maps for the different methods, for sub-basins 704 and 603. Figure 9
shows the corresponding time evolution of the flood. Flood maps for Sub-Basin 704 show that LiDAR
shares features with both, Pix4D and PhotoScan: Whereas for Pix4D the flooding occurs mainly along
the streets, for PhotoScan it forms a broad water surface.
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Table 6. Bray-Curtis similarity index of DEM flood estimations with respect to LiDAR reference.

Sub-Basin
Pix4D PhotoScan Pix4D PhotoScan

Volume 1 Area 1

704 (urban) 0.09 0.14 0.16 0.12
705 (urban) 0.85 0.91 0.79 0.85
703 (outlet of 603) 0.47 0.27 0.51 0.19
603 (pond + urban) 0.34 0.06 0.69 0.07
506 (inlet of 603) 0.46 0.54 0.33 0.44

Overall average score 0.44 0.38 0.50 0.33
1 Perfect similarity score is 0, whereas 1 is absolutely dissimilarity.
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Figure 9 shows that for the Pix4D model in Sub-Basin 704 the volumes obtained for each timestep
are closer to those of the reference, although slightly higher. For PhotoScan, flooded volume estimations
are always below the reference. In Sub-basin 603, where the pond is located, the flood extent of the
Pix4D model is reduced to the water body, whereas PhotoScan’s is much closer to the reference.

The main observed differences between DEMs are explained by the method of classifying and
editing the dense point cloud. Models generated in a semi-automatic way (PhotoScan), where operator
intervention is important, produce results much closer to the LiDAR reference than where the process
is fully automatic (i.e., Pix4D). It can be seen that for Pix4D DEMs, part of the infrastructure (buildings,
for example) remains in the final DEM.
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4. Discussion

Our results show that airborne LiDAR-derived control points are useful in obtaining accurate
DEMs from UAV-based RGB imaging, with a resolution of two times the pixel size of input imagery.
PhotoScan offers better interactivity, especially in DEM generation. Although its DSM accuracy turned
out slightly inferior than Pix4D's, it was compensated when DEM is generated. The UAV-based
DEMs are in fact as accurate as LiDAR DEMs, and this is in agreement with the work of Polat and
Uysal [5]. In general, DEMs obtained by a SfM-MVS processing chain are within the expected ranges
reported in the literature (Figure 8). This is also confirmed when comparing the relative accuracies
with the ones in Table A2 in the Appendix A. Therefore, the input of control points from airborne
LiDAR to SfM-MVS processing of fixed-wing UAV imaging is justified [35–37]. Furthermore, our
results contribute to broadening UAV photogrammetry applications when the determination of control
points is a burden, for example, in emergency situations [23,24]. It also enables exploiting automatic
integration, as shown in the literature [38,41,73,74]. In addition, it makes quick and efficient DEM
generation possible, as well as to carry out multitemporal analysis, which is one of the main advantages
of UAV platforms [75]. Finally, based on the trends of the abovementioned literature and results, the
increasing offer of geospatial products is promising, especially in order to achieve UN Sustainable
Development Goal 11, “Sustainable Cities and Communities” by 2030 [2].

Important limitations for the replication of the described method are the current international
regulations for civil UAV operation, in particular, the flight altitude. However, by reducing it, similar
or better accuracies (in relative terms) as those reported in the literature are to be expected at the
expense of a smaller area coverage per flight (Appendix A, Table A2), and therefore, the need for longer
flights [76]. This requires that the LiDAR reference and the pixel size of the UAV images maintain a
relative accuracy of at least 2:1. For example, for a 5 cm pixel (~150 m AGL using the same equipment),
the LiDAR must have a vertical accuracy equal to or less than 10 cm. The ever-increasing availability
of terrestrial LiDAR elevation data can become an additional source of control points for SfM-MVS
UAV photogrammetry, as has been recently shown in the literature [39,77].

Results for flood estimations compared to LiDAR show the usefulness of DEMs generated from
SfM-MVS dense point clouds, when the user is actively involved in their classification. These findings
are in agreement with those of Leitão et al. [20], Coveney et al. [16] and Schumann et al. [17], who based
their comparisons on previous reference LiDAR surfaces. Outcomes of flood analysis showed the
suitability of using DEMs from SfM-MVS as a tool to support local flood studies in urban catchments
or peri-urban floodplains [75]. Specifically, this allows obtaining useful input elevation data for 2D
hydrodynamic modelling in urban areas, as suggested by Yalcin et al. [21]. On the other hand, the
estimation of extreme flood events makes it possible to investigate the generated DEM beyond the
streets where the precise altimetric information was available. This warrants carrying out a more
general UAV DEM assessment.

