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Abstract: The constant growth of the population with mobility impairments has led to the development
of several gait assistance devices. Among these, smart walkers have emerged to provide physical
and cognitive interactions during rehabilitation and assistance therapies, by means of robotic and
electronic technologies. In this sense, this paper presents the development and implementation of
a human–robot–environment interface on a robotic platform that emulates a smart walker, the AGoRA
Walker. The interface includes modules such as a navigation system, a human detection system,
a safety rules system, a user interaction system, a social interaction system and a set of autonomous
and shared control strategies. The interface was validated through several tests on healthy volunteers
with no gait impairments. The platform performance and usability was assessed, finding natural and
intuitive interaction over the implemented control strategies.

Keywords: smart walker; human–robot–environment interaction; control strategies; shared control;
gait assistance; gait rehabilitation

1. Introduction

Human mobility is a complex behavior that involves not only the musculoskeletal system but
also dissociable neuronal systems. These systems control gait initiation, planning, and execution,
while adapting them to satisfy motivational and environmental demands [1]. However, there are some
health conditions and pathologies that affect key components of mobility [2] (e.g., gait balance, control,
and stability [3]). Among these pathologies, Spinal Cord Injury (SCI), Cerebral Palsy (CP) and Stroke
are found to be strongly related to locomotion impairments [4]. Likewise, the progressive deterioration
of cognitive functions [1] (i.e., sensory deficits and coordination difficulties [5]) and the neuromuscular
system in the elderly [6] (i.e., loss of muscle strength and reduced effort capacity [5]) are commonly
related to the partial or total loss of locomotion capacities.

Moreover, according to the World Health Organization (WHO) the proportion of the mobility
impaired population has been experiencing constant and major growth [7]. Specifically, nearly 15%
of the world’s population experience some form of disability [8], and by 2050 the proportion of
the world’s population over 60 years will nearly double from 12% to 22% [9,10]. These studies also
report that a larger percentage of this growth will take place in developing countries [9]. Although
these populations may be represented by different types of disability, mobility impairments have
been identified as a common condition in elderly populations and people with functioning and
cognitive disabilities [5,11,12]. Considering this, several rehabilitation and assistance devices have
been developed to retrain, empower or provide the affected or residual locomotion capacities [13].

Devices such as canes, crutches, walkers, and wheelchairs, as well as ambulatory training devices,
are commonly found in assisted gait and rehabilitation scenarios [14] and are intended to improve
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user’s life quality. Concretely, mobility assistive devices are aimed at overcoming and compensating
physical limitations by maintaining or improving individual’s functioning and independence in both
clinical and everyday scenarios [15]. Regarding conventional walkers, these devices exhibit simple
and affordable mechanical structures, as well as partial body weight support and stability. However,
natural balance, user’s energetic costs, fall prevention and security issues are often compromised
with conventional walkers [16]. Moreover, several issues related to sensory and cognitive assistance,
often required by people with physical limitations, are not completely addressed by conventional
devices [17–19]. Accordingly, to outstrip such problems, robotic technologies and electronics have
been integrated, leading to the emergence of intelligent walkers or Smart Walkers (SWs).

The SWs are often equipped with actuators and sensory modalities that provide biomechanical
monitoring mechanisms and individual’s intention estimators for user interaction, as well as several
control strategies for movement and assistance level control [16]. Likewise, path following modules
are usually included, in addition to safety rules and fall prevention systems [20]. These features enable
SWs to interact in dynamic and complex environments. The particular selection and implementation
of such features can be referred to as Human–Robot Interaction (HRI) interfaces [21]. Notwithstanding,
Human–Robot–Environment Interaction (HREI) interfaces are required, in such a way that they provide
natural user interactions, as well as effective environment sensing and adaption while maintaining
safety requirements.

In this context, the design and implementation of a multimodal HREI interface for an SW is
presented. Such implementation was made to improve previous implementations of HRI interfaces on
SWs, by providing safety, natural user interactions and robust environment interactions. The HREI
was focused on the development of shared control strategies (i.e., natural and intuitive user interaction
while multiple systems are running), as well as on the implementation of a robust Robot–Environment
Interaction (REI) interface (i.e., a safety system for collision prevention, a navigation system
and a social interaction system). Moreover, the interaction interface was equipped with several
strategies for therapy management and supervision by a technical or health care professional.
To this end, several robotic and image processing techniques, as well as different control strategies,
were implemented. Navigation and human detection systems were aimed at enabling the SW with
social interaction and social acceptance capabilities. Additionally, user interaction systems and shared
control strategies sought to provide a more natural, intuitive and comfortable interaction.

The remainder of this work is organized as follows. Section 2 describes the existing HRI and REI
interfaces implemented on several SWs. Section 3 shows the proposed HREI interface and the platform
description. Since the HREI interface is composed by a HRI interface and a REI interface, Section 4
describes the systems and modules for HRI on the AGoRA Walker, and Section 5 presents the systems
for environment and social interaction (i.e., the REI interface). Thereafter, Section 6 details the different
control strategies implemented on the HREI interface, while Section 7 exhibits the experimental test
conducted to assess the interface performance. Finally, Section 8 expresses the conclusions and relevant
findings of this work and mentions proposals for future research.

2. Related Work

Reviewing literature evidence, several SWs and walker based robotic platforms have
introduced HRI and REI interfaces. Generally, these systems are aimed at assessing the user’s
state (i.e., biomechanical and spatiotemporal parameters), the user’s intentions of movement and
environment constraints. Likewise, these interfaces and interaction systems are commonly aimed
at providing effectiveness, comfort, safety and different control strategies during rehabilitation and
assistance tasks. For this purpose, some sensory modalities are frequently implemented, such as
potentiometers, joysticks, force sensors, voice recognition modules and scanning sensors [20].
Some of these HRI and REI interfaces are shown in Table 1, where the SWs are characterized by
their type (i.e, active for motorized walkers and passive for non motorized walkers), the sensors used,
the internal modules (i.e., main reported functionalities or systems), the reported modes of operation,
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the implemented shared control strategies and by their social interaction capabilities (i.e., specific
strategies for people avoidance or interaction).

Table 1. Related works involving smart walkers with the integration of interfaces for
Human–Robot–Environment Interaction.

Walker Type Sensory
Interface Internal Modules Modes of

Operation
Shared Control
Strategies

Social
Interaction

GUIDO [22] Active

- Force sensors
- LRF
- Sonars
- Encoders

- Autonomous navigation
- Detection of user’s intentions
- Sound feedback

- Supervised
- Autonomous - -

XR4000 [23] Active

- Force sensors
- LRF
- Sonars
- Infrared sensors
- Encoders

- Autonomous navigation
- Detection of user’s intentions

- Free
- Supervised
- Autonomous

Shared walker
steering on active
mode

ASBGo++
[21,24,25] Active

- Force sensors
- LRF
- Sonar
- Infrared sensors
- Camera
- Encoders

- Autonomous navigation
- Detection of user’s intentions
- Gait monitoring
- User position feedback

- Free
- Supervised
- Autonomous

- -

JARoW [26,27] Active
- Infrared sensors
- Encoders
- LRFs

- User position estimation
and prediction
- Obstacle avoidance

- Free
- Supervised - -

NeoASAS [14] Active - Force sensors - Detection of user’s intentions - Free - -

UFES [16,28] Active

- Force sensors
- LRF
- IMUs
- Encoders

- Path following
- Obstacle avoidance
- Detection of user’s intentions
- Gait monitoring

- Free
- Supervised
- Feedback

Spatially modulated
admittance control,
visual feedback

-

PAMM [29] Active

- Force sensors
- Sonars
- Camera
- Encoders

- Autonomous navigation
- Health monitoring

User control, path
following control

Adaptive and
shared admittance
controller

-

MOBOT
[17,30–32] Active

- Force sensors
- LRFs
- Cameras
- Kinect sensors
- Microphones

- Autonomous navigation
- Detection of user’s intentions
- Speech and gesture recognition
- Body pose estimation
- Gait Analyzer

Walking assitance,
sit-to-stand
assistance, nurse
type

Adaptive control
based on context -

CAIROW [33] Active
- Force sensors
- LRFs

- Environment analyzer
- Force analyzer
- Gait analyzer

Context aware
mode

Adaptive system
parameters -

ISR-AIWALKER
[34,35] Active

- Force sensors
- Kinect sensor
-Encoders
- Leap motion sensor
- RGB-D Camera

- Detection of user’s intention
- Gripping recognition
- Gait analyzer
- Autonomous navigation

- Supervised
- Navigation aided

Aided user intent
by navigation system -

COOL Aide [36] Passive
- Force sensors
- LRF
- Encoders

- Autonomous navigation
- Detection of user’s intentions - Supervised

Shared control
based on obstacles
and user’s
intentions

-

Wachaja
et al. [37] Passive

- LRF
- Tilting LRF

- 3D Mapping and localization
- Obstacle avoidance
- Vibrotactile feedback

- Single feedback
- Multiple feedback - -

MARC [38,39] Passive
- Sonars
- Infrared sensors
- Encoders

- Path following
- Obstacle avoidance

Warning mode,
safety braking
mode and braking
and steering mode

Shared walker
steering -

c-Walker [40] Passive

- Kinect like sensor
- RFID reader
- IMU
- Camera
- Encoders

- Autonomous navigation
- People detection and tracking
- Guidance

Acoustic feedback,
mechanic feedback
and haptic feedback

Shared walker
steering

Social Force
Model for
path
planning

One of the most notable smart walkers is CO-Operative Locomotion Aide (COOL Aide), which is
a three-wheeled passive SW [36] intended to assist the elderly with routine walking tasks. It includes
mapping and obstacle detection systems, as well as navigation and guidance algorithms. Additionally,
it is equipped with force sensors on its handlebars and a Laser Range Finder (LRF) to estimate the
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user’s desired direction to turn. Although it is a passive walker, shared control strategies are achieved
by granting walker control to the platform or the user.

Other passive walkers, such as those presented in [37,38], include navigation and guidance
algorithms in conjunction with shared control systems. These strategies are based on sharing the
steering control between the user and the walker.

