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Abstract: The maturity stage of bananas has a considerable influence on the fruit postharvest quality
and the shelf life. In this study, an optical imaging based method was formulated to assess the
importance of different external properties on the identification of four successive banana maturity
stages. External optical properties, including the peel color and the local textural and local shape
information, were extracted from the stalk, middle and tip of the bananas. Specifically, the peel
color attributes were calculated from individual channels in the hue-saturation-value (HSV),
the International Commission on Illumination (CIE) L*a*b* and the CIE L*ch color spaces; the textural
information was encoded using a local binary pattern with uniform patterns (UP-LBP); and the local
shape features were described by histogram of oriented gradients (HOG). Three classifiers based
on the naive Bayes (NB), linear discriminant analysis (LDA) and support vector machine (SVM)
algorithms were adopted to evaluate the performance of identifying banana fruit maturity stages
using the different optical appearance features. The experimental results demonstrate that overall
identification accuracies of 99.2%, 100% and 99.2% were achieved using color appearance features
with the NB, LDA and SVM classifiers, respectively; overall accuracies of 92.6%, 86.8% and 93.4%
were obtained using local textural features for the three classifiers, respectively; and overall accuracies
of only 84.3%, 83.5% and 82.6% were obtained using local shape features with the three classifiers,
respectively. Compared to the complicated calculation of both the local textural and local shape
properties, the simplicity and high accuracy of the peel color property make it more appropriate for
identifying banana fruit maturity stages using optical imaging techniques.

Keywords: maturity stage; banana fruits; optical imaging technique; external properties;
image processing

1. Introduction

Due to their abundant nutritional elements, bananas play a key role in the human diet, and they
are the fourth most important food crop worldwide [1]. China is one of the main banana-growing
and producing countries. Since bananas are not usually allowed to ripen on the tree to reach peak
maturity [2], the maturity stage of harvested bananas plays an important role in both the shelf life
and market price. Ripening bananas in similar maturity stages can usually guarantee fruits with
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better external qualities within the same batch and can ultimately be conducive to prolonging the
shelf life [3,4]. Therefore, it is important to identify and establish accurate banana maturity stages for
postharvest consumption and marketing, a key aspect of which is to sort fruits with different maturity
stages or qualities automatically [5,6]. An automatic fruit sorting system usually consists of conveyor
belts, computer vision and control modules [7]. The first important processing step in such systems
involves the computer vision (including RGB and other spectral imaging techniques) module, which is
used for fruit identification; then, the classified fruits with different maturity stages or qualities will be
delivered to corresponding banks by the conveyor belts and control module.

The identification of fruit maturity stages can be conducted using indices that are relevant to internal
attributes such as titratable acidity (TA) [8-10], flesh firmness [11,12], soluble solids content (SSC) [9],
starch content [13,14] and total soluble solids (TSS) [15]. However, precisely measuring the above indices
usually requires manual destructive sampling inspection, which is costly, nontrivial and laborious
and not appropriate for on-line estimation of fruit maturity [6] and is thus not suitable to be
integrated in automatic fruit sorting systems. Therefore, most studies emphasize the development
of alternative nondestructive, efficient methods by measuring internal or external attributes such
as peel color and spectral reflectance that can be easily implemented in a computer vision module.
Khodabakhshian et al. [16] determined four different maturity stages in pomegranates based on quality
factors including firmness and TSS measured by a multispectral imaging device, and the resultant
spectral information was modeled using a partial least squares regression algorithm with a correlation
coefficient larger than 0.93. Li et al. [17] investigated the maturity classification of cherry fruits by the
SSC and pH value measured using near-infrared hyperspectral imaging techniques; optimal feature
bands were first selected from high-dimensional spectral data by a genetic algorithm, and a multiple
linear regression model was built to estimate the maturity of cherry fruit that achieved a correct
classification ratio of 96.4%. The spectral properties of bananas at wavelengths of 532, 660, 785,
830 and 1060 nm from different maturity stages were investigated by Adebayo et al. [18]; a positive
correlation between the maturity stage and a reduced scattering coefficient was reported. Xie et al. [19]
studied the feasibility of identifying banana fruit maturity using a hyperspectral imaging device
at wavelengths ranging from 380 nm to 1023 nm and reported that partial least squares modeling
accurately predicted mature and immature bananas using both the color and firmness properties
extracted from hyperspectral data. Mohammadi et al. [20] graded persimmons into three maturity
stages using image analytical techniques, where the external color information of persimmons was
encoded in red-green-blue (RGB) color space and fed into a quadratic discriminant model, achieving an
overall grading accuracy of 90.24%. Based on image processing techniques, three fresh tomato maturity
levels (green, orange and red) were identified by Wan et al. [21], where the average blue-channel
intensity and the hues of pixels in the maximum inscribed circle within each tomato’s surface were
extracted and then classified with a backpropagation neural network; the average accuracy of the three
maturity levels reached 99.31%. Tan et al. [22] proposed a stepwise, computer vision-based algorithm
to recognize the maturity stages of blueberries (mature, intermediate and young), and the recognition
pipeline attained an average accuracy of 92.07%; specifically, the fruit regions were first located using
histogram-oriented gradients and feature attributes in the International Commission on Illumination
(CIE) L*a*b* color space, and then the maturity of a located blueberry was determined using template
matching with a weighted Euclidean distance. Marimuthu et al. [23] formulated a particle swarm
optimized fuzzy model to grade banana fruits into unripe, ripe and overripe stages using peel color
attributes extracted from the hue channel and opponent colors in CIE L*a*b* space, achieving an
average classification accuracy of 93.11%.

