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Abstract: Complex environments pose great challenges for autonomous mobile robot navigation.
In this study, we address the problem of autonomous navigation in 3D environments with staircases
and slopes. An integrated system for safe mobile robot navigation in 3D complex environments is
presented and both the perception and navigation capabilities are incorporated into the modular
and reusable framework. Firstly, to distinguish the slope from the staircase in the environment,
the robot builds a 3D OctoMap of the environment with a novel Simultaneously Localization and
Mapping (SLAM) framework using the information of wheel odometry, a 2D laser scanner, and an
RGB-D camera. Then, we introduce the traversable map, which is generated by the multi-layer 2D
maps extracted from the 3D OctoMap. This traversable map serves as the input for autonomous
navigation when the robot faces slopes and staircases. Moreover, to enable robust robot navigation in
3D environments, a novel camera re-localization method based on regression forest towards stable
3D localization is incorporated into this framework. In addition, we utilize a variable step size
Rapidly-exploring Random Tree (RRT) method which can adjust the exploring step size automatically
without tuning this parameter manually according to the environment, so that the navigation
efficiency is improved. The experiments are conducted in different kinds of environments and
the output results demonstrate that the proposed system enables the robot to navigate efficiently and
robustly in complex 3D environments.

Keywords: traversable map; regression forest; image-based localization; path planning and navigation

1. Introduction

With the increasing aging population, the shortage of workforce has become one of the most
challenging issues worldwide. Therefore, different kinds of robots have been attracting more and more
interest in the past few decades—for example, the self-driving cars, warehouse robots, and wheelchair
robots [1–5]. To perform a task autonomously in challenging environments, the mobile robot needs the
ability to localize itself steadily, find the safe navigation path, and reach the desired position smoothly
in unstructured environments.

Although many robots have shown the capabilities to navigate through uneven and cluttered
environments, it is still an open problem to design an integrated system for autonomous robots
navigation in unstructured indoor areas, especially in environments with narrow slope areas and
cluttered space, which is the prerequisite for the service robot like the intelligent wheelchair robot.
As shown in Figure 1, the robot is expected to safely navigate to a higher platform through narrow
uneven areas while avoiding dynamic obstacles such as people and pets. The onboard navigation
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system should be capable of helping the robot localize itself in the environment robustly, distinguishing
the slope area from the staircases, and outputting a safe path for the robot to navigate through.

Staircase

Figure 1. An illustration of a wheel robot navigating in a challenging environment.

This paper introduces an integrated system framework for autonomous mobile robot navigation
in human–robot co-existing indoor environments. The contributions mainly lie in three aspects:

• We propose a novel 3D mapping approach to generate a 3D map and a traversable map for the
robot navigation in the environments with uneven terrain.

• We leverage a camera re-localization method based on the random forest to improve localization
performance in 3D indoor environments.

• We adopt a modified version of the RRT approach which can tune the step size adaptively for
generating the global path, and the elastic band method is adopted for generating the local path.

Both the simulation and real-world experiments are conducted and the experiment results
demonstrate that our present integrated framework enables the robot to navigate safely and robustly
in complex 3D environments.

The following sections are introduced. In Section 2, a literature review of the work focusing on
autonomous navigation is presented. The adopted hardware and software platform utilized in this
work is illustrated in Section 3. The subsequent three Sections 4–6 provide case studies of autonomous
navigation. The simulation and real-world experiment results are reported in Section 7. The final
section draws conclusions and introduces future work.

2. Related Work

Building fully autonomous robots to assist people has been attracting considerable interest in
the past few decades [6]. Recently, the perception, planning, and control techniques have gained
great advancement, which benefits the development of the fully autonomous robot. Rhino [6] is
a museum tour-guide robot, which is embedded with a distributed autonomous navigation software
architecture and provides the human–robot interaction interface. Robox [7] is an autonomous mobile
platform with multi-modal interaction capabilities, identified with a novel localization approach and
a powerful obstacle avoidance scheme. The Jinny robot in [8] especially focuses on human–robot
interaction and autonomous navigation. In different environments, the robot can choose the strategy
correspondingly. However, there are still lots of challenges lying along the way towards building
fully autonomous robots, and few existing integrated robot platforms focus on the safe and robust
navigation in challenging environments. In the following, we will do the literature review in three
aspects: environment representation, global localization, and path planning, which are highly related
to our integrated system.
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2.1. Environment Representation