Different approaches on active SWs have been developed in the past few years regarding HRI and
REI interfaces [21–26,28–31,33]. These interfaces are also equipped with navigation and user interaction
systems to provide shared control capabilities. Such strategies are based on granting walker steering to
the user or the SW, depending on the obstacle detection and navigation systems, as well as on changing
the walker responses to user’s commands (i.e., some strategies are based on inducing the user’s actions
through haptic communication channels). To this end, user interaction systems are required to manage
how user’s intentions of movement are interpreted. The estimation of such intentions is commonly
achieved by admittance control systems, gait analysis systems, and rule-based algorithms.

In addition, other robotic walkers have been reported in the literature, including different HRI
interfaces [41–44]. For instance, the approach developed by Ye et al. [42] includes a width changeable
walker that adapts to the user’s intentions and environment constraints. Likewise, some REI interfaces
have been presented in [45–47]. These approaches intend to assess the environment information
to adapt their control strategies. Finally, regarding social interaction approaches, the c-Walker [40]
includes a social force model that represents pedestrians and desired trajectory paths as repulsive or
attractive objects, respectively. Although the c-Walker presents both shared control strategies and social
interaction, it is a passive walker and its shared strategy is based on brakes control and shared steering
of the platform.

According to the above, this work presents the implementation of an HREI interface in order
to join the multiple advantages of the current HRI and REI interfaces on the AGoRA Smart Walker.
The AGoRA Walker is equipped with a sensory and actuation interface that enables the implementation
of several functionalities for HRI and REI, as well as a set of control strategies for shared control and
social interaction. Moreover, the developed interface is equipped with a robust navigation system,
a user interaction system (i.e., a gait analyzer module and an user’s intention detector), a low-level
safety system, a people detection system for social interaction, and a safe strategy for shared control of
the walker.

3. Human–Robot–Environment Interaction (HREI) Interface

3.1. Robotic Platform Description

According to the different motivations and related approaches presented in Sections 1 and 2,
this work covers the design, development, and implementation of a set of control strategies and
interaction systems that establish an HREI interface on a robotic walker. Hence, a robotic platform was
adapted to emulate the structural frame of a conventional assistance walker, by attaching two forearm
support handlebars on the platform’s main deck. Specifically, the Pioneer LX research platform (Omron
Adept Technologies, Pleasanton, CA, USA), named as AGoRA Smart Walker, was used to implement
and test the interface systems. The platform is equipped with an onboard computer running a Linux
operating system distribution providing support for the Robotic Operating System (ROS) framework.

As shown in Figure 1a, several sensory modalities, actuators, and processing units were
implemented and integrated on the AGoRA Smart Walker. The AGoRA Smart Walker is equipped with:
(1) Two motorized wheels and two caster wheels for walker’s propulsion and stability; (2) two encoders
and one Inertial Measurement Unit (IMU) to measure walker’s ego-motion; (3) a 2D Light Detection
and Ranging Sensor (LiDAR) (S300 Expert, SICK, Waldkirch, Germany) for environment and obstacle
sensing; (4) two ultrasonic boards (one in the back and one in the front) for user’s presence detection
and low-rise obstacles detection; (5) two tri-axial load cells (MTA400, FUTEK, Irvine, CA, USA) used to
estimate the user’s navigation commands; (6) one HD camera (LifeCam Studio, Microsoft, Redmond,
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WA, USA) to sense people presence in the environment; and (7) a 2D Laser Range-Finder (LRF)
(Hokuyo URG-04LX-UG01, Osaka, Japan) for user’s gait parameters estimation.

User
(x2) Handlebars

2D LRF
(x2) Tri-Axial Force Sensors
HD Camera

2D LiDAR

Back Ultrasonic Board
Bumper Board
Front Ultrasonic Board 

(a) AGoRA Smart Walker description.

FyLeft

FyRight

FzLeft

FzRight

FxRight

FxLeft

FspyLeft
FspyRight

FspzLeft
FspzRight

FspxRight
FspxLeft

(b) Reference frames for
force sensors.

Figure 1. (a) The AGoRA Smart Walker is a robotic walker mounted on a commercial robotic platform.
Several sensor modalities retrofit the walker with user and environment information. (b) Coordinate
reference frames on handlebars and force sensors.

Additionally, to leverage the AGoRA Smart Walker’s processing capabilities, an external computer
is used for running several non-critical systems. The communication with the external CPU can be
achieved through the walker’s Ethernet and Wi-Fi modules.

As shown in Figure 1b, the position of the force sensors on the platform’s deck is not vertically
aligned with the actual supporting points of the user on the handlebars. Essentially, the forces in y-
and z-axis read by the sensors (i.e., FyRight, FyLe f t, FzRight and FzLe f t) will be a combination of the forces
in y- and z-axis at the supporting points (i.e., FspyRight, FspyLe f t, FspzRight and FspzLe f t). The forces
in x-axis (i.e, FxRight, FxLe f t, FspxRight and FspxLe f t) are discarded, as they do not provide additional
relevant information.

3.2. Interface Design Criteria

The HREI interface presented in this work takes into account several sensor modalities and control
strategies to fulfill several design requirements. The design criteria are grouped in the HRI and REI
interfaces that compose the final HREI interface:

• HRI Interface functions:

– Recognition of user–walker interaction forces. The interaction forces between the user and the
platform are required to analyze the physical interaction between them.

– Estimation of user’s navigation commands. To provide a shared control strategy, as well as
a natural and intuitive HRI, the walker needs to be compliant to the user’s intentions of
movement.

– Detection of user’s presence and support on the walker. To ensure safe HRI, the walker movement
should only be allowed when the user is properly interacting with it (i.e., partially supporting
on the platform and standing behind it).

– Estimation of user’s gait parameters. To adapt the walker’s behavior to each user gait pattern,
several gait parameters are computed and analyzed.
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– Implementation of control strategies. To provide walker natural response to user’s intentions of
movement, it is required to introduce control strategies based on physical HRI between the
user and the walker.

• REI Interface functions:

– Implementation of a robust navigation system. To provide a safe and effective REI,
the implementation of navigation capabilities is required. Such functions include:
map building and edition, autonomous localization and path planning.

– Walker motion control. The execution of desired movements on the walker, relays on a low-level
motion control provided by the robotic platform previously described.

– Detection of surrounding people. The navigation system is able to sense obstacles (e.g., people,
fixed obstacles and moving obstacles) in the environment as simple physical objects.
Therefore, to provide social interaction capabilities between the walker and surrounding
people, it is necessary to differentiate among those types of obstacles.

– Path adaptation due to social spacing. To ensure social interaction, the detected surrounding
people should modify or adapt the results from the path planning system.

– Security restrictions. A low-level security system is required to ensure safe interaction,
even under failure or malfunction of previously described systems.

• Additional functions:

– Remote control by therapy supervisor. The therapy manager should be able to modify the walker
parameters, as well as to set the desired control strategy.

– Emergency braking system. To provide an additional safety system, the platform should
be equipped with an emergency system based on an external input that completely stops
the walker.

– Session’s data recording. The platform should be equipped with a storage system for data
recording, in such a way that the information is available for further analysis.

According to the above, Figure 2a illustrates the most relevant systems provided by the HRI and
REI interaction interfaces included in our approach.

1

5
�

2

2

HRI Interface REI Interface

6
8

HREI Interface

7

9

3

(a) HREI systems description.

Physical and 

Cognitive Channel

Sensory and 

Social Channel

User Smart Walker Environment

Visual

Channel

Sensory and 

Social Channel

Visual Channel

Therapy Manager

Supervising Channel

(b) HREI communication channels.

Figure 2. HREI interface model and communication channels. (a) HRI and REI systems: (1) Estimation
of user interaction forces; (2) low level security rules; (3) laser based estimation of user’s gait parameter;
(4) laser-camera fusion scheme for people detection; (5) laser based navigation; (6) motion control for
navigation goal reaching; (7) low-rise obstacle avoidance; (8) social spacing for people type obstacles;
and (9) therapy supervision. (b) Communication channels.
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3.3. Interface Communication Channels

Relying on the different interface functions, there are some notable communication channels that
provide information exchange between them, as shown in Figure 2b. The communication channels
immersed over the HREI interaction are described as follows:

• User–Walker physical and cognitive channel. Through this communication channel, the walker’s
sensors assess the user’s information (i.e., navigation commands, interaction forces, body weight
support and gait parameters). Similarly, the user is able to sense the walker’s behavior through
mechanical impedance, safety restrictions, guidance, and response to navigation commands.

• Walker–Environment sensory and social channel. The walker’s behavior is also a result of
the information retrieved from the environment (e.g., obstacles and the presence people).
Such information is used by the walker’s systems to accomplish obstacle avoidance, safety
provision, and social interaction.

• Manager–Walker supervising channel. A therapy manager is able to remotely assess the session data,
as well as override or control walker behavior, if required.

• Manager–Environment supervising channel. The environment is also sensed by the natural
communication channel with the therapy manager (i.e., visual supervision). Such natural sensing
allows the manager to set and control the walker’s behavior.

• User–Walker–Environment visual channel. Relying on the visual faculty of the user, the environment
and walker behavior is cognitively sensed by the user. This natural communication channel takes
place during the HREI loop, however it is not addressed or included in the HREI control strategies.

The following sections describe the systems that compose each interaction interface
(i.e., HRI interface and REI interface), as well as the proposed control strategies.

4. HRI Interface

Based on the physical interaction between the user’s upper limbs and the walker’s handlebars,
the HRI interface is composed of two systems: (A) a gait parameters estimator; and (B) a user’s
intention detector.

4.1. Gait Parameters Estimator

During gait, the movement of human trunk and center of mass describe oscillatory displacements
in the sagittal plane [48]. Thus, in walker assisted gait, the interaction forces between the user and the
walker handlebars are associated to the movements of the user’s upper body [44].

In this sense, to implement a proper control strategy based on such interaction forces, a filtering
and gait parameter extraction process is required. Consequently, the estimation of the user’s intentions
of movement and the user’s navigation commands could be achieved with ease and less likely to
be misinterpreted.

According to the above, to carry out filtering processes, a gait cadence estimator (GCE) was
implemented. The GCE addresses the gait modeling problem, which is reported in the literature
to be solved with several applications of the Kalman filter and adaptive filters [49]. In fact,
the Weighted-Fourier Linear Combiner (WFLC) is and adaptive filter for tracking of quasi-periodic
signals [49], such as gait related signals (e.g., the interaction force on walker’s handlebars). Therefore,
based on the on-line method proposed by Frizera-Neto et al. [50], a GCE was integrated into the HRI
interface. This method uses a WFLC to estimate gait cadence from upper body interaction forces.

