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Abstract: Remote sensing (RS) is currently regarded as one of the standard tools used for mapping
invasive and expansive plants for scientific purposes and it is increasingly widely used in nature
conservation management. The applicability of RS methods is determined by its limitations and
requirements. One of the most important limitations is the species percentage cover at which the
classification result is correct and useful for nature conservation. The primary objective, carried out
in 2017 in three areas of Poland, was to determine the minimum percentage cover from which it is
possible to identify a target species by RS methods. A secondary objective of this research, related to
the requirements of the method, was to optimize the set of training polygons for a target species in
terms of the number of polygons and abundance percentage cover of the target species. Our method
has to be easy to use, effective, and applicable, therefore the analysis was carried out using the basic set
of rasters—the first 30 channels after the Minimum Noise Fraction (MNF) transformation (the mosaic
of hyperspectral data from HySpex sensors with spectral range 0.4–2.5 µm) and commonly used
Random Forest algorithm. The analysis used airborne hyperspectral data with a spatial resolution
of 1 m to perform classification of one invasive and three expansive plants—two grasses and two
large perennials. On-ground training and validation data sets were collected simultaneously with
airborne data collection. When testing different classification scenarios, only the set of training
polygons for a target species was changed. Classification results were evaluated based on three
methods: accuracy measures (Kappa and F1), true-positive pixels in subclasses with different species
cover and compatibility with field mapping. The classification results indicate that to classify the
target plant species at the accepted level, the training dataset should contain polygons with a species
cover ranging from 80–100%. Training performed only using polygons with a species characterized
by a variable, but lower, cover (20–70%) and missing samples in the 80–100% range, led to a map
which was not acceptable because of a high overestimation of target species. We achieved effective
identification of species in areas where the species cover is above 50%, considering that ecosystems
are heterogeneous. The results of these studies developed a methodology of field data acquisition
and the necessity of synchronization in the acquisition of airborne data, and training and validation
of on-ground sampling.
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1. Introduction

At present, a growing threat to natural vegetation by invasive and expansive plant species is
observed all over the world. These species intensely enter the natural and semi-natural ecosystems,
reducing biodiversity [1,2]. Early monitoring and prompt action at operational levels are therefore
necessary to mitigate the negative effect of expansion of invasive and expansive plants on natural
ecosystems with high conservation status. An increasing number of studies indicate that remote
sensing (RS) and geographic information systems (GIS) are key tools for the identification and effective
management of such threats [3–5]. A binary map (presence–absence) rather than map of probability is
more practical for the end user in nature conservation [6], because of the ability to calculate the area
occupied by a species and to enable the monitoring of changes in the area. The possibility of practical
usage of the classification depends on the quality of the result map. The accuracy measures evaluate the
classification results in a measurable and objective manner. On the other hand, end user expectations
do not have to be completely convergent with these accuracy measures. The assessment of the quality
of the map performed by the end user as well as expressed by statistical measures takes into account
both the underestimation and overestimation effects that may occur simultaneously. Underestimation
of the result in a given class is understood as true-positive pixels less than 100% and the overestimation
understood as false-positive pixels greater than 0%. In contrast to statistical measures, the weight
of the revaluation error is different from the underestimation error in the end user assessment [7].
A great limitation for the practical use of the results in nature conservation is the overestimation error.
This error means that the areas where the actual species is not present are indicated on the map as
target species. This significantly reduces confidence in the result map. The map is much better received
where it presents the place of the main concentration of the species and underestimates the patches
with lower density and area.