In recent decades, much effort has been made in studying how to recognize fruit maturity
stages, illustrating the remarkable potential of methodologies using hyperspectral and optical imaging
techniques. Compared to the internal properties, external properties such as color and textural
information provided by many fruits can usually be extracted much easier and serve as important
indicators for evaluating ripeness [4,24]. However, most of the current work using external properties
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has focused on a single type of physical property (e.g., color) to grade the maturity stage, especially for
the task of recognizing banana ripeness, yet it is also interesting to further understand under which
circumstances each external property performs better. Hence, this study investigates the importance
of identifying the maturity stage of banana fruits by different external properties, including color,
local texture and local shape, using optical imaging techniques.

2. Materials and Methods

2.1. Data Acquisition

Cavendish banana fruits at four successive maturity stages, i.e., stage 1 (MS1) indicating an
all-green banana, stage 2 (MS2) indicating a mostly yellow banana with some or a little bit of green,
stage 3 (MS3) indicating an all yellow banana and stage 4 (MS4) indicating a mostly yellow banana
with some or many brown spots, were prepared from a local fruit market in Guangzhou, China.
The purchased bananas were of similar sizes and shapes and were stored at 12-15 °C in a laboratory
environment, and some of the bananas were disfigured by slight defects during transportation. In total,
441 banana samples (116, 109, 109 and 107 samples from the MS1, MS2, MS3, and MS4 maturity stages,
respectively) were prepared. As a baseline, 120 bananas at different maturity stages (30 bananas per
stage) were selected and the soluble sugar content of some of the 120 bananas was first destructively
measured using a portable refractometer (Model BK-506, Shanghai Dingleng Industrial Co., Ltd.,
Shanghai, China). The resultant soluble sugar content is the average value from three positions
(i.e., the stalk, middle and tip) on any banana fruit. Figure 1 illustrates the distribution of the soluble
sugar content measured from bananas in the four maturity stages, indicating that there is probably
a positive relationship between the visible, external properties and the soluble sugar content of bananas
at various maturity stages. Then, the remaining 321 bananas (86, 79, 79 and 77 samples from the MS1,
MS2, MS3, and MS4 maturity stages, respectively) were used for the imaging phase. Each banana
was placed on the center of a plain, partial white cloth approximately 60 cm immediately under
a charge-coupled device (CCD) camera (Model H1600Cam, Ruishi Instrument Equipment Co., Ltd.,
Shenzhen, China). In total, 200 images (50 bananas per stage) were randomly selected and served as
the training dataset, and the remaining 121 images formed the test dataset. Some examples of the
resultant images are shown in Figure 2.
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Figure 1. Distribution of soluble sugar content in bananas at different maturity stages.
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Figure 2. Some example images of bananas in the dataset.

2.2. Methods for Assessing Performance of Identifying Banana Maturity Stages Using External Properties

The change in the maturity stage is associated with obvious external appearance variability in
bananas, such as the peel color, and the local texture and shape, which are influenced by brown spots.
Therefore, a combination of image feature extraction and pattern recognition techniques could be
an alternative method for identifying the maturity stage of bananas. Figure 3 illustrates the main
procedures for the identification of banana fruit maturity stages: foreground region segmentation,
feature extraction, and maturity stage classification.
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Figure 3. Flow diagram of the presented method.
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2.2.1. Foreground Region Segmentation

For any horizontal scan line across banana fruit, as shown in Figure 4a, the color intensity
of pixels of the banana is different from that of the background. Specifically, in RGB color space,
the gray-level intensity of pixels within the banana region in the red (R) component is always higher
than that in the blue (B) component, as shown in Figure 4b, while the gray-level intensity of pixels
within the background region in the R component is always lower than that in the B component.
Therefore, the banana could be separated from the background using the following red and blue (RB)
chromatic mapping;:

Ip =R-B 1

where Igp is the calculated RB chromatic map, and R and B refer to the red and blue components of the
input image in RGB color space, respectively.
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Figure 4. Comparison of the color intensity between the banana and background regions: (a) a red
horizontal scan line across the banana fruit region, and (b) the distribution of gray-level intensities of
pixels from both the banana and background regions specified by the horizontal scan line.