The two vertical forces (i.e., FzRight and FzLe f t) are computed to obtain a final force,
FCAD = (FzRight + FzLe f t)/2. The resulting force, FCAD, is firstly passed through a band-pass filter
with experimentally obtained cutoff frequencies of 1 Hz and 2 Hz. This filter allows the elimination of
signal’s offset and high frequency noise (i.e., mainly due to vibrations between the walker structure
and the ground). The filtered force F′CAD is fed to the WFLC, in order to estimate the frequency of the
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first harmonic of F′CAD. Such frequency represents the gait cadence, which is the final output of the
GCE. This process is illustrated in Figure 3.

+

FzRight

FzLeft

1Hz - 2Hz Bandpass Filter

WFLC

Gait Cadence Estimator

FCAD F’CAD Cadence+

μ = 1e-3       μ0 = 1e-3

M = 1

Figure 3. The Gait Cadence Estimator system takes the vertical interaction forces through a filtering
process, based on a band-pass filter that eliminates high frequency noise due to walker’s vibrations.
Finally, the Weighted-Fourier Linear Combiner filter adaptively estimates the user’s gait cadence.

According to several experimental trials, the users performed significant forces, related to their
intentions of movement, along y-axis (i.e., FyLe f t and FyRight, see Figure 1b). It was also observed that
the user’s navigation commands were mainly included within the y-axis forces. Therefore, the x-axis
(i.e., FxLe f t and FxRight, see Figure 1b) forces were discarded. As previously stated, the interaction force
signals require a filtering process to remove high frequency noise and signal offset [50]. Thus, a fourth
order Butterworth low-pass filter was used.

To eliminate gait components from the interaction force signals along y-axis, a Fourier Lineal
Combiner (FLC) filter in conjunction with the GCE was implemented. Such integration is illustrated
in the filtering system (FS) diagram shown in Figure 4. The FS is independently applied to both left
and right forces obtaining filtered forces F′yLe f t and F′yRight. Thus, Figure 4 denotes FyΦ as whether
FyLe f t or FyRight and F′yΦ as whether F′yLe f t or F′yRight. The final output F′yΦ of the FS is calculated as the
difference between the resulting signal from the low-pass filter (i.e., FyΦLP) and the output of the FLC
(i.e., FyΦCAD, the cadence signal obtained from each FyΦ signal).

5Hz Lowpass 
Filter

FLC
μ = 1e-3           M = 2

+
-

0.
5

GCE
FzRight

FzLeft
Cadence

FyΦ FyΦLP

FyΦCAD

F’yΦ

Filter System

Figure 4. Filter system for y-axis forces (Φ means le f t or right). There is an independent FS for each
y-axis force (i.e., FyLe f t and FyRight), composed by a low-pass filter and a FLC filter.
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As shown in Figure 4, the order M of the FLC filter was experimentally set to 2, and a 0.5 gain
was added between the GCE’s output and the FLC’s frequency input. This gain was set to filter any
additional harmonics produced by asymmetrical supporting forces [51]. Moreover, an adaptive gain µ

of 0.008 was used.
The final linear force F and torque τ, applied by the user to the walker, were computed using

F′yLe f t and F′yRight (i.e., the y-axis forces resulting from the filtering processes) as follows: F is computed
as the sum of F′yLe f t and F′yRight, and τ as the difference between them. For instance, the FyLe f t signal
obtained from the left force sensor and the implementation of the different filters is presented in
Figure 5. The signal obtained corresponds to the readings of the force sensor during a walk along an
L-shaped path. Different zones are illustrated in the figure: (1) the green zones show the start and end
of the path; (2) the five gray areas denote straight parts of the path; and (3) the blue zone corresponds
to the curve to the right, where a reduction of the signal is observed.

0
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F
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ce
 (

kg
f)

0 10 20 30 40 50 60 70 80 90

(a) Raw FyLe f t signal from left force sensor.

-10

0

10

20

F
or

ce
 (

kg
f)

0 10 20 30 40 50 60 70 80 90

(b) Resulting FyLe f tLP signal from the low-pass filter (Blue),
and resulting FyLe f tCAD signal from the FLC (Red) for left force sensor.

Time (s)

0

10

20

F
or

ce
 (

kg
f)

0 10 20 30 40 50 60 70 80 90

(c) Filtered F′yLe f t signal from left force sensor.

Figure 5. (a) Raw FyLe f t signal from left force sensor. (b) FyLe f tLP (Blue), meaning the resulting signal
from the low-pass filter, and FyLe f tCAD (Red), meaning the resulting signal from the FLC. (c) FyLe f tLP
and FyLe f tCAD were subtracted obtaining the filtered signal without gait components, F′yLe f t.

4.2. User’s Intentions Detector

Starting from the linear force signal and the torque signal, two admittance controllers were
implemented to generate walker’s linear velocity and angular velocity responses from user’s intentions
of movement. This type of controllers has been reported to provide natural and comfortable interaction
in walker assisted gait [28], as they take the interaction forces to generate compliant walker behaviors.
Specifically, the implemented admittance controllers emulate dynamic systems providing the user
with a sensation of physical interaction during gait assistance. These systems are modeled with
two mass–damper–spring second-order systems, whose inputs are the resulting force F and torque
τ (i.e., the force and torque applied to the walker by the user), from the filtered y-axis forces.
The outputs of these controllers are the linear (v) and angular (ω) velocities, meaning the user’s
navigation commands.
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On the one hand, the transfer function of the linear system is described by Equation (1) (L(s) stands
for Linear System), where m is the virtual mass of the walker, bl is the damping ratio and kl is the
elastic constant. On the other hand, Equation (2) (A(s) stands for Angular System) shows the transfer
function for the angular system, where J is the virtual moment of inertia of the walker, ba is the
damping ratio, and ka is the elastic constant for the angular system. According to this, the static
and dynamic behavior, meaning the mechanical impedance of the walker, could be changed by the
modification of the controllers parameters.

L(s) =
v(s)
F(s)

=
1
m

s2 + bl
m s + kl

m

(1)

A(s) =
ω(s)
τ(s)

=
1
J

s2 + ba
J s + ka

m

(2)

Empirically, the authors realized that the values of m = 15 Kg, bl = 5 N·s/m, J = 5 Kg·m2 and
ba = 4 N·m·s were appropriate for the purposes of the experimental study. Moreover, kl and ka were
used for the walker’s behavior modulation. Figure 6 shows how the two FSs of the GCE and the user’s
intention detector are connected.
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Figure 6. HRI interface system diagram.

The next section describes the implemented systems for REI on the walker.

5. REI Interface

The REI interface is composed of three main systems: (A) a navigation system; (B) a human
detection system; and (C) a low-level safety system.

5.1. Navigation System

Navigation during walker-assisted gait is mainly focused on safety provision while guiding the
user through different environments. According to the health condition that is being rehabilitated
or assisted, the implementation of goal reaching and path following tasks is required. Moreover,
such navigation tasks on smart walkers require the consideration of user interaction strategies,
obstacle detection and avoidance techniques, as well as social interaction strategies. Particularly,
the navigation system presented in this work considers map building, autonomous localization,
obstacle avoidance and path following strategies and is based on previous developments of the
authors [52].
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5.1.1. Map Building and Robot Localization

Relying on the ROS navigation stack, a 2D map building algorithm, that uses a Simultaneous
Localization and Mapping (SLAM) technique to learn a map from the unknown environment was
integrated. Specifically, the ROS GMapping package for map learning was used [53]. This package is
aimed at creating a static map of the complete interaction environment. The static map is made off-line
and is focused on defining the main constrains and characteristics of the environment. Figure 7a shows
the raw static map obtained at the authors’ research center. This map is also used for the walker on-line
localization. For this purpose, the Adaptive Monte Carlo Localization Approach (AMCL) [54] was
configured and integrated.

(a) Raw static map. (b) Edited static map.

Figure 7. (a) Navigation raw static map. (b) Navigation edited static map. White means non-obstacle
zones, gray means unknown zones and black means obstacles.

In general, zones such as stairs, elevator entrances, and corridor railings, among others, are defined
as non-interaction zones (i.e., mainly due to the risk of collisions). These restrictions are achieved
by an off-line editing process of the resulting static map. Further modifications are also required,
since LiDARs are light-based sensors and the presence of reflecting objects, such as mirrors, affects their
readings. As shown in Figure 7b, the map constitutes a grayscale image, therefore modifications were
made by changing colors in the map.

5.1.2. Path Planning and Obstacle Detection

To achieve path planning, 2D cost-maps are elaborated from the previous edited map.
These cost-maps consist of 2D occupancy grids, where every detected obstacle is represented as
a cost. These numerical costs represent how close the walker is allowed to approach to the obstacles.
Specifically, local and global cost-maps are generated. The local cost-map is made using readings from
the LiDAR that rely on a portion of the edited map, while the global cost-map uses the whole edit map.
Moreover, these cost-maps semantically separate the obstacles in several layers [55]. The navigation
system integrated in this work was configured with an static map layer, an obstacle layer, a sonar layer and
an inflation layer [55]. During the path planning process, the global cost-map is used for the restriction
of global trajectories. The local cost-map restricts the planning of local trajectories, which are affected
for variable, moving and sudden obstacles.

The Trajectory Rollout and the Dynamic Window approaches (DWA) were used to plan local
paths, based on environment data and sensory readings [56]. As presented in the research of
Rösmann et al. [57], this local planner is optimized using a Time Elastic Band (TEB) approach.
The information of the environment and global cost-map is used by a global path planner. This planner
calculates the shortest collision-free trajectory to a goal point. To do this, the Dijkstra’s algorithm was
used. Finally, a motion controller takes into account both trajectory plans and generates linear and
angular velocity commands to take the walker to each plan’s positions.
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Figure 8 shows the trajectories planned by the local and global planner, the positions estimations
calculated by the AMCL algorithm, a current goal and the cost-map grid.