For RS mapping of a target species to be effective, several factors must be taken into account.
It is necessary to adjust the spatial, spectral, and temporal resolution of the data to plant traits
of target species to distinguish them from the surrounding natural vegetation [8,9]. In supervised
classification, which is often used in species mapping, it is also important to design an effective
sampling plan and to collect good-quality reference data [10]. In some cases, this is not difficult
because data can be obtained, at least partly, through remote photointerpretation or temporal analysis
of digital orthophotos. However, this method is only useful for some species of trees, shrubs, and
large perennials forming compact monospecific patches [11]. In other cases, on-ground reference data
acquisition is necessary, especially for herbaceous plants characterized by high phenological variability
and growing in heterogenous, species-rich ecosystems. This latter kind of reference data acquisition
is often labor-intensive, expensive, and sometimes not feasible due to land inaccessibility [12,13].
The percentage cover of herbaceous plants in natural ecosystems changes significantly over intra- and
inter-annual time periods. Therefore, it is good practice to synchronize the acquisition of on-ground
botanical reference and RS data. Results of analyses conducted on satellite data [14], hyperspectral
airborne [15] data, or data provided by unmanned aerial vehicles [16] are very promising in studies of
the spread of invasive and expansive species. Their main advantage is the acquisition of data with
very high temporal, spectral, and spatial resolution, which is particularly important for the detection
of low-height or low-cover-abundance plant species [17,18].

It is typical to use various accuracy measures, such as Overall Accuracy, User and Producer
Accuracy or F1 Score and Cohen’s Kappa for the evaluation the classification results. However,
high values of these measures do not always indicate a good final map useful for nature conservation;
for example, in the case of using too few samples or only those samples containing readily separable
classes in the validation dataset, a poor-quality map will be obtained despite satisfactory values
of commonly used accuracy measures. Additionally, independent assessment of the results, made
by specialists in the field, is much less common. Furthermore, the reliability of some measures is
increasingly being undermined [19]. Even more important is to locate reference polygons so that they
represent all types of ecosystems occurring in the studied area [20].
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For RS to be competitive with traditional methods of species monitoring and mapping, it is
necessary to minimize the collection of reference data in the field, due to their high cost and often low
accessibility of a given area. Algorithms used in mapping have their minimum requirements for the
collection scheme and the number of reference polygons [21]. This is especially true for classification,
for which it is necessary to collect training polygons representative of each class to be distinguished
in a given area. A smaller number of reference polygons, containing only data on the presence of
target species, is required for one-class classifiers, otherwise referred to as the detection approach [22].
However, the collection of both presence and absence polygons is recommended for the development
of a map acceptable to the end user [23]. Some researchers indicate that the intelligent selection of
typical and representative reference polygons, which is the most accurate representation of reality,
allows the number of polygons required for correct classification to be reduced [24]. According to
other authors [25], the relative proportion of different samples used for training and validation should
correspond to the actual incidence of a given class in the studied area. Therefore, in the case of mapping
of plant species, not only should the appropriate number and proportion between samples of species
and other types of land cover be considered, but also the best representation of their internal variability.
For plant species, the source of this variability is, among others, the variation in the percentage cover.
In the literature there is little research on the impact of the aforementioned aspects on the results of
classification. Therefore, for the practical application of RS methods to species mapping, it is necessary
to expand our knowledge in this area.

This study examined the effect of various modifications to the set of species reference polygons
on the results of the classification of one invasive and three expansive herbaceous plants. The results
of the conducted analyzes will be practically applied to the monitoring of invasive and expansive
species in Poland. Therefore, one aspect of experiment design considered the ease of workflow for
practical use. For this reason, the well-known Random Forest algorithm, used to classify species
and vegetation with a good result and available as free software was applied. Also, the number
of spectral features (the first 30 Minimum Noise Fraction bands (MNF) from HySpex the visible
and near-infrared (VNIR) and short-wavelength infrared sensors (SWIR) was limited to minimize
the number of reference polygons required by the classifier as much as possible [26]. The reference
polygon dataset was divided into two classes: target species polygons and background polygons
(different ecosystems) according to the requirements of the end user (among others, services of nature
conservation management). The objectives of the research were to investigate: (1) What is the impact
of species cover in training polygons on classification results? (2) Is it possible to obtain useful for
nature conservation classification results with small training dataset? (3) At what percentage cover it is
possible to identify a species, using the proposed classification methods? To increase the reliability of
the obtained results, the analysis of correctly classified species pixels in three different cover subclasses
were used, and compatibility with traditional field mapping was employed along with commonly
used in RS accuracy measures (Kappa, F1).