Since the hue and appearance of the banana images in the dataset could differ to some extent
due to slight changes in lighting conditions during imaging, it is hard to always ensure consistently
high intensities of all the pixels within the banana, and thus, the resultant RB chromatic map is not
a binary image that separates the banana fruit from the background. Therefore, the Otsu thresholding
algorithm [25] was adopted to segment the foreground banana region from Igg. Then, the mathematical
morphology open operation followed by the hole-filling operation was used to filter out noise and fill
holes in the binary image obtained by the Otsu thresholding algorithm, respectively, and the foreground
banana region was extracted from the morphologically postprocessed binary image.

Figure 5 illustrates an example of banana fruit region segmentation using a sample image from
MS4. Figure 5b shows that most of the background was filtered out in the resultant RB chromatic map
because the difference in intensity between the R and B components of the background is much lower
than that from the banana fruit region. Moreover, a large number of brown spots were distributed
on the surface of the banana peel, and thus, no significant RB intensity difference between the brown
spots and the background was found, which resulted in an incorrect segmentation of some brown
spots, as shown in Figure 5c. Fortunately, mathematical morphology image processing techniques,
i.e., open operations (using the disk-shaped structural element with a 10-pixel radius) followed by
hole filling, could fix the incorrectly segmented foreground regions, as shown in Figure 5d, and more
accurate banana fruit regions could be extracted for the following procedures.
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Figure 5. Foreground region segmentation: (a) the input RGB image, (b) the resultant RB chromatic

map of (a), (c) the binary segmentation of (b) using the Otsu thresholding algorithm, and (d) the
postprocessed binary image of (c) using mathematical morphology operations.

2.2.2. Feature Extraction

The external optical properties of bananas, including the color, local texture and shape features that
were observed from samples belonging to various maturity stages in the training dataset, are potential
criteria for identifying different maturity stages. For example, the local texture and shape structure are
significantly affected by the distribution of brown spots on the peel at higher banana maturity stages.

First, as illustrated in Figure 6, three regions of interest (ROIs) were sampled and extracted
from the segmented foreground banana region, where xgef is the upper-left horizontal boundary
of the segmented banana, yges and yi?ef represent the left and right vertical boundaries of the
segmented banana, respectively, xroj is the abscissa of the image origin of both ROI1 and ROI2,
yror and yizOI refer to the ordinate of the image origin of ROI1 and ROI3, respectively. The sizes of
each ROI were assigned as 48 pixels X 48 pixels to simplify the following feature extraction process.
By introducing different offsets, the value of xror was determined by the value of xror = XRef + 4,
where a is an integer ranging from 15 to 35 pixels, the value of xyror was determined from
YROI = YRef + (yi{ef + yRef) +q, where a is a random floating value ranging from 0.1 to 0.2, and the

value of yi(OI was determined from 3/1101 = y;{ef - (yi{ef + yRef) + B, where f is a floating value ranging

from 0.15 to 0.25. Furthermore, the ordinate of the image origin of ROI2 was calculated by %,

and the abscissa of the image origin of ROI3 was determined by the value of xgo; —48. Similar to the
sampling method adopted in most destructive analysis methods, the sampling of three ROIs from
several nonintersecting parts (i.e., the stalk, middle and tip positions) could improve the sequent
identification performance.
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Figure 6. Location of three ROIs from the segmented banana region: the size of each ROI is
48 pixels x 48 pixels.

(1) Color Feature Extraction

As the banana maturity changes from MS1 to M54, the hue color gradually changes from full green
to yellow, which is an important visual clue to discriminate various maturity stages. However, all the
red, green and blue components in RGB color space contain both the color and brightness information
of objects at the same time, where the brightness information might not be helpful for identifying
the maturity stage. Therefore, to isolate only the color component, the hue-saturation-value (HSV),
CIE L*a*b* and CIE L*ch color spaces were introduced to provide the pure color information because
the color components in these spaces are independent of the corresponding brightness component.

For the three ROIs located at any segmented foreground banana region, the corresponding ROI
images were first transformed from RGB color space into HSV, CIE L*a*b* and CIE L*ch color spaces.
The hue component H and the saturation component S of the HSV color space, the a* color component
and the b* color component of the CIE L*a*b* color space, and the chromatic degree component c
and the hue component £ of the CIE L*ch color space were extracted. Thus, the average intensity of
all the pixels in each color component was calculated and served as a corresponding color feature
value. All the feature values obtained from different color components (i.e., H, S, a*, b*, ¢ and h) formed
a 6-dimension color descriptor. Since there were three ROIs in each banana sample, the three color
descriptors generated from different ROIs were then successively concatenated into a color feature
vector with a dimension of 6 x 3 = 18.