Global Planner Trajectory Goal

Local Planner Trajectory AMCL Pose Estimations

AGoRA Smart Walker

Figure 8. Illustration of a navigation task for the AGoRA Smart Walker reaching a specific goal.
Green and orange lines represent local and global trajectories calculated by the path planning system.
Light blue and dark blue zones represent the 2D cost-map occupancy grid.

5.2. People Detection System

The main goal of this module is to complement the performance of the navigation module in the
distinction of obstacles regarding to people from simple obstacles (i.e., stationary or mobile objects).
This distinction enables the walker with social acceptance and social interaction skills. To achieve
this, the people detection system implemented in this work is based on the techniques proposed
by Fotiadis et al. [58] and Garzón et al. [59]. Such approaches exploit the localization information
provided by the laser of potential humans, in order to reduce the processing time of the camera data.
This sensory fusion requires a proper process of calibration. Hence, an extrinsic calibration method
was implemented for laser-camera information fusion. Figure 9 illustrates the methodology of the
integrated people detection system.

LiDAR

Data

Distance based

Segmentation

Feature

Extraction

Classification

by RealAdaBoost

Camera

Data
Cluster Projection

into Image

HOG Descriptor

Estimation

Classification

by Linear SVM

Probabilistic

Calibration/Fusion

People Observed

Locations

Locations

Pairing/Updating

People Detected

Locations

Kalman

Filter

Figure 9. Outline of the people detection system.

5.2.1. Detection Approach

The people detection system begins with the segmentation of laser data into clusters, based on
Euclidean distance differences. These laser clusters are inputs of a process of characteristic
extraction [60]. Consequently, these features feed a classification algorithm based on Real AdaBoost [61],
which is trained off-line with several laser clusters. In parallel, a camera based detection process
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starts from the projection of each laser cluster into the image frames. As previously mentioned, this
projection is accomplished thanks to a calibration process that provides a set of rotation and translation
matrices. Such matrices allow the transformation of laser points into the camera frame [62]. From the
localization of each cluster, a region of interest (ROI) is defined for the calculation of a Histogram of
Oriented Gradients (HOG) descriptor [63]. This HOG descriptor is used by a Linear Support Vector
Machine (SVM), which is aimed at classifying the descriptor.

As also proposed in [58], to increase the possibilities to detect a person, the ROI is defined by
several adaptive projections, resulting in a group of ROIs in which a person might be.

Both classifiers, Real AdaBoost and Linear SVM, are not completely probabilistic methods,
since they produce probability distributions that are typically distorted. Such distortions take place as
the classifiers outputs constitute signed scores representing a classification decision [64]. To overcome
this, a probabilistic calibration method is proposed. The calibration of Real AdaBoost scores is achieved
by a logistic correction and for the Linear SVM a parametric sigmoid function is used [58]. Afterwards,
the outputs of each classifier are passed through an information fusion system, in order to get a unique
probabilistic value from both detection methods, resulting in a decision about the presence of people
in the environment.

Finally, a tracking process takes into account the previous people observations to generate a final
decision about pedestrian locations. As presented by one of the authors, a Kalman filter instance
is created for each detection, including those that rely out the image frame [59]. Based on each
person’s current and previous position, the filter uses a linear model to calculate people velocities,
and consequently achieve the tracking task. A location pairing-updating process is carried out,
as presented in [59]. This process is aimed at adding new people locations, updating previous locations,
scoring, and removing them.

Figure 10a shows several laser clusters obtained from a LiDAR reading. Figure 10b explains the
projection of the clusters into the image, where possible. Likewise, three moving people were detected
out four. The laser cluster related to the non-detected person included additional points belonging to
walls, therefore its detection was not achieved.

6

4

2

3

57

9

8

10 1

Laser

(a) Laser clusters. (b) Detection scenario in stationary position.

Figure 10. (a) Clusters obtained from the segmentation process of laser’s data. (b) Three people detected
in stationary position.

5.2.2. Social Interaction

The navigation system and people detection system are integrated to enable the AGoRA Smart
Walker with social interaction and social acceptance skills. This is accomplished by adjusting how
obstacles are understood by the navigation system. Through the modification of the navigation 2D
cost-map, these changes are achieved. As described in the navigation system, the obstacles detected in
the environment, including people, are represented as equal costs in the 2D cost-maps. Therefore, it is
necessary to inflate the costs corresponding to a person, in order to avoid the interruption of social
interaction zones in the environment. The inflation is made to match the social interaction zone of each
person. This is achieved using the information provided by the people detection system, and passing
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people locations to navigation system. The criteria to inflate the costs are defined by strategies of
adaptive spacing in walker–human interactions, as described in [65].

5.3. Safety Restrictions System

The AGoRA Smart Walker is aimed to be both remotely supervised by a therapy manager, meaning
medical staff or technical staff, as well as to be controlled by the user’s intentions of movement. Thus,
some security rules were included to constraint the walker’s movement.

5.3.1. User Condition

The walker movement is only allowed if the user is supporting itself on the walker handlebars,
as well as standing behind it within an established distance.

5.3.2. Warning Zone Condition

The maximum allowed velocity of the walker is constrained by its distance to surrounding
obstacles. A squared shape warning zone is defined in front of the walker, and its dimensions are
proportionally defined by the walker’s current velocity. If an obstacle yields within the warning zone,
the maximum velocity is constrained.

Figure 11 illustrates the warning zone shape and its parameters that change according to the
walker’s velocity. The Stop Distance Parameter (STD) determines the minimum distance of the walker
to an obstacle before absolute stopping. The Slow Distance Parameter (SD) determines the distance at
which obstacles will begin to be taken into account before velocity limitation. Hence, if an obstacle is at
distance SD, the walker’s velocity will be slowed. The Width Rate (WR) parameter is the multiplying
factor of the warning zone width. When an obstacle is detected within the warning zone, the velocity
is limited as described in Equation (3).

Vmax = Slowvel ·
Dobs − STD
SD− STD

(3)

Dobs is the distance to the nearest obstacle and Slowvel is the maximum allowed velocity when
an obstacle is the warning zone. Additionally, the Slowvel is continuously adapted by the walker’s
velocity, as shown in Table 2. Such values were defined after several experimental trials, in such a way
that the warning zone ensures proper stopping of the walker at each velocities range.

AGoRA Walker 

Warning Zone

S�

St�

Walker Width

*

W!

Obstacle 1

Obstacle 2

Figure 11. Warning zone shape and parameters for velocity limitation during obstacles presence.
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Table 2. Warning zone parameters adaption.

Walker’s
Velocity (ms)

Warning Zone Parameters

STD (m) SD (m) WR

≤0.3 0.3 0.6 1.0
≤0.4 0.3 0.8 1.2
≤0.5 0.3 1.0 1.4
≤0.6 0.3 1.2 1.5
≤0.8 0.3 1.4 2.0
>0.8 0.3 2.0 3.0

6. Control Strategies

As previously explained in Section 3, the HREI interface integrates functions from the HRI and
REI interfaces, in order to provide efficient, safe and natural interaction. To this end, three control
strategies were proposed.

6.1. User Control

By the implementation of the HRI interface, the user is able to control the walker’s motion. The gait
parameter estimator and the admittance controller are capable of generating velocity commands
from the interaction forces. However, the security rules keep ensuring a safe interaction with the
environment. Additionally, as the therapy manager is able of controlling the walker’s movement,
through a wireless joystick the user’s commands can be revoked or modified.

6.2. Navigation System Control

In this control mode, the REI interface has total control of the walker’s movement for providing
secure user guidance (i.e., the user’s intentions of movement are ignored). The guidance goals can
be whether programmed or on-line modified, while the navigation and social interaction system
ensure safety paths. Additionally, the security rules warrant that the walker moves only if the user is
supporting and standing in front of the walker.

6.3. Shared Control

This strategy combines the navigation velocity commands and the user’s intentions of movement
for walker’s control granting. The user’s intentions are calculated using F and τ, as a vector of
magnitude equals to the normalized F, with proportional orientation to the exerted τ. Equation (4)
illustrates the calculation of intention vector’s orientation, where Maxangle is the maximum turn angle
allowed and MET is the maximum exerted torque.

θ(t)usr = Maxangle ·
τ(t)
MET

(4)

To estimate the control granting (i.e., walker control by the user or by the navigation system),
the user’s intentions are compared with the navigation path, to obtain the final pose to be followed
by the walker. Specifically, as shown in Figure 12, for the nearest path point (xnav, ynav) to the current
walker position at (xsw, ysw), a range of possible user intentions is calculated (i.e., the range where the
control is granted to the user). The positions are calculated in the map coordinate reference frame,
since the navigation system generates the path plans in such reference frame.
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Figure 12. Estimation of possible user’s intentions area.

In Figure 12, the range of possible intentions is calculated as a triangle-shaped window, which is
formed by: (1) θsw, the current orientation of the walker; (2) θusr, the current user’s intention of
movement; (3) θnav, the orientation of the next and nearest path point; and (4) d, the Euclidean distance
from the walker position to the next pose. The geometric parameters for the window formation are
described in Equations (5)–(8). A window scaling factor Windwidth is used to adapt the window
area. Graphically, the window is formed by two right-angled triangles. These smaller triangles are
constituted with height d, bases La and Lb, and auxiliary angles θa and θb.

La =
Winwidth · (θnav − θsw)

Maxangle
(5)

Lb = Winwidth − La (6)

θa = tan−1
(

La

d

)
(7)

θb = tan−1
(

Lb
d

)
(8)

If the user’s intention of movement lies in the described window, the control is granted to the
user. Otherwise, if the user’s objective lies outside the area of possible movements, a new path pose
is computed. This new pose is calculated to be within the area of possible movements. To this end,
both xnav and ynav define the new pose position and the new pose orientation (θnxt) is defined as
presented in Equation (9):

θnxt =


θnav, i f θdi f f − θa ≤ θusr ≤ θdi f f + θb

θdi f f − θa, i f θusr < θdi f f − θa

θdi f f + θb, i f other
(9)

where θdi f f is estimated as shown in Equation (10) and represents the relative center of the window of
possible movements.