The map (e.g., metric map [9], topological map [10], semantic map [11], and hybrid map [12])
encodes the information of the environments that the robot can use to distinguish different terrains,
localize itself, and plan a safe trajectory. To build these maps, the ultrasound sensor and the laser range
finder are frequently used. Oftentimes, these sensors are mounted on robot platforms to build a 2D
map of the world. However, it is not sufficient to represent the 3D world just relying on one slice of
the environment, especially when the robot is operating in an uneven and unstructured environment.
Recently, sensors with 3D environment sensing capabilities have become increasingly common and
much efforts have been dedicated to building a precise 3D map with these sensors [13,14]. For example,
KinectFusion [15] stimulates the development of a vision-based 3D SLAM with low cost RGB-D
sensors. In [16], a novel 3D SLAM algorithm adopting a 3D laser scanner is proposed. The world is
represented by point clouds and the real-time interpretation and update of 3D data still pose great
challenges for low power laptops, and these slow updates result in the robot either moving slowly
or being in a potentially unsafe manner. In addition, the free and occupied spaces are not modeled
clearly. To cope with this problem, a more compact 3D environment representation, the Octomap,
is utilized for autonomous legged robot navigation [17]. The OctoMap is an efficient tool that provides
a flexible 3D environment representation, which divides the whole space into free space, occupied
space and unknown space. As an application example of the Octomap, Hornung et al. [2] divide the
Octomap into multiple layers, in which the planning of the robot mobile base and the manipulator
are performed on different map layers to improve planning efficiency. Motivated by this application,
we propose to use the multi-layer maps to generate the traversable map from the Octomap to detect
the uneven terrain.

2.2. Vision-Based Global Localization

Various sensors, such as the laser scanner, Ultra Wide Band (UWB), and stereo camera, have been
widely used to cope with the indoor localization and re-localization problem, among which the vision
sensors are some of the most versatile due to their flexibility and low-cost properties [18]. In this
study, we adopt the camera re-localization scheme for localizing the robot in indoor environments.
Over the past few decades, the local-feature based and keyframe based camera re-localization methods
are traditionally investigated [19,20]. However, these methods are environment-dependent and
have limited generalization abilities, thus they cannot be simply applied to a specific environment.
In addition, due to the lack of metric information of RGB images, pixels’ depth information is required,
which inevitably introduces environment noise.

Recently, rapidly developed machine learning methods have enabled great breakthroughs in
a variety of computer vision tasks and lots of efforts have been made to apply the advanced algorithms
in learning-based methods to tackle the camera-based re-localization problem [21,22]. In contrast to
the traditional methods that use the unreliable depth information, the learning-based methods are
not limited by the depth image. Random forest based methods [23,24] are among the state of the art.
In these methods, the forest is trained to predict the camera location without feature tracking by using
a training data set that consists of labeled RGB images. On the contrary, the recent deep-learning based
methods train a Convolutional Neural Network (CNN) to recover the camera location from the RGB
dataset [25]. However, these methods are usually inferior to the random forest based method in terms
of localization accuracy in indoor environments [26]. In addition, most of these methods are only
tested in a very small spatial extent and none of these machine learning based camera re-localization
methods have been integrated into the real robot system.

2.3. Sampling-Based Path Planning

RRT is an efficient sampling-based path planner for large-scale or high-dimensional complex
environments and there have been lots of efforts in the past few decades devoted to making
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RRT an efficient path planner [27,28]. Nearest Neighbor Search and Collision Checking are two
time-consuming parts in RRTs. In [29], tedious collision checking is avoided in the process of finding
a path. Only if the path to the goal is found will the path be checked to determine whether it is
collision-free. Kuffner et al. [30] propose an RRT-connect method, which starts the exploration from
both the start and the goal regions. Gammell et al. [31] extend the classical RRT* method to an informed
one that generates the path in a heuristic way. However, there is insufficient research focusing on the
path planning in uneven and unstructured environments using the sampling-based method.

To implement the sampling-based method in uneven environments, T-RRT [32] is proposed
considering the transition probability during the tree extension. This method is useful in handling
uneven terrain while it is built upon the mass-point robot model, and little attention has been paid
to the motion planning, which is the trajectory for the robot to execute. Motivated by the T-RRT,
the work in [33] presents an optimal path planning solution in complex cost spaces. However,
the applications using the robot with non-holonomic constraints are not specially considered in that
approach. Moreover, little attention has been paid to developing an integrated system framework
towards robot navigation in uneven terrain.

3. Proposed Framework

The software architecture of our proposed framework is illustrated in Figure 2. Both the laser
data and the RGB-D data are the input for the 3D mapping module. A modified 3D SLAM method
is proposed to generate the OctoMap, in which the 2D SLAM is utilized to increase the robustness
of localization. With the proposed method, the generated OctoMap is cut into several layers to form
a traversible for 3D navigation. To this end, we measure the differences between different layered
maps and distinguish the staircase and slope accordingly. The generated traversable map indicates the
collision-free area and the obstacle region, prompting the safe robot navigation in uneven environments.
Furthermore, we propose to use a novel camera re-localization method based on the backtracking
regression forest only using the RGB data as the input. The camera re-localization method ensures
robust robot localization in 3D environments. Additionally, in our navigation framework, we use
a novel path planning method based on our previous work in [34], which is more efficient than the
standard RRT method. The generated global path is optimized by the local planner for the robot to
execute. Details of our proposed framework are described in the following sections.