(2) Local Texture Feature Extraction

The increase in the maturity could alter the local texture of a banana peel, which might be
attributed to (i) a slight change in local gray-level intensity discontinuity caused by the color change
across adjacent maturity stages or (ii) a gradual increase in brown spots while banana fruits reach close
to the overmature stage. Therefore, textural information described by the local binary pattern (LBP)
algorithm [26] was adopted to identify the maturity stage of banana fruits.

LBP encodes any local 3 X 3 image region into a specific binary pattern, as shown in Figure 7.
Basically, LBP compares the intensity of a center pixel ic and that of the 8 surrounded neighboring
pixels iy (k =1, 2, ..., 8). The k-th neighboring pixel would be given a value of 1 if i} > i, is true;
otherwise, it would be given a value of 0. All the encoded values form an 8-bit binary pattern to depict
the local intensity continuity in terms of equation (2). Therefore, a 256-dimension texture feature vector
could be generated. However, it is not advisable to extract 256-dimensional LBP features from small
ROISs; the result would be too sparse. Therefore, an LBP with a uniform pattern (UP-LBP) [27] was
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adopted to reduce the dimension of the resultant texture feature vector, where at most two conversions
between adjacent encoded values (e.g., converting from a value of 1 to a value of 0 or vice versa) in an
8-bit binary number were considered. In total, 58 binary patterns meet the conversion rules, and the
remaining 198 patterns are considered the 59th pattern. A 59-dimensional texture descriptor could be
extracted from each ROI, and the resulting three texture descriptors generated from different ROIs were
then successively concatenated into an UP-LBP texture feature vector with a dimension of 59 x 3 = 177.

8
fLBp_g = Z k=1 % Sigl’l(ik — ic) (2)
k=1

201

encode
159

> (11000011),

163

Figure 7. An example of the feature encoding procedure using an LBP descriptor.

(3) Local Shape Feature Extraction

Similar to the change in local textures, the local shapes of the banana peel could also be
influenced by the increase in the maturity stage. For example, the change in the gray-level intensity
discontinuity across adjacent maturity stages would influence the distribution of local intensity
gradients. Therefore, histogram of oriented gradients (HOG) [28] was adopted. The main idea of
HOG is that local shape information can be well described by calculating the distribution of local edge
directions and intensity gradients on a dense grid.

When extracting the HOG features, each ROI was equally divided into 4 X 4 image cells of
12 pixels x 12 pixels. Adjacent 2 X 2 cells formed an image block, and thus 3 X 3 blocks were generated.
The size of the intersection area between two adjacent blocks was assigned by 1 cell X 2 cells in the
horizontal dense scan or by 2 cells x 1 cell in the vertical dense scan. The gradients of the pixels
within each cell were calculated using the Prewitt operator, and then the magnitude of the gradients
was cumulatively voted into 9 uniformly spaced bins ranging from 0 to 7 according to the gradients’
direction. Thus, a 36-dimensional histogram was generated for each block and further normalized by
the L1-norm. Therefore, a shape descriptor with a dimension of 36 x 3 X 3 = 324 could be extracted
from each ROI, and the three shape descriptors generated from different ROIs were then successively
concatenated into a HOG feature vector with a dimension of 324 x 3 = 972.

2.2.3. Classification of the Maturity Stages

In the maturity stage identification task, it is interesting to evaluate the benefits from different types
of external optical properties. The naive Bayes (NB), linear discriminant analysis (LDA) and support
vector machine (SVM) classifiers were used to model the extracted color, the local texture and the local
shape features, respectively.

(1) NB Classifier

Let m labeled samples (extracted feature vectors) from c different classes in the training dataset
be denoted by X = {(x;, y;)}i-,, where x = (x1,x2,...,%;) and y; € {1,2,...,¢}, and a test sample be
denoted by x" = (x&, xé, e, x"i). The NB classifier [29] is a supervised machine learning algorithm that
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is derived from Bayes’ theorem. The label of the d-dimensional feature vector x” can be predicted
as follows:

hng(x') = argmaxP(c)H P(xlf|c) 3)

d
ceY 1

1

where P(c) is the prior probability of each class and P(xl’. |c) refers to the conditional probability of the

feature x/. Both P(c) and P(xlf |c) can be estimated from the training dataset.

(2) LDA Classifier

LDA is a variant of Fisher’s discriminant analysis [30] and is suitable for multiclass classifications;
the basic idea is to minimize the within-class variance and maximize the between-class variance in the
training samples. Suppose that the average feature vector for the i-th class X is y; and the population
average feature vector for all the ¢ classes is g. LDA aims to find the optimal classification hyperplane
from the projected feature space indicated by:

tr wTSbw)

max—————
w tr(wTS,w)

4)

where w is the projecting matrix and Sy, and S, refer to the within-class and between-class scatter
matrix, respectively, which is denoted as follows:

S0= Y Y (empi) - )" ®

i=1 x€X;

Sp=Y (i-w(xi-m) - Sy ©)
xeX

Once the test feature vector x’ is projected using w, the label of ¥’ will be assigned to that of the
class whose cluster center is closest to the projected x’. Note that the small sample size problem [31]
would occur if the number of training samples is less than the dimension of the feature vectors,
and thus, the objective function indicated by Equation (4) cannot be directly solved. To avoid this
problem, when higher-dimensional feature vectors are provided, principal component analysis (PCA)
is first adopted to reduce the feature dimension, and then the resultant lower-dimensional feature
vectors will be fed to the LDA for classification.