While discrepancies are evident between UAV models and the reference LiDAR, they are due
to the DEM generation strategy, which is highly sensitive to the filtering method for ground point
extraction and dense cloud edition. Flood map outputs show that for Pix4D DEM there exists a
tendency of rendering a certain residual urban fabric, owing to deficient quality of the determination of
the DEM by the software (Figure 8). The inclusion of residual urban fabric in the Pix4D-derived DEM
influences the flood extent by volume displacement. Consequently, in Pix4D DEM, flooding tends to
propagate along the streets, in contrast to PhotoScan DTM, where a broad water surface is observed.
This agrees with the conclusions of Shaad et al. [78] and Hashemi-Beni et al. [23], who showed that
fully automated ground extraction algorithms generate worse flood estimates than those obtained from
a manual or semi-automated classification. A thorough user knowledge of the area, together with the
availability of additional field data (profiles and/or observations of flood depths) is essential to ensure
adequate utilization of ground filtering algorithms [79]. Discrepancies between flood assessments may
also be due to the use of an outdated reference surface (e.g., LiDAR reference in 2008 vs. UAV surveys
in 2016, as in our case), particularly in low-lying areas, where terrain variations or changes in hydraulic
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infrastructures (e.g., in channels or near box culverts) play an important role in flood propagation. The
above suggests an opportunity to study terrain evolution with high-resolution UAV surveys [19].

This paper only solved the processing of UAV raw data, but differences in the resolution of UAV
DEM and reference LiDAR could have an impact on flood estimates [16,20]. Further works might
focus on finding an optimal DEM resolution by resampling methods for flood comparisons between
UAV and LIDAR data. Additionally, the elevation dataset of the presented case study can be applied
for the implementation of a local early warning system to estimate possible flood volume detection
and water distribution in micro-morphology of streets.

The main UAV advantage is their flexibility to acquire image data [20], especially for small to
medium size areas (< 1 km2, up to 7 km2, see Table A2 in the Appendix A). On the other hand, the
major disadvantages of UAV technology include a limited coverage area (e.g., flight time, payload and
weather conditions) and the requirements for data processing. Piloted airborne platforms are more
suited up to national scale surveys, while UAV is naturally better suited for an urban sub-basin scale.
From the viewpoint of data processing, the larger size UAV project, the longer the time to processing.
Processing time effort is about 45% of the UAV workflow [27], contrary to airborne LiDAR, in which
3D data is obtained automatically.

Economic analyses by Jeunnette and Hart [80] concludes that piloted platforms lead to a lower
cost of operation at 610 m AGL. The UAVs would become cost-competitive at approximately 305 m,
flight height close to that used in the present study (~325 m AGL). Yurtseven [76] confirms the above
at 350 m AGL, and also, it would be providing reasonable vertical accuracy and minimize the potential
for systematic errors such as "doming effect" on the elevation products.

The increasing operational capabilities of civil micro UAV will doubtlessly integrate with other
technologies, as was here shown with LiDAR. However, current aviation safety regulations often pose
limitations to research endeavors, especially because regulations seldom keep pace with technological
development [47]. This means that UAV operators, society, authorities and industry have to continue
working together towards a continuous improvement of local regulations [81,82]. It is expected that
innovations in UAV safety will allow the next generation of fully integrated platforms to enter the
airspace [83].

Finally, the use of LCPs as proposed in this work and according to James et al. [37], might involve
important limitations, including: (i) availability of LiDAR data, some regions have either partial
coverage or none at all, (ii) resolution of LIDAR data should be sufficiently detailed to allow the human
operator to identify the superficial features, (iii) loss of information due to interpolation from raw point
cloud data to grid data, and (iv) possible variations due to the temporal differences between LIDAR
data acquisition and UAV surveys.

5. Conclusions

In this study the contribution of existing altimetric data of airborne LiDAR in DEM generation
from UAV-based images (10.3 cm pixel size) for flood applications was investigated. Georeferencing
based on LiDAR-derived control points has been applied, DEM accuracy assessed, and further applied
to flood estimations. Floods from the corresponding UAV DEM were compared to those from a LiDAR
DEM reference.