θdi f f = sin−1
(

ynav − ysw

d

)
(10)
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7. Experimental Tests

To evaluate the described HREI interface, several performance and usability tests were proposed,
regarding the control strategies previously described. The main goal of these tests was to assess the
performance of every module of the AGoRA Smart Walker, both independently and simultaneously.
Several healthy subjects were recruited to voluntarily participate in the validation study. Specifically,
seven volunteers conformed the validation group (6 males, 1 female, 33.71 ± 16.63 y.o., 1.69 ± 0.056 m,
65.42 ± 7.53 kg) with no gait assistance requirements accomplished the tests that are further presented
(see Table 3 for additional information).

Table 3. Summary of volunteers who participated in the study.

Subject Age (y.o.) Height (m) Weight (kg) Gender

1 23 1.76 65 Male
2 23 1.77 72 Male
3 23 1.65 62 Female
4 61 1.67 65 Male
5 23 1.72 69 Male
6 59 1.60 50 Male
7 24 1.70 75 Male

The experimental trials took place at the laboratories building of the Colombian School of
Engineering. A total of 21 trials divided into 7 sessions were performed. Every session consisted
in three different trials of each specific control mode (i.e., user control, navigation system control and
shared control). At the beginning of each session, the order in which the modes of operation were going
to be evaluated was randomized. Likewise, before each trial the volunteers were instructed in the
behavior of control mode, allowing them to interact with the platform. During trials, the researchers
stayed out of the session environment to avoid interfering with the tasks achievement. At the end of
each trial, a data log including user and walker’s information was stored for further analysis purposes.

According to the above, the obtained results under each control mode are presented in the
following sub-sections.

7.1. User Control Tests

The volunteers were asked to achieve a square-shaped trajectory by following several landmarks.
Figure 13a illustrates the reference trajectory to be followed by the participants and Figure 13b
illustrates the achieved trajectories by the participants. Under this control mode, the only active
systems were those corresponding to the HRI interface. The trajectory was aimed at assessing the
capabilities of the interface to respond to the users’ intentions of movement and adapt to their gait
pattern. Specifically, the gait parameter estimator was responsible for acquiring and filtering the force
and torque signals due to the physical interaction between the walker and the user. As an explanatory
result, Figure 14a shows the filtered signals regarding to force and torque for subject 1. The user’s
intentions detector was in charge of generating the linear and angular speed control signals of the
walker. Figure 14b shows the speed signals for subject 1. Similarly, the low level security system was
running in parallel, in such a way that collisions were avoided. Specifically, no collisions took place
during these trials.

During the execution user control trials, higher differences were encountered between the ideal
and the achieved paths at the trajectory corners. Accordingly, the 90-degree turns were more difficult to
accomplish by the participants, as the AGoRA Walker axis of rotation is not aligned with the user’s axis
of rotation. However, such kind of turns should be avoided as they risk user’s stability and balance.
Thus, less steep turns are more natural and safer for the users.
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(a) Reference path (b) Participants’ trajectories

Figure 13. (a) Reference path for user control tests based on a square-shaped trajectory. Landmarks
and path direction were indicated through reference points at path corners. (b) Trajectories achieved
by the nine participants under user control trials.

(a) Force and torque signals for the first subject.

(b) Responses from the admittance controller for the first subject.

Figure 14. (a) Force (blue) and torque (orange) signals during the trajectory for the first subject.
(b) Linear (blue) and angular (orange) velocities obtained from the admittance controller during the
trajectory for the first subject.

7.2. Navigation System Control Tests

To evaluate the path following and security restrictions capabilities alongside the people
detection system, a preliminary guidance trial with one subject was performed in presence of people.
The volunteer user was guided through a random path previously programmed, while overcoming
both regular and people obstacles in the environment. Additionally, the navigation system was
configured with: (1) minimum turning radius of 15 cm, to avoid steeped curves planning; (2) local
planner frequency of 25 Hz; (3) global planner frequency of 5 Hz; and (4) maximum linear velocity of
0.3 m/s and maximum angular velocity of 0.2 rad/s.

Figure 15 illustrates the carried out test in three different states. The first state shows the planned
trajectory according to the initial environment sense, as shown in Figure 15a. The second state in
Figure 15b presents an update in the trajectory due to new people locations. Although the most
proximate person to the walker is not detected by the camera, laser readings allows the person’s
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position tracking and therefore its detection. Finally, Figure 15c illustrates the avoiding of another
person, while continuing with the guidance task.

In addition to the above, the guiding capability of the navigation system was also validated on
the seven volunteers who participated in the study. Specifically, the predefined path goals presented
in Figure 16 were configured in the navigation system to form a desired trajectory. The reference
trajectory was designed to be similar to the reference path used for the user control trials. However,
the trajectory corners were designed as soft turn curves, in such a way that the user’s balance and
stability were not compromised. During the seven trials, no significant differences were encountered in
the achieved trajectories, no collisions took place and the mean guidance task time was 53.06 ± 2.15 s.
The participants were asked to perceive their interactions with the AGoRA Walker during the
guiding task.

(a) Path planning overcoming two
detected people.

(b) Path planning update after new
people locations.

(c) Final path planning update.

Figure 15. Navigation and people detection systems during guidance task. Yellow and purple squares
represent people obstacles detected by both camera and laser. Yellow and purple circles represent
people obstacles only detected by the laser, as well as the obstacles costs inflations. Gray circles show
old obstacles that will be removed once the walker senses such areas again. Green line illustrates
the path.

7.3. Shared Control Tests

To assess the shared control performance, each volunteer was asked to follow the reference
trajectory previously presented in Figure 16. Under this control mode, the participants were partially
guided by the navigation system. Likewise, before each trial the volunteers were informed that their
intentions of movement would be taken into account. The Table 4 summarizes main findings for
each trial.
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Figure 16. Reference trajectory and goals for the guiding task.

Table 4. Summary of the results obtained for shared control trials.

Subject Achieved Goals Task Time (s) Mean Linear Speed (m/s) Percentage of User Control (%)

1 10 63.94 0.34 69.19
2 10 71.46 0.34 71.63
3 10 48.38 0.46 53.66
4 10 83.45 0.23 62.55
5 10 64.54 0.34 68.25
6 8 80.8 0.21 73.99
7 10 60.29 0.37 67.71

The results presented in Table 4 suggest proper capabilities of the shared control strategy to
effectively guide the participants through a specific trajectory. Six subjects achieved the full reference
path by reaching its ten intermediate goals. Specifically, one subject did not complete the task by
only reaching eight goals. This result is due to a random false obstacle perceived at the ninth goal,
resulting in the blocking of the path planning module. Regarding the task completion times, the mean
task time obtained for all the participants was 67.55 ± 11.25 s. The differences among these times
is mainly supported by the fact that the linear speed was totally controlled by the user intentions of
movement. Accordingly, the obtained mean linear speed was 0.33 ± 0.07 m/s. Finally, to evaluate the
control granting behavior under this mode, the percentage of user control was estimated. This ratio
was calculated taking into account the total time of user control and the overall task time. A mean
percentage of 66.71 ± 6.26% was obtained. The user control occurred mainly in the straight segments
of the trajectory, since at the trajectory curves the users’ intentions of movement did not completely
matched to the planned path.

7.4. Questionnaires Responses

To qualitatively assess the interactions between the participants and the AGoRA Walker, at the end
of each trial, the volunteers were asked to fill out a usability questionnaire to obtain instant perceptions
of the mode of operation. The participants were also encouraged to highlight perceptions regarding
the interaction with the smart walker. Regarding the perception questionnaire, based on the UTAUT
models in [66,67], an acceptance and usability questionnaire was designed. The questionnaire was
adapted to be relevant to the interaction with the AGoRA Walker (see Table 5 for further details).
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Table 5. Acceptance and usability questionnaire used in the study.

No. Question

Q1 I think the robotic device makes me feel safe
Q2 I think the robotic device was easy to use
Q3 I think most people would learn to use this device quickly, it is intuitive
Q4 I think the device guides me well
Q5 I think my experience interacting with the device was natural
Q6 I think my experience interacting with the device was intuitive
Q7 I think my experience interacting with the device was stressful.
Q8 In this session, I felt that I had control of the device
Q9 In this session, I felt that the device had the control of the path to be followed

Q10 In this session, I felt that the device control was shared with me

The Likert data obtained from the acceptance and usability questionnaires were aimed at
assessing the participants’ perceptions of the interaction with the AGoRA Walker. For analysis purposes,
the answers from Questions Q1–Q4 were grouped into a single category (C1), since they evaluated
the attitude towards the device and the expected performance. Similarly, the answers from Questions
Q5–Q7 were grouped into another category (C2), as they evaluated the perceived effort and anxiety
of the interaction with the device. Finally, Questions Q8–Q10 were aimed at assessing the behavior
perception of each control mode. However, the answers from these question were independently
analyzed, in order to find differences between them. The questionnaire responses are presented
in Figure 17, illustrating the percentage of opinions in each category (i.e., C1 and C2), as well as
in Questions Q8–Q10 for each Likert item.

Relying on the questionnaire responses for Categories C1 and C2, a direct measure of the
interaction perception in the experimental sessions can be obtained. Consequently, resembling survey
answers were obtained under each control mode with major positive distributions. These results might
suggest safe, natural and intuitive interactions perceived by the volunteers who participated in the
study. Moreover, some participants stated additional comments regarding to the navigation control
mode. Specifically, the volunteers suggested that at specific trajectory points the device stopped, in such
a way that the path following task was not very comfortable. These impressions occurred at several
trajectory goals, since the navigation system was configured to reach them at specific orientations.

Figure 17. Acceptance and usability questionnaire results: Mode 1, user control; Mode 2, navigation
system control; Mode 3, shared control.

To analyze the participants’ behavior perception under each control mode, the responses from
Questions Q8–Q10 were statistically analyzed. As found in [68,69], Mann–Whitney–Wilcoxon (MWW)
tests have shown optimal results comparing Likert data for small sample sizes MWW. Therefore,
the MWW test was used to assess differences in the perception of each control mode. Specifically,
Table 6 summarizes the p values obtained for each paired test between control modes (i.e., Mode 1,
user control; Mode 2, navigation system control; and Mode 3, shared control).
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Table 6. Mann–Whitney–Wilcoxon p values for paired tests among Q8, Q9 and Q10. p values in bold
illustrate significant differences encountered, meaning p ≤ 0.05.