(3) SVM Classifier

The SVM algorithm was first introduced for binary classification task based on structural risk
minimization rules [32]. Suppose that the training dataset X = {(x;, y;)}i_ is restricted by the condition
y; € {~1,+1}, the SVM aims to find the optimal classification hyperplane by solving the following
objection function:

F , =1 2+Cm i
svMm(w, &) = sllwl| Elcf )

s.t.yi(a)Txi+b) >1-¢;,C>0,&2>0, i=1,2,...,m

The solution of Equation (7) can be obtained by maximizing its dual form as follows:

m 1 m o m
max ai—5 Z Z aia]-yiyjK(xi,xj)
& = i=1j=1

i=1

m (8)
st. Y, aiy;=0,0;20, i=1,2,...,m
i=1

1=
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where K(-) is a kernel function. To guarantee a fair comparison between the SVM and LDA classifiers,
a linear kernel function was adopted, i.e., K(xi, xj) = xl.ij. The label of the test feature vector x’ is
predicted by the following decision function:

(2
hsym(x') = Z a;yiK(x', x;) +b ©)
im1

To extend the SVM to multiclass classification task, the one-against-one technique was adopted to
model a multiclass SVM classifier.

2.2.4. Evaluation Metrics

The maturity stage identification performance from different combinations of external optical
properties and classification algorithms was evaluated using the recall rate (RR) and the overall
accuracy (OA) metrics, which are defined by:

RRys; = M5 5 100% (10)
Nwsi
Y. s
OA = =—— x100% 11
Y. Nwmsi an

respectively, where Nyg; is the total number of samples in the i-th maturity stage in the test dataset
and nyg; is the number of correctly classified samples from the i-th maturity stage. The RR is a local
evaluation metric indicating how accurately a classifier predicts each class of samples, while the OA is
a global evaluation metric that measures the ratio of the total number of correctly classified samples in the
whole test dataset to Njs;. A combination (e.g., color feature + SVM) of different features and classifiers
is regarded as performing better in identifying banana maturity stages when higher values of both its
RR and OA are achieved. Additionally, 10-fold cross-validation was first adopted using the training
dataset to evaluate the training performance on different combinations of features and classifiers,
which can help to observe the overfitting phenomenon [33]. Specifically, all the training samples would
be randomly divided into ten disjoint sub-sets, where nine of the sub-sets were used to train different
validation models and the remaining one was served as the validation data; note that, each model
referred to a combination of one type of feature extraction algorithm and one type of classification
algorithm, e.g., color feature + SVM, local texture feature + SVM, local shape feature + SVM, etc.,
and there were nine different models in total. To reduce the randomness of the samples partitioned in
one single cross-validation procedure, the aforementioned 10-fold cross-validation was run 20 times
independently for each validation model, in which the average recall rate of the 20 independent runs
as well as the corresponding standard deviation were calculated. Furthermore, all the samples in the
training dataset were used to train nine different identification models (e.g., color feature + NB, etc.),
whose performance of identifying banana maturity stages would be evaluated using the test dataset.

3. Results and Discussion

To train the corresponding maturity stage classifiers with the NB, LDA and SVM algorithms,
200 image cutouts (ICOs) were generated from the training dataset and served as the training samples to
model the classifiers. Fifty ICOs were from each maturity stage, and each ICO contained 3 different ROls,
as mentioned in Section 2.2.2. Some examples of the ICOs are shown in Figure 8. The performances
of the methods were evaluated using the test dataset. All the experiments were performed using
MathWorks MATLAB R2018a on a personal computer equipped with an Intel Core i5-8500 CPU
and 16 GB of RAM.
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Figure 8. Examples of some 48 pixels x 48 pixels x 3-sized ICOs: each row of ICOs indicate different
maturity stages.

The extracted color, UP-LBP and HOG features of the training samples (i.e., the 200 ICOs) were
first fed to NB, LDA and SVM classifiers, respectively. Then, 20 independent iterations of 10-fold
cross-validation were conducted for each combination of the extracted features and selected classifiers.
The resultant average recall rate and standard deviation using different combinations are shown in
Table 1. Compared with the following results of corresponding combinations using the test dataset as
listed in Tables 2-10, these results demonstrate that consistent identification performance was achieved
from both the training and test dataset, the samples from which were disjoint from each other.

Table 1. Cross validation results for each combination of features and classifiers.