The applied LCP georeferencing method contributes to obtaining DEMs with vertical accuracies
comparable to those found in the literature, of approximately 2 times the pixel size of the input imagery.
The DSM obtained with Pix4D is slightly more accurate than PhotoScan. However, the PhotoScan DEM
is closer to the reference LiDAR, and therefore, more suitable for flood assessment applications (volume
and area flooded estimations). In general, the feasibility of semi-automatically obtained UAV DEMs is
confirmed. The hereby proved complementary nature between LiDAR and SfM-MVS photogrammetry
will provide terrain modelers and flood scientists with an alternative tool for georeferencing their UAV
(e.g., fixed-wing) photogrammetric products, in particular when ground control point determination
is challenging.
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The expected applications of micro-UAV systems and the increasing supply of LiDAR datasets
are promising for floods studies at the local level. Future work might focus on assessing the DEM
accuracy of detailed terrestrial LiDAR-georeferenced UAV flights, and testing the impact of spatial
resolution on flood estimates.
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Appendix A

Table A1. Technical specs of the micro-UAV fixed-wing system and hardware for image processing

Aircraft Specs

Model/ wingspan “eBee™ SenseFly drone mapping”/ 0.96 m (delta type)
Weight (include battery + sensor) approx. 0.7 kg (micro-UAV weight criteria found in Hassanalian et al., [12])
Cruise speed/ Wind resistance 40-90 km/h/ Up to 45 km/h
Maximum flight time/Radio Link up to 50 min (depending on climate factors, as wind velocity)/ up to 3 km

Camera RGB

Model Canon IXUS 127 with CMOS imaging sensor technology
Sensor resolution/ Shutter speed ~16 million pixels (4608 × 3456)/ 1/2000 seg
Focal length/ sensor size 4.3 mm (35 mm film equivalent: 24 mm)/ 6.16 × 4.62 mm

Processing Hardware (CPU/GPU) Intel® Core™ i7-6700 HQ CPU @2.60GHz RAM: 32GB /Intel® HD Graphics 530

Table A2. Related studies of DSM and DEM accuracy reported (absolute and relative).

Autor Platform GSD (cm/pix) Area (km2) NMAD (cm) NMAD:GSD Ratio

Present study eBee™ 10.3 5.37 18.5–25.5 1.8–2.5 (2.15)1

Zazo et al., 2018 [67] manned ultra-light
motor 2.6 0.78 6 2.3

Brunier et al., 2016 [84] Manned Savannah ICP 3.35 No data 6.96 2.1
Bühler et al., 2015 [29] utility aircraft 25 145 28 1.1

RMSE (cm) RMSE:GSD ratio

Present study eBee™ 10.3 5.37 23.0–46.2 2.2–4.5 (3.4)
Hugenholtz et al., 2013 [85] RQ-84Z AreoHawk 10 1.95 29 2.9
Hugenholtz et al., 2016 [31] eBee™ RTK 5.2 0.48 5.7–7.2 1.1–1.4 (1.2)
Roze et al., 2014 [48] eBee™ RTK 2.5–5.0 0.2 3.1–7.0 1.2–1.4 (1.3)
Benassi et al., 2017 [86] eBee™ RTK ~2.0 0.25 2.0–10.0 1.0–5.0 (3.0)
Leitão et al., 2016 [20] eBee™ 2.5–10.0 0.039 No data No data
Gindraux et al., 2017 [87] eBee™ 6 1.4–6.9 10–25 1.7–4.2 (2.9)
Immerzeel et al., 2014 [88] Swinglet CAM™ 3–5 3.75 No data No data
Yilmaz et al., 2018 [89] Gatewing™ X100 5.0–6.0 3 2.0 5.0 – 33.0 1.0–5.5 (3.3)
Coveney et al., 2017 [16] Swinglet CAM™ 3.5 0.29 9 2.6
Langhammer et al., 2017 [19] Mikrokopter® Hexa 2 1.5 ~0.14 3 2.5 1.7
Gbenga et al., 2017 [90] DJI™ Phantom 2 2 10.91 0.81 46.87 4.3

1Average ratios are in brackets (NMAD/RMSE: GSD). 2 Multirotor. 3 Estimated from flight planning.
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