Camera relocalizationModified 3D 
Slam 

2D Slam

Mapping Traversable Map

Octomap

Layer 1
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Layer n

…

Traversable 
Map

Navigation

Path 
planning
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Figure 2. A schematic diagram of the system framework. The system uses a 2D laser scanner and
an RGB-D camera. The mapping process outputs an OctoMap, which is cut into several layers to form
a traversable map that is used for navigation purposes.

4. Environment Representation

In this section, we elaborate our proposed framework for environment representation, including
a novel 3D mapping method and a traversable map generation approach.

4.1. 3D Environment Mapping

In order to generate a traversable map for 2D mobile robot navigation, a 3D map of the cluttered
environment is built by means of a 3D SLAM scheme. The 3D SLAM pipeline is made up of two parts:
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mapping and localization. The localization part is critical for building a high-resolution map. In this
work, we propose a hybrid localization paradigm by incorporating the 2D laser scan data and RGB-D
data. The 2D laser data can bring robust localization performance in an environment without enough
feature points, while the RGB-D data based visual odometry can perform better in feature-rich areas.

For environments that have rich feature points, we develop a SLAM method based on Oriented
fast and Rotated Brief feature-SLAM (ORB-SLAM) [35]. In order to satisfy our need in the subsequent
global localization and path planning procedures, we have two main differences compared with the
original ORB-SLAM: more keyframes and 3D probabilistic OctoMap representation.

The SLAM module accounts for the 3D environment representation and training data generation
for the global localization. Different from the ORB-SLAM which uses the survival o f the f ittest strategy
to select keyframes, the proposed architecture keeps more keyframes in order to obtain more camera
poses for the training data during the camera re-localization. That is, we sacrifice the time spent on
global pose optimization in SLAM to obtain more keyframe poses for more training data and more
accurate global localization. Therefore, we utilize all the edges provided by the co− visibility graph [36]
rather than using the essentialgraph in ORB-SLAM.

As shown in Figure 3a, the output map from ORB-SLAM is too sparse to be directly used for
path planning and navigation. To overcome this problem, we employ the camera pose of keyframes
described above and the extracted point clouds as the input for the OctoMap to generate the
3D environment representation. Due to varying point densities, measurement error, and wrong
registrations, the raw point cloud generated from RGB-D images or an RGB-D camera is affected by
huge noises, posing great challenges for the subsequent surface/volume reconstruction. Therefore,
an outlier-removal method based on the point distribution is employed to eliminate points with a big
distance to its neighboring points. Then, the filtered point cloud is sent to the OctoMap and the result
is shown in Figure 3b.

(a) (b)

Figure 3. OctoMap representation for f r1/room of TUM RGB-D SLAM benchmark [37] with visual
SLAM. (a) the sparse map from original ORB-SLAM [35], map points (black, red), keyframes (blue);
(b) OctoMap representation.

To further improve the robustness of the proposed 3D SLAM framework, a thread that performs
2D SLAM using a 2D laser scanner is set up to work along with the 3D SLAM process. The 2D SLAM
can provide robust localization using a 2D occupancy grid map. The 2D localization result is fused
with the localization part in 3D SLAM with the Extended Kalman Filter [38] that is widely used for the
sensor fusion, to further improve the map quality. Implementation-wise, we adopt a software package
that can take into account the localization results of both 2D SLAM and 3D SLAM and output a more
accurate localization result.
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4.2. Multilayer Maps and the Traversable Map

In this study, we specially focus on the distinguishment between the slope area (traversable)
and the staircase (untraversable). On the basis of the OctoMap, we introduce the traversable map
for the robot navigation in uneven environments. The traversable map is a kind of grid map that is
extracted from the 3D OctoMap while it can represent the slope areas for the robot to navigate through.
In contrast to the occupancy grid map, the states of the gird in the traversable map are divided by their
traversability instead of by whether they are occupied or not.

In order to get the traversable map from the 3D OctoMap, we proposed to cut the OctoMap into
several layers and extract the useful information by comparing the differences between different layers.
In this way, the slope area can be distinguished from the staircases. As shown in Figure 4, the colorful
squares indicate the OctoMap of the environment. It is cut into several layers according to the distance
h, which can be set to be as small as the resolution of the OctoMap. Viewed by the section image in
Figure 4a, the OctoMap is cut into four layers: Layer 1 to Layer 4, in which the edge point on every
layer map is indicated by oi. The edge point oi and its adjacent edge point oj are used to measure

the gradient of the terrain. The gradient angle α = arctan(h/l j
i ), where l j

i is the horizontal distance
between two adjacent edge points. If α is higher than a predefined threshold that is determined by
the mobility of the robot, then the area is marked as untraversable, and vice versa. As shown in
Figure 4a, for a slope that the robot can navigate through, α1 and α2 is less than the threshold. However,
for a staircase, which can be regarded as the obstacle in the navigation process, α′1 and α′2 is higher
than the threshold.