NB LDA SVM
Color 0.96 + 0.03 0.99 +£0.01 0.94 + 0.04
UP-LBP 0.91 £ 0.06 0.88 +0.07 0.93 +£0.01
HOG 0.87 £ 0.06 0.83 £0.09 0.91 £ 0.05

Table 2. Confusion matrix for the maturity stage identification using a color appearance-based

NB classifier.
MS1 MS2 MS3 MS4 RR (%) OA (%)
MS1 36 0 0 0 100
MS2 0 29 0 0 100 99.0
MS3 0 1 28 0 96.6 ’
MS4 0 0 0 27 100

Table 3. Confusion matrix for the maturity stage identification using a color appearance-based

LDA classifier.
MS1 MS2 MS3 MS4 RR (%) OA (%)
MS1 36 0 0 0 100
MS2 0 29 0 0 100 100
MS3 0 0 29 0 100
MS4 0 0 0 27 100

Table 4. Confusion matrix for the maturity stage identification using a color appearance-based

SVM classifier.
MS1 MS2 MS3 MS4 RR (%) OA (%)
MS1 36 0 0 0 100
MS2 0 28 1 0 96.6 99.
MS3 0 0 29 0 100 ’
MS4 0 0 27 100




Sensors 2019, 19, 2910 12 of 21

Table 5. Confusion matrix for the maturity stage identification using the texture feature-based
NB classifier.

MS1 MS2 MS3 MS4 RR (%) OA (%)

MS1 35 0 1 0 97.2

MS2 0 25 4 0 86.2 06
MS3 1 3 25 0 86.2 ’
MS4 0 0 0 27 100

Table 6. Confusion matrix for the maturity stage identification using the texture feature-based

LDA classifier.
MS1 MS2 MS3 MS4 RR (%) OA (%)
MS1 34 0 2 0 94.4
MS2 0 23 6 0 79.3 86.8
MS3 4 4 21 0 72.4 ’
MS4 0 0 0 27 100

Table 7. Confusion matrix for the maturity stage identification using the texture feature-based

SVM classifier.
MS1 MS2 MS3 MS4 RR (%) (Oo/f;
MS1 35 0 1 0 97.2
MS2 0 27 2 0 93.1 93.4
MS3 2 3 24 0 82.8 ’
MS4 0 0 0 27 100

Table 8. Confusion matrix for the maturity stage identification using a local shape feature-based
NB classifier.

MS1 MS2 MS3 MS4 RR (%) OA (%)

MS1 31 1 4 0 86.1
MS2 1 23 3 2 79.3
MS3 2 4 21 2 724 84.3
MS4 0 0 0 27 100

Table 9. Confusion matrix for the maturity stage identification using a local shape feature-based

LDA classifier.
MS1 MS2 MS3 MS4 RR (%) OA (%)
MS1 27 0 9 0 75.0
MS2 1 22 5 1 75.9 835
MS3 1 3 25 0 86.2 ’
MS4 0 0 0 27 100

Table 10. Confusion matrix for the maturity stage identification using a local shape feature-based

SVM classifier.
MS1 MS2 MS3 MS4 RR (%) OA (%)
MS1 26 1 9 0 72.2
MS2 0 24 5 0 82.8 806
MS3 3 3 23 0 79.3 ’
MS4 0 0 0 27 100
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3.1. Assessment of Using the Color Features to Identify Banana Maturity Stages

The three extracted ROIs in each ICO were then transformed into the HSV, CIE L*a*b* and CIE
L*ch color spaces. The average values of the H, S, a*, b*, ¢ and h components within each ROI were
calculated and concatenated to form a color descriptor, and the resultant 3 color descriptors were further
concatenated to generate a whole color feature vector for the single sample image. The distribution of
the hues of the ICOs shown in Figure 8 is illustrated in Figure 9, since hue information can be easily
distinguished by human vision. Intuitively, according to Figure 9, significant differences could be
found among the color distributions in the four maturity stages indicating that identifying the maturity
stage of fruits using the color of banana peels is feasible and reliable.

MS1
MS2

MS3

MS4

Figure 9. Color distributions of the ICOs shown in Figure 8.

To further analyze how each color contributes to the identification of the maturity stages,
Figure 10 gives the statistical distribution of different colors calculated from the training dataset.
The results demonstrate that a significant difference was obtained among the four maturity stages
based on the features extracted using the H, a* and  components, indicating that the maturity stage is
directly related to the color of the banana peel, which and is in accordance with the findings reported
in [4,6], where the measured chlorophyll content gradually degrades from the stage when the banana
peel is green to that when the peel is corrupted with brown spots. On the other hand, the color attribute
using other components could not provide more discriminative information among the four classes.
For example, the saturation and the chromatic degree only describe the purity of a specific color,
indicating the green hue of a banana peel at MS1 could represent a similar purity as a banana peel at
MS3. Therefore, the color attribute provided by these components might not improve the maturity
stage identification; thus, only the color attributes obtained from H, a* and /& components should be
considered to guarantee a higher prediction accuracy.
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Figure 10. Distribution of the different color attributes from the training dataset: (a) the box plot of the
H component, (b) the box plot of the S component, (c) the box plot of the a* component, (d) the box plot
of the b* component, (e) the box plot of the c component, and (f) the box plot of the & component.

