


Figure S1. Loss and accuracy information of the proposed DeepER Net during training. The blue line indicates the average of training losses and its transparent box indicates the  $\pm$  1 standard deviation of the losses. The red line indicates the average of validation losses and its transparent box indicates the  $\pm$  1 standard deviation of the losses. The green line indicates the average of training accuracies and its transparent box indicates the  $\pm$  1 standard deviation of the accuracies. The cyan line indicates the average of validation accuracies and its transparent box indicates the  $\pm$  1 standard deviation of the average of validation of the accuracies. The cyan line indicates the average of validation accuracies and its transparent box indicates the  $\pm$  1 standard deviation of the accuracies.

**Table S1.** The structure of the network [12] and its training condition. Adadelta with 1.0 learning rate was used to train the network with 200 epochs and 32 batch size. The input size is determined by 50 s (e.g.,  $496 \times 50 = 24,800$ ). The kernel size is determined by 0.6 s (e.g.,  $496 \times 0.6 \approx 300$ ) and the pooling size is determined by 0.8 s (e.g.,  $496 \times 0.8 \approx 400$ ). Because some hyper-parameters were not stated in [12], the hyper-parameters were set the same using the proposed DeepER Net. The name of hyper-parameters is defined in Keras library

| Depth | Layer                  | Options and hyper-parameters                                                  |
|-------|------------------------|-------------------------------------------------------------------------------|
| 1     | Input layer            | Input size = (24800,1)                                                        |
| 2     | 1D convolutional layer | Kernel size = 300, activation = linear, number of filters = 50, stride = 1    |
|       | -                      | kernel intializer = he-normal, padding ='same', kernel regularizer = l2(1e-4) |
| 3     | ReLU                   |                                                                               |
| 4     | 1D max-pooling         | Pooling size = 400                                                            |
| 5     | Dropout                | Rate = 0.5                                                                    |
| 6     | Batch normalization    |                                                                               |
| 7     | LSTM                   | Units = 32, return sequences = True, kernel initializer = glorot-normal,      |
|       |                        | kernel regularizer = l2(1e-4)                                                 |
| 8     | Batch normalization    |                                                                               |
| 9     | LSTM                   | Units = 16, return sequences = False, kernel initializer = glorot-normal,     |
|       |                        | kernel regularizer = $l2(1e-4)$                                               |
| 10    | Dense                  | Units = 3, activation = softmax, kernel regularizer = l2(1e-4)                |

**Table S2.** The structure of the network [5] and its training condition. Stochastic gradient descent with 0.001 learning rate and 0.9 momentum was used to train the network with 200 epochs and 1 batch size. The learning rate is divided by 10 every 10 epochs [5]. Because we followed the preprocessing method in [5] and the Lomb Periodogram spectrum (0.04 Hz - 20 Hz) was extracted from the zero-one transformed sequence of 50-s ECG that includes 24,800 sample points (e.g., 496 × 50), the input size is the same in [5]. This study did not present some of hyper-parameters and then the hyper-parameters were set the same using the proposed DeepER Net. The total number of layer is 10 owing to the last layer, which includes a softmax and an output layer.

| Depth | Layer                  | Options and hyper-parameters                                                   |
|-------|------------------------|--------------------------------------------------------------------------------|
| 1     | Input layer            | Input size = (799,1,1)                                                         |
| 2     | 2D convolutional layer | Kernel size = (4,1), activation = linear, number of filters = 6, stride = 1,   |
|       |                        | kernel intializer = he-normal, padding ='valid', kernel regularizer = l2(1e-4) |
| 3     | Batch normalization    |                                                                                |
| 4     | ReLU                   |                                                                                |
| 5     | Dropout                | Rate = 0.5                                                                     |
| 6     | Dense                  | Units = 10, activation = linear, kernel regularizer =l2(1e-4)                  |
| 7     | Batch normalization    |                                                                                |
| 8     | Dense                  | Units = 3, activation = softmax, kernel regularizer = l2(1e-4)                 |