(a)

(b)

Figure 4. The schematic diagram of traversable map generation in a simulation environment.
(a) occupied voxels representation of the slope and staircase. The colorful voxels represent the Octomap
of the environment. (b) In the traversable map, the slope is marked as the collision-free area (white
area) except the slope edge, while the staircase is marked as the occupied area (black area).

Figure 4b shows the layered map extracted from the OctoMap corresponding to the maps in
Figure 4a and the generated traversable map. The edge on the layer can be detected by the edge
detection method [39], where only the regular edges are considered in this illustrative example.
In addition, the unknown regions are not taken into consideration in determining the terrain types.
Layer 4 shows the map with a certain height that fewer obstacles are detected, as shown in Figure 4b.
By utilizing Layer 1 to Layer 3 shown in Figure 4b and the aforementioned terrain detection method,
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the slope and the staircase can be detected effectively. The staircase, which is unfeasible for the robot
to navigate through, is marked in Layer 4 to generate a navigable traversable map.

5. Global Localization

In this section, we will introduce the proposed global localization method based on the random
forest. Compared with the localization method that uses the depth information, the proposed
localization method based on RGB images is not prone to be affected by the illumination conditions and
is more computationally efficient. The goal of camera-based re-localization is to predict the position of
the camera based on the RGB image input. Through coordinate transformation, the position of the
robot can be obtained consequently.

5.1. Random Forests Method

In this study, the random forests based method is explored for the camera re-localization. In this
method, the forests are trained to obtain the correspondences from the image pixels to the points in the
3D world coordinate directly and the correspondences are then used to predict the camera pose based
on the RANSAC method [40]. In the training stage, each tree greedily splits the samples to minimize
the spatial variance, which may cause unbalanced sub-trees, as shown in Figure 5. The reader could
refer to [24] to obtain more details about the random forests. In our previous work [41], a novel
sample-balanced objective and a backtracking scheme have been proposed to improve the prediction
of camera pose. However, there is no specific model for the label on the leaf node, which makes the
camera pose estimation method rely more on the training data that is sometimes difficult to acquire in
real application cases. In this study, we further add a full-covariance Gaussian model in the leaf node.
The point and line features are exploited in the regression forests to minimize the error of camera pose
estimation. The key modules of the backtracking regression forest and the implementation details are
introduced in the following.

Unbalanced node Balanced node Leaf node

… …

Figure 5. An example of a decision tree structure in the backtracking regression forest. The leaf nodes
are depicted as a pie chart to illustrate the proportion of samples. More details can be found in [41].

5.2. Backtracking Regression Forest Training

Image features

The feature employed in the utilized forest is defined as:

fφ(lp) = I(lp, ch1)− I(lp +
δ

D(lp)
, ch2), (1)
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where fφ(lp) is the pixel comparison feature [24,26], the term φ represents the feature response
parameters δ : 2D offset; ch1 and ch2 : image channels. The term I(lp, ch1) is the function that points
out the RGB pixel lookup in channel ch1. It is worth noting that sometimes the pixel depth cannot be
obtained clearly, and we do not use these kinds of pixels for training and testing processes.

Weak learner model

In the tree shown in Figure 5, each split node i represents a weak learner parameterized by
θi = {φi, τi}, where τi is a threshold. The tree grows recursively from the root node to the leaf node.
For each separate node, the parameter θi is sampled from a set of randomly sampled candidates Θi.
More specifically, at each split node i, for the incoming training set Si, samples are evaluated on split
nodes to learn the split parameter θi that best splits the left child subset SL

i and the right child subset
SR

i as follows:

H(lp; θi) =

{
0, if fφi (lp) ≤ τi, then go to the left subset SL

i ,

1, if fφi (lp) > τi, then go to the right subset SR
i .

(2)

The τi defines a threshold on feature fφi (lp). As proposed in Equation (1), we have adopted
the pixel comparison feature. By introducing the more general weak learner model, the proposed
framework can be applied in more applications.

Training label

The training set contains sequences of RGB-D frames with associated known camera poses P

which includes 3×3 rotation matrix R and 3×1 translation vector T from the camera coordinate to the
the world coordinate:

P =

[
R T
0 1

]
. (3)

The 3D point x in camera coordinate of the corresponding pixel p could be computed by
back-projecting the depth image pixels:

x =

x
y
z

 =

(u− cx)×d/ fx

(v− cy)×d/ fy

d

 , (4)

where [u, v]T is the pixel p position in image plane, and [x, y, z]T is the point position in camera
coordinate, [cx, cy]T and [ fx, fy]T are the camera principal point and focal length, respectively.
di = depthimage[v,u]/ f actor, and depthimage[v,u] is the measured depth value at image point [v, u].
The scene’s world coordinate position m of the corresponding pixel p can be computed by:

m = Px. (5)

The associated camera pose P for each RGB-D image in the training data are obtained through
camera tracking methods [15,35]. We utilize the ORB-SLAM to generate the training samples in the
implementation. Image samples and the corresponding camera poses are simultaneously recorded in
the environment to form the dataset.