The extracted color feature vectors from the training dataset were used to train the NB,

LDA and SVM classifiers.

Based on the foreground region segmentation and the three color

appearance-based classifiers, Tables 2—4 give the respective identification results on the test dataset.
According to Tables 2—4, compared with the other classifiers, the color appearance-based LDA

classifier achieved the best identification performance on the test dataset. Figure 11 illustrates

the distribution of the four stages of training samples in the lower-dimension color feature space
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projected by the LDA classifier, where the value in parentheses along each main axis refers to the
projection variance.
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Figure 11. LDA scatter plot of samples using color features.

This figure demonstrates that the first three projection directions (with 98.43% of the total
accumulative projection variance) incorporate the most important information for the classification
of the four banana maturity stages, since the scatter plot of the different groups achieved
remarkable discriminability.

On the other hand, a high OA (99.2%) was attained with the SVM classifier. Specifically, an RR
of 100% was attained in three classes (MS1, MS3 and MS4), while only 1 test sample from MS2 was
incorrectly predicted as MS3, making the RR on MS2 reach 96.6%. Although the peel color of samples
in MS2 is usually yellow with some green, while that in MS3 represents all yellow, the distribution of
yellow hue on the banana peel might be random. Therefore, few resultant ROIs from MS2 might be
located within yellow peel regions and thus, these singular samples might be incorrectly predicted as
MS3 when using the color properties. Similar results were also found by Hou et al. [3]. Similarly, a good
identification performance was also obtained with NB classifiers. The above results demonstrate that
the color is suitable for correctly and reliably identifying different banana maturity stages.

3.2. Assessment of Using the Local Shape Features to Identify Banana Maturity Stages

Figure 12 shows the extracted LBP textures of the ICOs from Figure 8. Obviously, due to the
distribution of brown spots on the banana peel, the local texture of the samples from M54 is remarkably
different from the other three maturity stages. However, it is difficult to distinguish the samples from
MSI1 to MS3 intuitively, and thus the identification using the UP-LBP texture feature was conducted by
feeding these features to different classifiers. Tables 5-7 give the identification results on the test dataset
using the NB, LDA and SVM classifiers, respectively. Note that since the dimension of the extracted
UP-LBP texture feature was 177 and was smaller than the number of training samples (50 X 4 = 200),
it was unnecessary to reduce the dimensions with PCA before training the LDA classifier.
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Figure 12. Visualization of the LBP texture features of ICOs from Figure 8.

The results shown in Tables 5-7 indicate that a better local prediction performance can be
obtained on the test samples from MS4, where the RR reached 100% for each of the three different
classifiers. Hence, local texture features are more suitable for recognizing overmature bananas. It could
also be intuitively seen in the LDA scatter plot of the lower-dimension local texture feature space
from the training samples (Figure 13), where the MS4 samples are farther away from the other
maturity categories.
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Figure 13. LDA scatter plot of the samples using local texture features.

Compared to the results obtained using the color feature, more samples from MS1, MS2 and MS3
were misclassified using the UP-LBP feature, e.g., RRs of 97.2%, 93.1% and 82.8% were obtained by
the SVM classifier for the test samples from MS1, MS2 and MS3, respectively. Ideally, more similar
texture information would be provided by the samples from MS1 and MS3 due to their similar
intensity distribution, compared to those from MS4; however, the increase in the ripening level
might cause a slight intensity discontinuity in local regions, which would further change the local
textures, especially for those banana peels with defects. Hence, most of the samples from MS1
and MS3 were correctly identified using the UP-LBP-based classifiers, except for some isolated samples.
Moreover, some of the selected ROIs might be located near the yellow hue regions from the MS2 samples,
which could result in similar local intensity discontinuities within the MS3 samples, which usually
have yellow peels; hence, more samples from MS2 and MS3 were misclassified as each other.

The LDA classifier attained a worse global identification performance (with an OA of only 86.8%)
than the SVM classifier, which is probably because the LDA-based prediction was simply determined
by the minimum Euclidean distance between the test sample and the cluster center of each class,
while the SVM classifier used an optimal decision hyperplane determined by the support vectors
away from the classification margin. Therefore, unless descriptions with significant differences (e.g.,
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the color feature) were provided, the LDA classifier might perform worse than the SVM classifier.
Moreover, the different uniform patterns were generated based on the intensity discontinuity within
nonoverlapping local windows, which probably guarantees independence among the attributes in
the resultant UP-LBP feature vector. Hence, the NB classifier also achieved an acceptable global
identification performance with an OA of 92.6%.