Question Mode 1 vs. Mode 2 Mode 1 vs. Mode 3 Mode 2 vs. Mode 3

Q8 0.02 0.02 0.05
Q9 0.02 0.02 0.08
Q10 0.37 0.136 0.04

As can be seen in Table 6 and Figure 17, significant differences were encountered among all
participants responses for Question Q8. Such outcome may suggest that all participants perceived the
ability of the interface to respond to their intentions of movement. Likewise, responses for question
Q9 showed significant differences between two paired tests (i.e., Mode 1 vs. Mode 2 and Mode 1 vs.
Mode 3), indicating that participants perceived modifications in the walker behavior. Finally, regarding
Question Q10, a significant difference was only obtained for paired test between Mode 2 and Mode 3.
Such behavior might be supported by the fact that both navigation system control and user control
work together under the shared control mode.

8. Conclusions and Future Work

An HREI interface, composed by HRI and REI interfaces, was developed and implemented on
a robotic platform for walker assisted gait. The robotic platform was equipped with two handlebars for
forearm support and several sensory modalities, in order to emulate the performance and capabilities
of an SW. Within the HREI interface design criteria, the following functions are found: estimation
of user’s intentions of movement, providing of a safe and natural HRI interaction, implementation
of a navigation system alongside a people detection system for social interaction purposes, and the
integration of a set of control strategies for intuitive and natural interaction.

To validate the platform performance and interaction capabilities, several preliminary tests were
conducted with seven volunteer users with no gait requirements reported. Specifically, data were
collected from 21 trials divided into seven sessions, where all participant interacted with each control
mode. Regarding the user control mode, a squared-shaped trajectory was proposed to be followed by
each participant. The achieved trajectories for all the volunteers, as well as the admittance responses
for a specific subject were presented. According to the participants’ performance under this control
mode, preferences for less steeped curves were found. Concretely, the participants did not strictly
execute 90-degree turns at trajectory corners. Such behavior is mainly supported by the not aligned
axes of rotation of the walker and the users. Moreover, ignoring path corners allowed the participants
to ensure balance and stability during walking.

The validation trials were also aimed at assessing the performance of the navigation system
in guidance tasks, as well as at evaluating the performance of the navigation and people detection
systems working together. Specifically, an isolated preliminary test with a volunteer was carried out
to evaluate the capabilities of the platform for overcoming environments with people, even when
sudden changes in obstacles locations. In the preliminary test, both navigation and people detection
systems were executed at a maximum frequency of 4 Hz, due the on-board computational limitations.
To ensure user’s balance and stability, the trajectory planning was configured to prefer curves with
minimum turning radius of 15 cm. Although collisions and system clogging were not presented,
the implementation of the REI on clinical or crowded scenarios should required higher computational
resources. Regarding the validation trials with the seven volunteer users, a reference trajectory
composed by 10 intermediate goals was proposed. All participants experienced the navigation system
control completely achieving the reference path with no collisions.

Regarding the assessment of the shared control mode, a path following task was also proposed.
Under this control mode, the participant’s intentions of movements and the navigation system
cooperatively controlled the platform. Specifically, the linear speed was totally controlled by the
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users. Similarly, the angular speed was controlled according to the shared control strategy estimations.
To ensure participant’s balance and stability, minimal turning radius of 15 cm were also configured.
Among the participants trials, a mean percentage of user control of 66.71 ± 6.26 was obtained.
Concretely, the control of the platform was mainly granted to the user at straight segments of
the trajectory, since the participants’ did not have exact information about the reference trajectory.
According to the geometrical model implemented for the shared control strategy, more strict or
more flexible behaviors can be configured by modifying the dimensions of the interaction window.
Such modifications can potentially be implemented in rehabilitation scenarios in order to provide
different levels of assistance. Specifically, early stages of physical and cognitive rehabilitation processes
might benefit from more rigorous interaction windows, ensuring a higher percentage of control of the
navigation system.

A qualitative assessment of the platform performance and interaction capabilities relying on
an acceptance and usability questionnaire was carried out. The participants’ attitude towards the
device, as well as the performance and behavior perception were evaluated. According to the survey
responses, the participants perceived a mostly positive interaction with the platform. Specifically,
the questionnaires showed natural, safe and intuitive interactions under all the control modes.
Regarding the behavior perception, significant differences were statistically found between the control
modes. Slightly negative distributions were found for the navigation system control for C2 questions.
These questions were aimed at evaluating effort and anxiety perceptions, which where experience by
some participants. Particularly, two volunteers stated that the navigation system suddenly stopped at
specific points of the trajectory. Such behavior was mainly due to the system configuration to reach
goals at specific orientations.

Future works will address extensive evaluations of social interactions between the walker and
people in the environment, by implementing several avoidance strategies, as well as algorithms for
recognition of social groups interactions. Similarly, the assessment of the interface here proposed
in clinical and rehabilitation scenarios will be achieved. Specifically, validation studies will firstly
be carried out on post-stroke patients as they require a lower assistance level than SCI and CP
patients. These validation studies will be aimed at analyzing specific relationships between the users’
characteristics and the interaction performance. Moreover, according to the the AGoRA Walker’s
handlebars configuration, the platform might be classified as an assistance SW. Therefore, the HREI
interface will be implemented and validated on a rehabilitation SW. Additional developments will
seek to implement feedback strategies for the user under each control mode, in order to pursue better
performance and interaction perceptions. Future works will also address the implementation of the
presented interface on an SW that cooperates with an exoskeleton for gait assistance and rehabilitation.
Finally, the integration of a cloud based system could leverage processing capabilities, resulting in
better performance results.
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Abbreviations

The following abbreviations are used in this manuscript:
SCI Spinal Cord Injury
CP Cerebral Palsy
WHO World Health Organization
SW Smart Walker
SWs Smart Walkers
HRI Human–Robot Interaction
HREI Human–Robot–Environment Interaction
REI Robot–Environment Interaction
COOL Aide CO-Operative Locomotion Aide
ROS Robotic Operating System
IMU Inertial Measurement Unit
LiDAR Light Detection and Ranging Sensor
HD High Definition
LRF Laser Range Finder
CPU Central Processing Unit
FxRight Force along the x-axis on the right load cell
FxLe f t Force along the x-axis on the left load cell
FyRight Force along the y-axis on the right load cell
FyLe f t Force along the y-axis on the left load cell
FzRight Force along the z-axis on the right load cell
FzLe f t Force along the z-axis on the left load cell
FspxRight Force along the x-axis on the right supporting point
FspxLe f t Force along the x-axis on the left supporting point
FspyRight Force along the y-axis on the right supporting point
FspyLe f t Force along the y-axis on the left supporting point
FspzRight Force along the z-axis on the right supporting point
FspzLe f t Force along the z-axis on the left supporting point
GCE Gait Cadence Estimator
WFLC Weighted-Fourier Linear Combiner
FCAD Resulting force used to estimate user’s gait cadence
F′CAD Filtered FCAD force
FLC Fourier Lineal Combiner
FS Filtering System of forces along y-axis
FyΦ Representation of whether FyLe f t or FyRight
F′yLe f t Filtered FyLe f t

F′yRight Filtered FyRight

F′yΦ Representation of whether F′yLe f t or F′yRight
FyΦLP Resulting FyΦ signals after low-pass filter
FyΦCAD Cadence signals obtained from the FLC
M Order of the FLC filter
µ Adaptive gain of the FLC filter
F Final force applied to the walker by the user
τ Final torque applied to the walker by the user
FyLe f tLP Resulting signal from the low-pass filter for FyLe f t
FyLe f tCAD Resulting signal from the FLC for FyLe f t
v Linear velocity generated with an admittance controller
ω Angular velocity generated with an admittance controller
L(s) Second order system for linear velocities generation
m Virtual mass of the walker
bl Damping ratio for L(s)
kl Elastic constant for L(s)
A(s) Second order system for angular velocities generation
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J Virtual moment of inertia of the walker
ba Damping ratio for A(s)
ka Elastic constant for A(s)
SLAM Simultaneous Localization and Mapping
AMCL Adaptive Monte Carlo Localization Approach
TEB Time Elastic Band
ROI Region of interest in the camera image
HOG Histogram of Oriented Gradients
SVM Support Vector Machine
STD Stop Distance Parameter
SD Slow Distance Parameter
WR Width Rate
MET Maximum Exerted Torque
xnav X position of nearest path point
ynav Y position of nearest path point
xsw X position of the walker
ynav Y position of the walker
θsw Orientation of the walker
θusr Orientation of user’s intention of movement
θnav Orientation of nearest path point
d Euclidean distance from the walker position to the next pose
La Base of first right-angled triangle
Lb Base of second right-angled triangle
θa Auxiliary angle for first right-angled triangle
θb Auxiliary angle for first right-angled triangle
Winwidth Scaling factor of triangle-shaped window
θnxt Orientation of next path pose
θdi f f Relative orientation of the triangle-shaped window center

References

1. Buchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive Function is Associated
with the Development of Mobility Impairments in Community-Dwelling Elders. Am. J. Geriatr. Psychiatry
2011, 19, 571–580. [CrossRef] [PubMed]

2. Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017, 129,
81–95. [CrossRef] [PubMed]

3. Mrozowski, J.; Awrejcewicz, J.; Bamberski, P. Analysis of stability of the human gait. J. Theor. Appl. Mech.
2007, 45, 91–98.

4. Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion; Springer Tracts
in Advanced Robotics; Springer: Cham, Switzerland, 2016; Volume 115, p. 105. [CrossRef]

5. Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu,
P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview.
Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]

6. Gheno, R.; Cepparo, J.M.; Rosca, C.E.; Cotten, A. Musculoskeletal Disorders in the Elderly. J. Clin.
Imaging Sci. 2012, 2, 39. [CrossRef]

7. World Health Organization. Disability and Health. 2018. Available online: https://www.who.int/news-
room/fact-sheets/detail/disability-and-health (accessed on 29 June 2019).