Training objective

The information gain, Ii, is used as the utility function during the training phase. Here:

Ii = E(Si)− ∑
j∈{L,R}

|Sj
i(θi)|
|Si|

E(Sj
i(θi)), (6)
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where E(Si) is defined as the entropy of Si, with Si represents a set of labels. S
j
i ⊂ Si is the set

determined by the split parameter θi. We proposed to use a single full-covariances Gaussian model to
model the distribution of the labels Si, so the entropy is defined as:

E(S) =
1
2

log((2πe)d|Λ(S)|), (7)

with d is dimensionality and Λ represents the full covariance. This full-covariance Gaussian model
follows the properties of Gaussian family, which brings the pose estimation problem into a probabilistic
framework. Moreover, the full-covariance Gaussian mode lets every label follow a Gaussian separately,
which will make the estimation process more accurate.

In the training process, the information gain is optimized that is:

θ∗i = arg max
θi∈Θi

Ii(Si, θi). (8)

For every node i on the random forest, it gets a random Θi, as introduced in the weak learner
model. Then, the parameter θ∗i will be optimized by Equation (8). The parameter θ∗i serves as the weak
learner in the testing process.

After the training process, the samples reach the leaf nodes on the random forest. Since we
employ a full-covariance Gaussian Model, each node on the forest has a mean vector and a covariance
matrix. It is worth noting that, for each node, our model proposed to store a mean vector of local
patch descriptors. Then, this descriptor is used to select the optimal predictions, as introduced in
the following.

5.3. Regression Forest Prediction

In the testing phase, a regression tree greedily predicts 3D world coordinate positions by
comparing the test sample feature values and the split values in internal nodes. When the sample
arrives at a leaf node, the modes in that leaf node are the predictions. Since the comparison is conducted
on a single dimension, it is inevitable to make mistakes. To alleviate this downside, a priority based
backtracking strategy is utilized to locate the ideal forecast inside the time spending plan. More insights
concerning the backtracking procedure can be found in [41].

In backtracking, the optimal mode has the minimum feature distance from the patch
descriptor. Considering the computational efficiency and distinguish capability, we take advantage
of a Walsh–Hadamard transform (WHT) to be the patch descriptor. Particularly, we use the first 20
Walsh–Hadamard projection vectors for each color channel in a 64× 64 pixel patch.

Camera Pose Optimization

The backtracking regression forest described above is able to predict 3D world coordinate from
any 2D image pixel. We use this 2D–3D correspondence to estimate the camera pose. The problem of
estimating camera pose is formulated as the energy minimization:

P∗ = arg min
P

E(P), (9)

where P is a camera pose matrix. By minimizing the energy function, the camera pose can be estimated,
thus the robot pose can be obtained according to the robot-camera coordinate transformation.

6. Planning and Navigation

We adopt the motion planning framework with an efficiently generated global path followed by
a trajectory optimization process [42]. It is thus the prerequisite to get the global path efficiently. In this
section, a variable step size RRT method is utilized to plan a global path in the uneven environment.
Compared with the classical RRTs, the designed planner can construct a path from the start point to the
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goal point more efficiently. The global path ζ here contains a set of waypoints from the start position to
the goal position without considering the motion constraint of the robot. Then, we use a local planner
that continually generates a feasible path with the reference of the global path for the robot to execute.
The local planner can also help the robot avoid the dynamic obstacles when it heads towards the goal.

6.1. Global Planner: Variable Step Size RRT

In our presented path planning approach, a local planner is used to optimize the generated sparse
global path. Hence, the prerequisite is to build a path from the start point to the goal point in an efficient
way. RRT can cope with path planning problems with complex constraints and obstacles and perform
well in high dimensional environments. While in different environments, some parameters of this
algorithm need to be adjusted properly in advance, among which one vital parameter is the step size
for the RRT extension. We present a novel variable step size RRT for global path planning. In the
following, we firstly provide an outline of the basic procedures of the classical RRT method.

Generally, the RRT is a tree structure that is built with collision-free nodes and edges in
configuration space. A point xr is obtained randomly in the state space. It will search for the nearest
point on the existing tree to get xn, which is the nearest point to xr. If the segment that connects xn

to xr encounters no collision, then the point xn on the segment with limited step size to the point xn,
together with the collision-free edges, are added to the existing tree, which completes a tree extension
process. This process repeats until the robot finds a connection from the start point to the goal point.
Generally, the step size is required to be tuned for non-holomomic robots like Segway used in our
experiment. When the step size is set to be small, it will take a longer time for the RRT to find the target.
If the step size is set to be big, the generated path by RRT will jitter, which is not suitable for robot
execution. Hence, it is vital to choose the most favorable step size according to the configuration space.