3.3. Assessment of Using the Local Shape Features to Identify Banana Maturity Stages

Due to the distribution of brown spots on the banana peel, remarkable differences in the local
shape could be generated between the samples in the overmature stage and the other three classes.
Therefore, MS4 bananas could be easily and accurately recognized by the different classifiers (i.e., the NB,
LDA and SVM classifiers), as shown in the confusion matrices listed in Tables 8-10, respectively.
The RR of the M54 test samples reached 100% for all three different classifiers. However, some samples
in the other maturity stages were incorrectly identified as MS4 when using the NB and LDA classifiers,
which is likely because not all the samples were defect free. Even a small defect on an individual
banana peel could change the local distribution of gradient orientations, making the resultant local
HOG descriptor similar to some MS4 samples.

Since the dimension of the resultant HOG feature was much larger than the number of training
samples in our settings, PCA was adopted for dimension reduction of the HOG feature vectors before
feeding them to the LDA classifier. Figure 14 gives the scatter plot of samples in the lower feature
space projected by the PCA. The distribution demonstrates that there is no informative partition of the
samples from the four maturity stages (the cumulative data variance in the first three components
was only 22.02%). Probably because the PCA explains the samples distribution along the directions of
higher variability in less amount of components and the wider the scatters distribute along a direction,
the larger the corresponding samples variance is; however, the information generated by PCA might not
always guarantee the ability to identify all the samples from different maturity stages [34], resulting in
poor clustering results as shown in Figure 14. And according to [28], most of the generated histograms
of oriented gradients along each orientation bin (i.e., the feature value of each attribute) provide equal
importance for describing objects” local shape information, indicating that the extracted HOG features
might share similar or at least non-prominent data variance along the corresponding directions; thus,
the transformed data in the feature space projected by PCA might not guarantee significant data
variance along the first several directions, resulting in only approximately 20% of accumulative variance
by the first three principal components. Therefore, more principal components should be considered
to guarantee an acceptable identification performance using the dimensionally reduced HOG features.
The first 100 components with a cumulative data variance of 90% were extracted and used to train the
LDA classifier. Compared to the PCA, LDA aims to find the optimal projection directions in which the
labelled samples from different maturity stages can be identified accurately, and thus it achieves larger
variance in the main projection directions if the samples from different stages provide larger value
of ratio of the between-class scatter and the within-class scatter [35]. Therefore, a more significant
partition of the four different clusters was obtained in the resultant lower feature space projected by
the LDA, as shown in Figure 15.
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Compared with the OA obtained using the local texture-based feature, a poorer performance for
identifying maturity stages using local shape features was found. The overall identification accuracies
of 84.3%, 83.5% and 82.6% were obtained using HOG feature-based NB, LDA and SVM classifiers,
respectively, according to the classification results illustrated in Tables 8-10. The HOG descriptor is
different from the LBP descriptor, which globally encodes the local texture attributes by counting the
number of different uniform patterns, in that the HOG descriptor simply concatenates all the local
histograms of oriented gradients calculated from each block; thus, a slight defect on a banana peel
might cause only a small change in specific local texture attributes. However, slight defects or intensity
discontinuities would cause greater changes in the resultant HOG features. Therefore, the local texture
features encoded by the LBP descriptor is more suitable for identifying the banana maturity stages
than the local shape features encoded by the HOG descriptor.
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4. Conclusions

This study investigated the importance of different external optical properties for identifying four
successive banana fruit maturity stages. The main conclusions are as follows:

(1) Significant differences among the four maturity stages could be found in the H component in
HSV color space, the a* component in CIE L*a*b* color space and the & component in CIE L*ch
color space, resulting in an excellent OA of 99.2%, 100% and 99.2% using NB, LDA and SVM
classifiers, respectively.

(2) With the combination of NB, LDA and SVM classifiers, a more acceptable overall identification
accuracy of 92.6%, 86.8% and 93.4% was obtained using local texture features compared to 84.3%,
83.5% and 82.6% using local shape features, respectively, probably because the shape information
encoded by the HOG descriptor is more sensitive to slight defects or changes in intensity
discontinuities on banana peels than the textural information encoded by the UP-LBP descriptor.

(3) AnRR of 100% for the MS4 bananas can be obtained using either the local texture or local shape
features, due to the specific visual distributions of both the UP-LBP and HOG features generated
by the brown spots. For the MS1 to the MS3 bananas, more samples were incorrectly identified
using these two types of features, resulting in a worse local identification accuracy than the color
appearance features, especially for the local shape features encoded by the HOG descriptor.

(4) The best identification performance could be achieved using the color feature-based classifiers,
probably because the changes in banana maturity stages involve a more significant feature
difference in appearance compared to those provided by both local texture and local shape
appearance, which are more sensitive to the changes in local appearance (e.g., peel defects).
The low-cost and easy-to-implement method using external optical properties makes it attractive
for automatic banana sorting systems.
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