8. World Health Organization. World Report on Disability 2011; World Health Organization: Geneva,
Switzerland, 2011.

9. World Health Organization. Ageing and Health; World Health Organization: Geneva, Switzerland, 2018.
10. The World Bank. Disability Inclusion. 2018. Available online: https://www.worldbank.org/en/topic/

disability (accessed on 29 June 2019).

http://dx.doi.org/10.1097/JGP.0b013e3181ef7a2e
http://www.ncbi.nlm.nih.gov/pubmed/21606900
http://dx.doi.org/10.1007/s00508-016-1096-4
http://www.ncbi.nlm.nih.gov/pubmed/27770207
http://dx.doi.org/10.1007/978-3-319-34063-0
http://dx.doi.org/10.1177/1687814018783627
http://dx.doi.org/10.4103/2156-7514.99151
https://www.who.int/news-room/fact-sheets/detail/disability-and-health
https://www.who.int/news-room/fact-sheets/detail/disability-and-health
https://www.worldbank.org/en/topic/disability
https://www.worldbank.org/en/topic/disability


Sensors 2019, 19, 2897 26 of 29

11. Pedersen, M.M.; Holt, N.E.; Grande, L.; Kurlinski, L.A.; Beauchamp, M.K.; Kiely, D.K.; Petersen, J.;
Leveille, S.; Bean, J.F. Mild cognitive impairment status and mobility performance: An analysis from the
Boston RISE study. J. Gerontol. Ser. Biol. Sci. Med. Sci. 2014, 69, 1511–1518. [CrossRef]

12. Brown, C.J.; Flood, K.L. Mobility limitation in the older patient: A clinical review. JAMA J. Am. Med. Assoc.
2013, 310, 1168–1177. [CrossRef]

13. Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review
in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018,
[CrossRef]

14. Martins, M.M.; Frizera-Neto, A.; Urendes, E.; dos Santos, C.; Ceres, R.; Bastos-Filho, T. A novel
human-machine interface for guiding: The NeoASAS smart walker. In Proceedings of the IEEE 2012
ISSNIP Biosignals and Biorobotics Conference: Biosignals and Robotics for Better and Safer Living (BRC),
Manaus, Brazil, 9–11 January 2012; pp. 1–7. [CrossRef]

15. Bateni, H.; Maki, B.E. Assistive devices for balance and mobility: Benefits, demands, and adverse
consequences. Arch. Phys. Med. Rehabil. 2005, 86, 134–145. [CrossRef]

16. Neto, A.F.; Elias, A.; Cifuentes, C.; Rodriguez, C.; Bastos, T.; Carelli, R. Smart Walkers: Advanced Robotic
Human Walking-Aid Systems. In Springer Tracts in Advanced Robotics 106 Intelligent Assistive Robots Recent
Advances in Assistive Robotics; Springer: Cham, Switzerland, 2015; pp. 103–131. [CrossRef]

17. Geravand, M.; Werner, C.; Hauer, K.; Peer, A. An Integrated Decision Making Approach for Adaptive
Shared Control of Mobility Assistance Robots. Int. J. Soc. Robot. 2016, 8, 631–648. [CrossRef]

18. Mitzner, T.L.; Chen, T.L.; Kemp, C.C.; Rogers, W.A. Identifying the Potential for Robotics to Assist Older
Adults in Different Living Environments. Int. J. Soc. Robot. 2014, 6, 213–227. [CrossRef] [PubMed]

19. Jenkins, S.; Draper, H. Care, Monitoring, and Companionship: Views on Care Robots from Older People
and Their Carers. Int. J. Soc. Robot. 2015, 7, 673–683. [CrossRef]

20. Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers.
Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed]

21. Martins, M.; Santos, C.; Seabra, E.; Frizera, A.; Ceres, R. Design, implementation and testing of a new user
interface for a smart walker. In Proceedings of the 2014 IEEE International Conference on Autonomous
Robot Systems and Competitions (ICARSC), Espinho, Portugal, 14–15 May 2014; pp. 217–222. [CrossRef]

22. Lacey, G.J.; Rodriguez-Losada, D. The evolution of guido. IEEE Robot. Autom. Mag. 2008, 15, 75–83.
[CrossRef]

23. Morris, A.; Donamukkala, R.; Kapuria, A.; Steinfeld, A.; Matthews, J.; Dunbar-Jacob, J.; Thrun, S. A robotic
walker that provides guidance. In Proceedings of the 2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422), Taipei, Taiwan, 14–19 September 2003; Volume 1, pp. 25–30. [CrossRef]

24. Alves, J.; Seabra, E.; Caetano, I.; Santos, C.P. Overview of the ASBGo++ Smart Walker. In Proceedings of
the 2017 IEEE 5th Portuguese Meeting on Bioengineering (ENBENG), Coimbra, Portugal, 16–18 February
2017; pp. 1–4. [CrossRef]

25. Caetano, I.; Alves, J.; Goncalves, J.; Martins, M.; Santos, C.P. Development of a Biofeedback Approach
Using Body Tracking with Active Depth Sensor in ASBGo Smart Walker. In Proceedings of the 2016
International Conference on Autonomous Robot Systems and Competitions (ICARSC), Bragança, Portugal,
4–6 May 2016; pp. 241–246. [CrossRef]

26. Lee, G.; Ohnuma, T.; Chong, N.Y. Design and control of JAIST active robotic walker. Intell. Serv. Robot.
2010, 3, 125–135. [CrossRef]

27. Lee, G.; Jung, E.J.; Ohnuma, T.; Chong, N.Y.; Yi, B.J. JAIST Robotic Walker control based on a two-layered
Kalman filter. In Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai,
China, 9–13 May 2011; pp. 3682–3687. [CrossRef]

28. Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance Controller with
Spatial Modulation for Assisted Locomotion using a Smart Walker. J. Intell. Robot. Syst. 2019, 94, 621–637.
[CrossRef]

29. Spenko, M.; Yu, H.; Dubowsky, S. Robotic personal aids for mobility and monitoring for the elderly.
IEEE Trans. Neural Syst. Rehabil. Eng. 2006, 14, 344–351. [CrossRef]

30. Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Dimou, A.L.; Koutsombogera, M.; Pitsikalis, V.; Maragos, P.;
Tzafestas, C. The MOBOT Platform—Showcasing Multimodality in Human-Assistive Robot Interaction; Springer:
Cham, Switzerland, 2016; pp. 382–391. [CrossRef]

http://dx.doi.org/10.1093/gerona/glu063
http://dx.doi.org/10.1001/jama.2013.276566
http://dx.doi.org/10.1080/17483107.2018.1447611
http://dx.doi.org/10.1109/BRC.2012.6222195
http://dx.doi.org/10.1016/j.apmr.2004.04.023
http://dx.doi.org/10.1007/978-3-319-12922-8
http://dx.doi.org/10.1007/s12369-016-0353-z
http://dx.doi.org/10.1007/s12369-013-0218-7
http://www.ncbi.nlm.nih.gov/pubmed/24729800
http://dx.doi.org/10.1007/s12369-015-0322-y
http://dx.doi.org/10.1016/j.medengphy.2015.07.006
http://www.ncbi.nlm.nih.gov/pubmed/26307456
http://dx.doi.org/10.1109/ICARSC.2014.6849789
http://dx.doi.org/10.1109/MRA.2008.929924
http://dx.doi.org/10.1109/ROBOT.2003.1241568
http://dx.doi.org/10.1109/ENBENG.2017.7889420
http://dx.doi.org/10.1109/ICARSC.2016.34
http://dx.doi.org/10.1007/s11370-010-0064-5
http://dx.doi.org/10.1109/ICRA.2011.5979784
http://dx.doi.org/10.1007/s10846-018-0854-0
http://dx.doi.org/10.1109/TNSRE.2006.881534
http://dx.doi.org/10.1007/978-3-319-40244-4_37


Sensors 2019, 19, 2897 27 of 29

31. Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Koutsombogera, M.; Karioris, P.; Vacalopoulou, A.;
Rodomagoulakis, I.; Maragos, P.; Tzafestas, C.; Pitsikalis, V.; et al. The MOBOT rollator human-robot
interaction model and user evaluation process. In Proceedings of the 2016 IEEE Symposium Series on
Computational Intelligence (SSCI 2016), Athens, Greece, 6–9 December 2019. [CrossRef]

32. Papageorgiou, X.S.; Chalvatzaki, G.; Lianos, K.N.; Werner, C.; Hauer, K.; Tzafestas, C.S.; Maragos, P.
Experimental validation of human pathological gait analysis for an assisted living intelligent robotic
walker. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and
Biomechatronics, Pisa, Italy, 20–22 February 2016; pp. 1086–1091. [CrossRef]

33. Mou, W.H.; Chang, M.F.; Liao, C.K.; Hsu, Y.H.; Tseng, S.H.; Fu, L.C. Context-aware assisted interactive
robotic walker for Parkinson’s disease patients. In Proceedings of the 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 329–334.
[CrossRef]

34. Paulo, J.; Peixoto, P.; Nunes, U.J. ISR-AIWALKER: Robotic Walker for Intuitive and Safe Mobility Assistance
and Gait Analysis. IEEE Trans. Hum. Mach. Syst. 2017, 47, 1110–1122. [CrossRef]

35. Garrote, L.; Paulo, J.; Perdiz, J.; Peixoto, P.; Nunes, U.J. Robot-Assisted Navigation for a Robotic Walker
with Aided User Intent. In Proceedings of the RO-MAN 2018—27th IEEE International Symposium on
Robot and Human Interactive Communication, Nanjing, China, 27 August–1 September 2018; pp. 348–355.
[CrossRef]

36. Huang, C.; Wasson, G.; Alwan, M.; Sheth, P. Shared Navigational Control and User Intent Detection in an
Intelligent Walker. 2005. Available online: https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-02/
FS05-02-010.pdf (accessed on 29 June 2019).

37. Wachaja, A.; Agarwal, P.; Zink, M.; Adame, M.R.; Möller, K.; Burgard, W. Navigating blind people with
walking impairments using a smart walker. Auton. Robot. 2017, 41, 555–573. [CrossRef]

38. Wasson, G.; Gunderson, J.; Graves, S.; Felder, R. Effective Shared Control in Cooperative Mobility Aids.
In Proceedings of the Fourteenth international Florida Artificial intelligence Research Society Conference,
Key West, FL, USA, 21–23 May 2001; AAAI Press: Menlo Park, CA, USA, 2001; pp. 509–513.