2. Materials and Methods

2.1. Study Species

The research was carried out on one alien invasive and three native expansive [27],
perennial vascular plants—two grasses (Molinia caerulea and Phragmites australis) and two large
dicotyledons (Filipendula ulmaria and Solidago gigantea). The research focused on species that are a
common threat to valuable non-forest natural habitats in Central Europe. Their expansion involves
successively increasing their percentage cover and displacing valuable species; this leads to the
reduction of natural high biodiversity. At the early stage of expansion, they may co-occur with many
other plants. At later stages of expansion, they finally form compact monospecific patches (with 100%
of cover) (Figure 1). They also have morphological and phenological characteristics called functional
traits that can be related to spatial and spectral properties different from another species, thus used
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to discriminate target species from background. At the same time, the similarity of spectral profiles
of target species and their background makes classification challenging (Supplementary Materials,
Section Spectral Profiles). Each of the target species has been presented against the background of five
other plant species. Selected species occur in the main types of non-forest backgrounds, in which the
target species may occur. The analysis of the spectral signature profile shows a large similarity between
the target species and other species often found in the background class. These characteristics make
the selected species valuable objects of classification using RS methods. Here we provided botanical
descriptions of all target species.

Filipendula ulmaria —FU (meadowsweet) is a herbaceous, perennial, dicotyledonous, tall species
typically found in mesic and moist habitats. It naturally occurs in Europe and Asia. The dense,
leafy stem reaches a height of 50–200 cm. It blooms from July to August. White flowers are gathered in
dense, large inflorescences [28] (Figure 1a). FU grows on wet meadows, in reed beds, and on the shores
of water bodies. It is particularly abundant in semi-natural meadow communities, where agriculture
use has been discontinued or is occasional.

Molinia caerulea—MC (purple moor-grass) is a perennial, large tussock grass with a wide
distribution range covering Europe, Asia, North Africa, and North America. It flowers between
July and September, when it grows up to 130–250 cm. The leaves are narrow and delicate, reaching
approximately 4–8 mm. In autumn, the whole plant turns a characteristic orange–brown color [29]
(Figure 1b). The species occurs mainly in wet meadows, but it can also be found in other habitats, such
as forests, heaths, and peat bogs.

Phragmites australis—PA (common reed) is the most widespread flowering plant in the world,
occurring throughout North and South America, Europe, Asia, Africa, and Australia [30]. It is a
robust, erect, aquatic, or subaquatic perennial grass with culms from 250–450 cm high (in dry localities,
much shorter than in aquatic habitats). Its leaves are long (up to 60 cm) and wide (from 0.8 to 6 cm);
flowers are gathered in a thick panicle (Figure 1c). The common reed spreads via stolons and rhizomes,
and produces dense stands [31,32]. Vegetative propagules are the most important means by which the
species propagates and spreads. Colonies expand peripherally by lateral rhizome growth, typically
subterranean [30]. The common reed has a very wide ecological spectrum.

Solidago gigantea—SG (giant goldenrod) is a tall, erect perennial herb with annual aboveground
shoots and persistent belowground rhizomes. Shoots are 5–11 mm in diameter and vary from 30 to
280 cm in height. SG flowers late in the season—between July and November. Inflorescences form
pyramidal panicles (Figure 1d). SA is native to North America and is considered to be one of the most
aggressive plant invaders in Europe [33,34]. In the secondary range, the goldenrod shows a wide
ecological amplitude and habitat spectrum [35,36]. In dry places, the plant co-occurs with other plant
species, while in humid places it can form dense colonies developing from its creeping rhizomes and
from self-seeding [37].
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Figure 1. Target species during on-ground sampling, (a) Filipendula ulmaria, (b) Molinia caerulea, (c) 
Phragmites australis, (d) Solidago gigantea. (Photo. J. Wylazłowska). 
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2.2. Study Areas