In this work, a novel RRT method is conceived that does not need to tune the step size.
The algorithm is described in Algorithm 1. Firstly, following the rule of the standard RRT method,
the function random(·) generates a random point xr. Then, the function near(·) is applied to find the
point on the existing tree T that is nearest to xr. The major difference between our method and the
standard RRT lies in the tree extension part. From the perspective of implementation, the step size
is ignored in tree extension. xn and xr are connected with a segment. If the segment is collision free,
then xr is added to the existing tree directly together with the segment. The whole process is indicated
in Algorithm 1. In order to further improve the efficiency, an RRT-connect algorithm [30] is taken
to build the tree from the start point to goal point concurrently. Once the two trees meet each other,
the path between the start point and the goal point will be built.

Algorithm 1: Variable Step Size RRT

1 Initialization;
2 T = {xinit} ;
3 while no path is built do
4 xr = random(C f ) ;
5 xn = near(T ) ;
6 E = segment(xr, xn) ;
7 if collisionFree(E) then
8 T .puchback({E, xr});
9 end

10 else
11 continue;
12 end
13 end
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As shown in Figure 6, with different step sizes, the RRT can build a path between the start point
and the goal point. When the limitation of step size is set to be small, e.g., step size = 30, it iterates
171 times before it finds the path. When the step size is bigger, e.g., step size = 40, it iterates fewer times
compared with the smaller step size, which means that longer step size will decrease the searching
time for finding the path in the configuration space, while, if the step size is bigger, e.g., step size = 90,
the searching path becomes jitter, and the searching iteration time is also large. Hence, we conclude that,
for a certain environment, the step size is of great importance with limited step size RRTs. As shown in
Figure 6, the proposed method can plan a path from the initial starting point to the target goal position
efficiently. More significantly, our method does not need to preset the step size of RRT according to the
experimental environments.

Step Size = 30, Iter = 171 Step Size = 40, Iter = 57

Step Size = 90, Iter = 166 Step Size = Vary, Iter = 73

Figure 6. Path planning with limited step size RRT and our method. Blue line: RRT method. Red line:
initial path form the start to the goal. Yellow and blue lines: optimization of the initial path.

6.2. Local Planner and Path Execution

The global path planner generates a sparse path that cannot be used for non-holonomic robot
navigation directly, as shown by the red line in Figure 6. This path is then modified by the elastic band
method [43] to generate a series of control actions for the robot. Being the local planner, the elastic
band method deforms the sparse path and outputs an optimal local path. The optimization process
is shown by the yellow line and the blue curve in Figure 6. As the blue curve shows, the local path
satisfies the non-holonomic motion constraints and hence can be executed by our robot. Details of the
optimization mechanism of the elastic band can be found in [43]. In addition, the static and dynamic
obstacles are taken into consideration in this process. The smooth path generated by the local planner
is transformed into a set of control commands for the robot mobile base.

7. Experiments

7.1. Evaluation of Indoor Localization

To validate the performance of the camera localization framework, we conduct experiments using
the 4 Scenes dataset [44]. We compare our proposed method with Perspective-n-Point (PnP) methods
(SIFT+PnP, ORB+PnP) [45], the Random+Sparse method [46], and the MNG method [44], in the 4
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Scenes dataset introduced by Valentin [44]. The main camera re-localization results are reported in
Table 1. Our method using RGB-only images at testing time achieves higher accuracy than SIFT+PnP,
ORB+PnP, and Random+Sparse, and is less accurate than the MNG method. However, the MNG
method needs a large number of synthetic images for data augmentation, which is not required for our
method. Moreover, the MNG method needs an explicit 3D model to render synthetic images to refine
the pose, which is not mandatory in our method. According to the results, our method achieved better
performance than all the baselines in camera re-localization accuracy when using RGB-D images at
testing time.

Table 1. Camera re-localization results for the indoor dataset compared with state-of-the-art methods.

Frame Numbers Spatial Baselines Our Results
Sequence Training Test Extent ORB+PnP SIFT+PnP Random+SIFT MNG

Kitchen 744 357 33 m3 66.39% 71.43% 70.3% 85.7% 92.7%
Living 1035 493 30 m3 41.99% 56.19% 60.0% 71.6% 95.1%

Bed 868 244 14 m3 71.72% 72.95% 65.7% 66.4% 82.8%
Kitchen 768 230 21 m3 63.91% 71.74% 76.7% 76.7% 86.2%
Living 725 359 42 m3 45.40% 56.19% 52.2% 66.6% 99.7%
Luke 1370 624 53 m3 54.65% 70.99% 46.0% 83.3% 84.6%

Floor5a 1001 497 38 m3 28.97% 38.43% 49.5% 66.2% 89.9%
Floor5b 1391 415 79 m3 56.87% 45.78% 56.4% 71.1% 98.9%

Gates362 2981 386 29 m3 49.48% 67.88% 67.7% 51.8% 96.7%
Gates381 2949 1053 44 m3 43.87% 62.77% 54.6% 52.3% 92.9%
Lounge 925 327 38 m3 61.16% 58.72% 54.0% 64.2% 94.8%
Manolis 1613 807 50 m3 60.10% 72.86% 65.1% 76.0% 98.0%

Average — — — 53.7% 62.2% 59.9% 69.3% 92.7%

7.2. Simulation Experiments

The simulation experiments are carried out to evaluate the effectiveness of our proposed
framework including the localization method and the path planning method. The results are
represented in the following two sections.