39. Wasson, G.; Gunderson, J.; Graves, S.; Felder, R. An assistive robotic agent for pedestrian mobility. In
Proceedings of the Fifth International Conference on Autonomous Agents—AGENTS’01, Montreal, QC,
Canada, 28 May–1 June 2001; ACM Press: New York, NY, USA, 2001; pp. 169–173. [CrossRef]

40. Palopoli, L.; Argyros, A.; Birchbauer, J.; Colombo, A.; Fontanelli, D.; Legay, A.; Garulli, A.; Giannitrapani, A.;
Macii, D.; Moro, F.; et al. Navigation assistance and guidance of older adults across complex public spaces:
The DALi approach. Intell. Serv. Robot. 2015, 8, 77–92. [CrossRef]

41. Cheng, W.C.; Wu, Y.Z. A user’s intention detection method for smart walker. In Proceedings of the 2017
IEEE 8th International Conference on Awareness Science and Technology (iCAST), Taiwan, China, 8–10
November 2017; pp. 35–39. [CrossRef]

42. Ye, J.; Huang, J.; He, J.; Tao, C.; Wang, X. Development of a width-changeable intelligent walking-aid robot.
In Proceedings of the 2012 International Symposium on Micro-NanoMechatronics and Human Science
(MHS), Nagoya, Japan, 4–7 November 2012; pp. 358–363. [CrossRef]

43. Hirata, Y.; Hara, A.; Kosuge, K. Passive-type intelligent walking support system “RT Walker”.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 3871–3876.
[CrossRef]

44. Frizera-Neto, A.; Ceres, R.; Rocon, E.; Pons, J.L. Empowering and assisting natural human mobility:
The simbiosis walker. Int. J. Adv. Robot. Syst. 2011, 8, 34–50. [CrossRef]

45. Kulyukin, V.; Kutiyanawala, A.; LoPresti, E.; Matthews, J.; Simpson, R. IWalker: Toward a rollator-mounted
wayfinding system for the elderly. In Proceedings of the 2008 IEEE International Conference on RFID
(Frequency Identification), Amman, Jordan, 20–22 July 2008; pp. 303–311.

46. Lu, C.K.; Huang, Y.C.; Lee, C.J. Adaptive guidance system design for the assistive robotic walker.
Neurocomputing 2015, 170, 152–160. [CrossRef]

47. Reyes Adame, M.; Yu, J.; Moeller, K. Mobility Support System for Elderly Blind People with a Smart
Walker and a Tactile Map. IFMBE Proc. 2016, 57, 602–607. [CrossRef]

48. Thorstensson, A.; Nilsson, J.; Carlson, H.; Zomlefer, M.R. Trunk movements in human locomotion.
Acta Physiol. Scand. 1984, 121, 9–22. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/SSCI.2016.7850061
http://dx.doi.org/10.1109/BIOROB.2016.7523776
http://dx.doi.org/10.1109/IROS.2012.6385791
http://dx.doi.org/10.1109/THMS.2017.2759807
http://dx.doi.org/10.1109/ROMAN.2018.8525674
https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-02/FS05-02-010.pdf
https://www.aaai.org/Papers/Symposia/Fall/2005/FS-05-02/FS05-02-010.pdf
http://dx.doi.org/10.1007/s10514-016-9595-8
http://dx.doi.org/10.1145/375735.376038
http://dx.doi.org/10.1007/s11370-015-0169-y
http://dx.doi.org/10.1109/ICAwST.2017.8256477
http://dx.doi.org/10.1109/MHS.2012.6492438
http://dx.doi.org/10.1109/IROS.2004.1390018
http://dx.doi.org/10.5772/10666
http://dx.doi.org/10.1016/j.neucom.2015.03.091
http://dx.doi.org/10.1007/978-3-319-32703-7_117
http://dx.doi.org/10.1111/j.1748-1716.1984.tb10452.x
http://www.ncbi.nlm.nih.gov/pubmed/6741583


Sensors 2019, 19, 2897 28 of 29

49. Bonnet, V.; Mazzà, C.; McCamley, J.; Cappozzo, A. Use of weighted Fourier linear combiner filters
to estimate lower trunk 3D orientation from gyroscope sensors data. J. Neuroeng. Rehabil. 2013, 10, 29.
[CrossRef] [PubMed]

50. Neto, A.F.; Gallego, J.A.; Rocon, E.; Abellanas, A.; Pons, J.L.; Ceres, R. Online Cadence Estimation through
Force Interaction in Walker Assisted Gait. In Proceedings of the ISSNIP Biosignals and Biorobotics
Conference 2010, Vitoria, Brazil, 4–6 January 2010; pp. 1–5.

51. Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands
from upper body force interaction in walker assisted gait. BioMed. Eng. Online 2010, 9, 1–16. [CrossRef]
[PubMed]

52. Sierra, S.D.; Molina, J.F.; Gómez, D.A.; Cifuentes, C.A.; Múnera, M.C. Development of an Interface for
Human-Robot Interaction on a Robotic Platform for Gait Assistance: AGoRA Smart Walker. In Proceedings
of the 2018 IEEE ANDESCON, Santiago de Cali, Colombia, 22–24 August 2018.

53. Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping With Rao-Blackwellized
Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [CrossRef]

54. Fox, D.; Burgard, W.; Dellaert, F.; Thrun, S. Monte Carlo Localization: Efficient Position Estimation for
Mobile Robots. In Proceedings of the Sixteenth National Conference on Artificial Intelligence and Eleventh
Conference on Innovative Applications of Artificial Intelligence, Orlando, FL, USA, 8–22 July 1999; pp.
343–349.

55. Lu, D.V.; Hershberger, D.; Smart, W.D. Layered costmaps for context-sensitive navigation. In Proceedings
of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18
September 2014; pp. 709–715. [CrossRef]

56. Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. Robot. Autom. Mag.
1997, 4, 1–23. [CrossRef]

57. Rösmann, C.; Feiten, W.; Wösch, T.; Hoffmann, F.; Bertram, T. Trajectory modification considering dynamic
constraints of autonomous robots. In Proceedings of the 7th German Conference on Robotics, Munich,
Germany, 21–22 May 2012; pp. 74–79.

58. Fotiadis, E.P.; Garzón, M.; Barrientos, A. Human detection from a mobile robot using fusion of laser and
vision information. Sensors 2013, 13, 11603–11635. [CrossRef]

59. Garzon Oviedo, M.A.; Barrientos, A.; Del Cerro, J.; Alacid, A.; Fotiadis, E.; Rodríguez-Canosa, G.R.;
Wang, B.C. Tracking and following pedestrian trajectories, an approach for autonomous surveillance of
critical infrastructures. Ind. Robot. Int. J. 2015, 42, 429–440. [CrossRef]

60. Arras, K.O.; Lau, B.; Grzonka, S.; Luber, M.; Mozos, O.M.; Meyer-Delius, D.; Burgard, W. Range-Based
People Detection and Tracking for Socially Enabled Service Robots. In Towards Service Robots for Everyday
Environments; Springer Tracts in Advanced Robotics; Springer: Berlin/Heidelberg, Germany, 2012;
Volume 76, pp. 235–280. [CrossRef]

61. Schapire, R.E.; Schapire, R.E. Improved Boosting Algorithms Using Confidence-rated Predictions. Computer
1999, 336, 297–336. [CrossRef]

62. Zhang, Q.; Pless, R. Extrinsic Calibration of a Camera and Laser Range Finder (improves camera calibration).
IROS 2004, 3, 2301–2306. [CrossRef]

63. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego,
CA, USA, 20–25 June 2005; Volume I, pp. 886–893. [CrossRef]

64. Niculescu-Mizil, A.; Caruana, R. Predicting good probabilities with supervised learning. In Proceedings of
the 22nd International Conference on Machine Learning (ICML’05), Bonn, Germany, 7–11 August 2005;
pp. 625–632. [CrossRef]

65. Papadakis, P.; Rives, P.; Spalanzani, A. Adaptive spacing in human-robot interactions. In Proceedings of
the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18
September 2014; pp. 2627–2632. [CrossRef]

66. Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward
a Unified View. MIS Q. 2003, 27, 425. [CrossRef]

67. Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending
the Unified Theory. MIS Q. 2012, 36, 157–178. [CrossRef]

http://dx.doi.org/10.1186/1743-0003-10-29
http://www.ncbi.nlm.nih.gov/pubmed/23496986
http://dx.doi.org/10.1186/1475-925X-9-37
http://www.ncbi.nlm.nih.gov/pubmed/20687921
http://dx.doi.org/10.1109/TRO.2006.889486
http://dx.doi.org/10.1109/IROS.2014.6942636
http://dx.doi.org/10.1109/100.580977
http://dx.doi.org/10.3390/s130911603
http://dx.doi.org/10.1108/IR-02-2015-0037
http://dx.doi.org/10.1007/978-3-642-25116-0_18
http://dx.doi.org/10.1023/A:1007614523901
http://dx.doi.org/10.1109/IROS.2004.1389752
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1145/1102351.1102430
http://dx.doi.org/10.1109/IROS.2014.6942921
http://dx.doi.org/10.2307/30036540
http://dx.doi.org/10.2307/41410412


Sensors 2019, 19, 2897 29 of 29

68. Joost, C.F.; Dodou, D. Five-Point Likert Items: t test versus Mann-Whitney-Wilcoxon. Pract. Assess.
Res. Eval. 2010, 15, 1–16.

69. Blair, R.C.; Higgins, J.J. A Comparison of the Power of Wilcoxon’s Rank-Sum Statistic to That of Student’s t
Statistic under Various Nonnormal Distributions. J. Educ. Stat. 1980, 5, 309. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2307/1164905
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Human–Robot–Environment Interaction (HREI) Interface 
	Robotic Platform Description
	Interface Design Criteria
	Interface Communication Channels

	HRI Interface
	Gait Parameters Estimator
	User's Intentions Detector

	REI Interface
	Navigation System
	Map Building and Robot Localization
	Path Planning and Obstacle Detection

	People Detection System
	Detection Approach
	Social Interaction

	Safety Restrictions System
	User Condition
	Warning Zone Condition


	Control Strategies
	User Control
	Navigation System Control
	Shared Control

	Experimental Tests
	User Control Tests
	Navigation System Control Tests
	Shared Control Tests
	Questionnaires Responses

	Conclusions and Future Work
	References