The research was carried out at three areas located in central Poland (Figure 2,
Supplementary Materials, Section Study Areas). Study areas are in the warm-summer humid
continental climate zone with an average annual temperature of 6–10 ◦C. The average annual
precipitation for the whole of central Poland is approximately 600 mm/yr. Study area No. 1 covers of
40.59 km2 and is part of the Special Site of Conservation of Nature 2000 habitats “Dolina Krasnej”,
within which one of the main objectives is to preserve Molinia meadows on calcareous, peaty, or
clayey-silt-laden soils (protected as Natura 2000 habitat). Two species were researched there: FU and
MC. Study area No. 2 covers of 10.37 km2 and was used to investigate PA. It is a fragment of the
Special Site of Conservation of Nature 2000 habitats “Ostoja Nadwarciańska”, which covers part of the
Warta River valley. It is one of the best preserved semi-natural landscapes of the lowland river valley
in Poland. The area is characterized by the presence of transition mires and quaking bogs, inland salt
meadows and Molinia meadows on calcareous, peaty, or clayey-silt-laden soils. Area No. 3 is in the
confluence of the Vistula and the San River. It covers of 35.45 km2 and includes part of the Special Site
of Conservation of Nature 2000 habitats “Dolina Dolnego Sanu”. The site was used to research SG.
The area is dominated by an agricultural landscape as well as meadow and shrub habitats, including
alluvial meadows from the Cnidion dubii alliance of high nature conservation value, occurring in river
valleys, and lowland hay meadows. The target species pose a threat to native habitats at all the selected
areas, including Natura 2000 habitats. Most of these habitats are heterogeneous, species-rich meadows.
Only one or two species were selected for each study area, as the most dangerous ones. In most cases,
the classification of only one target species in an area is required by end user [7].
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2.3. Airborne Data Acquisition

Field and RS data were acquired in 2017. The time of data acquisition was set based on the
phenological and structural characteristics of each of the species (Table 1). The peak of development of a
target species for a given date, when it is best distinguished from the background, has been determined
during HabitARS project [7]. The hyperspectral data were obtained with the HySpex sensor developed
by the Norwegian Norsk Elektro Optikk (NEO) company. The HySpex sensor consists of two imaging
spectrometers covering spectral ranges of 0.4–0.9 µm (VNIR-1800) and 0.9–2.5 µm (SWIR-384) (Table 2).
HySpex VNIR-1800 has 182 spectral bands and HySpex SWIR-384 has 288 spectral bands. There is
overlap between the spectral ranges of these two sensors. VNIR-1800 bands from 164 to 182 overlap
the spectral range of SWIR-384. Therefore the combined data from two sensors covers the spectral
range from 400 to 2500 nanometers in 451 bands (163 VNIR and 288 SWIR). The HySpex instrument
was flown on board a Cessna CT206H at an average altitude of 730 m AGL (Above Ground Level), with
an airspeed of 59.2 m/s. Orientation of the flights: North-South (NS) or West-East (WE) was adjusted
to the azimuth sun angle. When the flight direction is aligned to the solar plane, the Bidirectional
Reflectance Distribution Function (BRDF) effect is less affecting the imagery.

Table 1. Characteristics of the field and remote sensing data for each study area. Orientation of flight:
North-South (NS), West-East (WE).

Area No. 1 No. 1 No. 2 No. 3

Target species Molinia caerulea (MC) Filipendula ulmaria (FU) Phragmites australis (PA) Solidago gigantea (SG)
Flight dates and start of

field sampling 27 September 2017 07 July 2017 16 July 2017 09 September 2017

End of field sampling 29 September 2017 13 July 2017 18 July 2017 19 September 2017
Dominant development phase of

target species fruiting flowering flowering flowering

Phenological and structural traits
of plants during acquisition

Plants form a dense
tussock, floral stems

become pinkish–orange
as the leaves turn yellow

Plants form a bushy
clump, bearing sprays of

creamy–white flowers

Plants form dense stands
that include flowering

bushy panicles and
standing dead stems from

previous year’s growth

Plants form a bushy mound
of deep-green leaves,

bearing large clusters of
golden-yellow flowers

Number of established target
species reference polygons 110 110 110 110

Number of established
background polygons 200 200 200 200

Data collection area [km2] 40.59 40.59 10.37 35.45
Number of flight lines 26 25 11 20
Orientation of flight NS WE WE NS