Environment representation

In the simulation experiment, the environment is built in the Gazebo simulator, as shown in
Figure 7a. The dimension of the simulated room is 16 m × 10 m × 3 m. The simulated robot model
is equipped with one wheel odometry, a 2D laser range finder, and an RGB-D sensor. The 2D laser
scanner is used to enhance the robot localization and an RGB-D sensor is used for the 3D SLAM.
Figure 7c,d show the generated 3D OctoMap built by the proposed 2D+3D SLAM method and the 3D
SLAM method, respectively. As shown in these figures, the proposed 2D+3D SLAM mechanism is
more accurate in building the OctoMap than the method that only relies on the localization result of 3D
SLAM. To make a compromise between the mapping efficiency and accuracy, the resolution of the map
is set to 0.1 m/grid. Different colors in the OctoMap indicate different heights of the environment. It can
be seen that the staircase area shows steeper changes than the slope area. Therefore, when generating
the traversable map, the staircases are treated as untraversable area since their rate of change is larger,
and the other areas are treated as traversable since their rate of change is lower than a threshold.
Thus, we generate a traversable map, as shown in Figure 7c, which is used for our autonomous
robot navigation.
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(a) (b)

(c) (d)

Figure 7. Traversable map generated from the pre-build OctoMap. (a) simulation environment;
(b) traversable map; (c,d) OctoMap built by the 2D+3D SLAM method and singly 3D SLAM method.

Autonomous navigation

The traversable map serves as the input for path planning in uneven and unstructured
environments and the global localization is achieved by means of the camera re-localization method.
The target position is on a higher platform which can be reached from the ground via a slope or
a staircase. In the proposed traversable map, the slope area is treated as the collision-free region while
the staircase is treated as the obstacle. Two tasks with different start positions are designed for the
robot, named Task 1 and Task 2, and the navigation results are shown in Figures 8 and 9, respectively.
In both figures, the first row shows images of autonomous navigation in Gazebo simulator, and the
second row shows the Graphical User Interface (GUI) views of the process. The green lines show the
sparse global path and the green bubbles show the local planner that optimizes the global planner and
gives the robot control command.

(a) (b) (c) (d) (e)
Figure 8. Simulation experiment of Task 1. The start location is indicated in (a). The robot is approaching
the slope in (b,c). The robot starts to climb the slope in (d) and reaches the target above the ground in (e).
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(a) (b) (c) (d) (e)
Figure 9. Simulation experiment of Task 2. The start location is indicated in (a). The robot is making
a turn to approach the slope in (b,c). The robot climbs the slope in (d) and reaches the target above the
ground in (e).

We validate the efficiency of the proposed variable step size RRT method in Task 1. There are 20
experiments conducted to collect the data of the proposed RRT method and the traditional limited step
size RRT method. The iteration and planning time are recorded in Table 2. For a specific environment,
the step size needs to be preset for the limited step size RRT method. Inappropriate step size will make
the global path jitter. On the contrary, our proposed method does not need to tune this parameter in
advance and can provide a relatively smooth global path in a timely manner.

Table 2. Demonstration of the efficiency of the proposed variable RRT method.

Step Size Iterations Computational Time (ms) Jitter

30 165 12 0/20
40 63 4 0/20
50 92 7 4/20
60 113 9 8/20
70 147 10 12/20
Variable 67 4 0/20

From Figures 8 and 9, we can learn that the robot can navigate in the indoor environment with
uneven terrain robustly. In Task 1, when the robot is placed in location 1 and the target is located in
an area on the platform that is above the ground, it can use the traversable map to navigate robustly to
the goal point. In Task 2, when the robot is placed in location 2 and the target is at the same localization
with Task 1, the robot avoids the staircase and makes a turn to go to the target through the slope area.
These two tasks demonstrate the capability of safe and robust navigation in indoor uneven terrain
using our proposed framework. Details of these tasks are reported in Table 3. As specified by the
table, the planner can plan a path efficiently and the robot can navigate through the unstructured
environment with an acceptable velocity profile.

Table 3. Statistics of the speed, distance, and planning time during the experiments.

Tasks Speed (ave) (m/s) Traveled Distance (m) Planning Time (ms)

Simulated environments
Task 1 0.58 12.1 3.9 ± 2
Task 2 0.42 6.0 6.7 ± 2

Real-world environments
Task 3 0.66 8.3 8.0 ± 2
Task 4 0.38 9.0 12.5 ± 2
Task 5 0.35 7.0 10.0 ± 2
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7.3. Real-World Experiments

To validate the performance of the integrated framework in real scenes, real-world environments
are conducted with a Segway mobile robot platform, as shown in Figure 10. There is a Hokuyo
laser scanner mounted on the mobile base and an Xtion RGB-D camera mounted on a higher plate.
A Dell laptop on the high platform receives the sensor input and outputs the control command to
the mobile base. The experimental environment is an uneven indoor environment with a staircase
and a slope, as shown in Figure 11a. The OctoMap of the real-world environment generated by
the modified 3D SLAM framework is shown in Figure 11b. The slope and the staircase can be
straightforwardly distinguished with the OctoMap. The OctoMap is then cut into several layers to
generate the traversable map, as indicated in Figure 12, which is then utilized for the robot navigation.

Figure 10. Robot hardware platform. (a) The Segway robot platform; (b) the Xtion RGB-D camera;
(c) Hokuyo laser range finder.

(a)

Staircase

Slope

(b)

Figure 11. Real-word environment. (a) a snapshot of the real environmen; (b) the 3D representation of
the environment with OctoMap, only occupied voxels are shown for visualization.

Figure 12. Multilayer maps and the traversable map for the real-world environment. (a–d) Multiple
projected layers from OctoMap; (e) the traversable map. The staircases and slope edge are occupied
while the slope is the free space.
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Similar to the above simulation environment setup, the target position in the real world is on
a higher platform as well. Three representative task scenarios are designed for the experiment identified
with three different start positions, named Task 3, Task 4, and Task 5. Table 3 shows the performance
of the robot in each task. It could be found that, in Task 3, the robot can reach the target with 0.66 m/s
and the path cost for this task is 8.3 m. The whole procedure is depicted in Figure 13. Differently,
in Task 4, the robot is set to be near the target that is on a high platform above the ground, as shown in
Figure 14. However, the staircase is unfeasible for the robot to go through. Figure 14 demonstrates the
effectiveness of the proposed navigation scheme. The robot can avoid the staircase and reach the target
through a slope. For conventional 2D localization methods, the robot tends to be lost when it makes
a turn, while, in our case, the robot can localize itself robustly. Task 4 in Table 3 shows the statistics
of our experiment. The robot moves a little slow since it makes more turns compared with Task 3 in
this task.

(a) (b) (c) (d) (e)
Figure 13. Robot autonomous navigation example in a real environment (Task 3 in Table 3). (a,b)The
robot is approaching the slope; (c) the robot is to climb the slope; (d) the robot is climbing the slope;
(e) the robot reaches the target above the ground.

(a) (b) (c) (d) (e)
Figure 14. Robot autonomous navigation example in real environment (Task 4 in Table 3). (a,b) The
robot is making a turn to approach the slope; (c) the robot is to climb the slope; (d) The robot is climbing
the slope; (e) The robot reaches the target above the ground.

To test the performance of obstacle avoidance of the proposed integrated framework, we leverage
the local costmap to detect the obstacles in real time in the experiments. Different from the traversable
map, the slope and staircase are not marked on the local cost map. Thus, these two objectives may
be considered as obstacles. For example, if we set the local costmap to be the same size with our
traversable map, then the slope may be marked as obstacles since it is above the ground and the laser
may receive a reflected ray. In our implementation, the size of local costmap is set to be small enough,
therefore the laser scan can be treated as an unanticipated ray. The robot can avoid the dynamic
obstacles by the proposed approach. Facing a human that suddenly appears in the predefined path
to the target, as Figure 15 indicates, the robot will replan its path to find another feasible path to the
target. The average speed of this task is low for the safety, as Task 5 in Table 3 indicates.
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(a) (b) (c) (d) (e)

Figure 15. Dynamic obstacle avoidance (Task 5 in Table 3). (a) obstacle avoidance in the real scene;
(b) the human suddenly blocks the way in front of the robot; (c) the robot changes direction to avoid
the human; (d) the robot succesffully avoids the human; (e) the robot is climbing the slope.

8. Conclusions and Future Work

In this study, we solve the problem of autonomous robotic exploration in uneven and unstructured
indoor environments. The proposed traversable map allows the robot to choose the slope area instead
of the staircase to navigate to an expected target position. The proposed camera re-localization method
based on a random forest tree can help localize the robot in the environment steadily. Moreover,
the variable step size path planning method can plan a path on the traversable map efficiently.
The following local planner proceeds to optimize the path to achieve safe navigation, which ensures
that a mobile robot can move safely and robustly in complex 3D environment scenarios. As shown in
the simulation and real-world experiments, the proposed hierarchical path planning framework is
capable of generating a path efficiently. Furthermore, the proposed framework helps the robot move
from its location to the expected target, which is higher above the ground.

The proposed integrated system can be widely used for many applications in the environment with
uneven terrain, such as smooth navigation of wheelchair robots and complex disaster relief applications.
Although our method can generate a traversable map for the robot to navigate through, some challenges
still exist. We propose to cut the OctoMap into several layers to generate the traversable map, which is
time-consuming and inaccurate in some complex environments. To solve this problem, in the future,
we propose to use the RRT method to directly plan a path in the 2.5D space. By sampling points in the
surface of the uneven terrain and checking the gradient of these segments, the RRT method can output
a feasible path for the robot to follow.
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