Orthorectification and georeferencing was performed in PARGE (ReSe Apps) using standard
aircraft in-flight information, such as flight trajectories, altitude and camera metrics in combination
with a Digital Surface Model [38]. Next, data from both sensors (VNIR, SWIR) were combined into
one hyperspectral data cube, setting the split wavelength to 935 nm and trimming the rows to the
field of view of the SWIR imagery. As a result, a data cube with a spatial resolution of 1 m and a
pixel position accuracy of RMS = 0.77 m (Root Mean Square) was obtained. The first 430 channels
were used in the further processing. Atmospheric correction was performed in ATCOR-4 (ReSe Apps),
using the MODTRAN model. The spectral were smoothed using the Savitzky–Golay filter (with a
range of 13 channels). Collections of images for each study area were then mosaicked. Each mosaic of
hyperspectral data was transformed using the Minimum Noise Fraction transformation (MNF in ENVI
version 5.4). The first 30 most informative channels of each MNF mosaic were selected for further
analyses. This number was determined based on the MNF eigenvalue plot and visual assessment.
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Table 2. Flight parameters and hyperspectral data.

Sensor Type Data Parameters Flight Lines Overlap Swath Width

HySpex VNIR-1800 0.4–0.9 µm GSD 0.49 [m] 35 [%] 440 m
HySpex SWIR-384 0.9–2.5 µm GSD 1.07 [m] 30 [%] 410 m

GSD—Ground Sample Distance, the difference in the flight line overlap between two sensors is due to the different
Field of View (FOV)—VNIR-1800 has FOV equal 34 degrees and SWIR-384 FOV is 32 degrees. Hence the effective
overlap is the one of the SWIR-384 because the VNIR-1800 images are trimmed to the common coverage.

2.4. On-Ground Botanical Data for Training and Validation

On-ground botanical reference data were obtained simultaneously with the acquisition of airborne
data (year 2017). The botanical fieldwork involved the establishment of reference polygons for the
target species and the background. The reference polygon was a circle with a radius of 2 m, which
gives about 15 pixels per polygon. Geolocation of reference polygons were recorded using a GNSS
(Global Navigation Satellite System) Mobile Mapper 120 with real time differential correction and
a measurement accuracy of up to 0.2 m. Simultaneously with obtaining airborne data on-ground
training and validations dataset were collected. During the fieldwork, the reference polygons were not
split for training the model or for its validation.

Reference polygons were established for each of the four target species (MC, FU, PA, SG) and for
the background class. For each species, 110 reference polygons and 200 background polygons were
established, giving a total of 1650 pixels of target species and 3000 pixels of background. All reference
polygons were distributed as evenly as possible in the study areas, guided by the actual occurrence of a
target species or all given types of ecosystems (as background) in a study area. The reference polygons
were collected without spatial bias [23]. The polygons for the target species were in places where
the species under study occurred with different percentage cover (from 20 to 100%). The numbers of
polygons established for particular cover ranges are presented in Table 3. In addition to the percentage
cover, the dominant growth (vegetative/flowering/fruiting) stage for the target species as well as the
percentage cover of co-dominant species was recorded for each polygon. The background polygons
were set up in such a way to present the entire variability of the surveyed area, including ecosystems in
which a target species was recorded or dominated by a species with similar morphology. Considering
all polygons in which the target class was not present as background class simplifies the whole process
of classification. Due to these assumptions, the reference polygons for the target species and the
background carried typical and representative information, which allowed a reduction in the number
of polygons required by the Random Forest Classifier [24,25].

Table 3. The number of polygons established for each target species.

Number of the Target Species Reference Polygons and Background Reference Polygons

Percentage Cover of the Target Species

20–40% 50–70% 80–100%
30 30 50

2.5. Field Mapping

Simultaneously with on-ground botanical data acquisition (see Section 2.4), a field map of the
distribution of each target species was made for a selected area. For each species, one control area in
the shape of a square and a size of 10 ha was chosen. This area was determined in such a way as to
represent the full variability of the density of the species in the patches (from 20 to 100%). By using
GNSS Mobile Mapper 120, all patches of the target species, with a minimum area of 10 m2 and a
minimum of 20% land cover, were mapped. In this way, cartographic information was obtained, which
became the basis for assessing the correctness of classification.
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2.6. Random Forest Classification and Accuracy Assessment

Supervised classification with the Random Forest algorithm [39] was applied as a method of
classification. The Random Forest classifier has been successfully used in numerous ecological studies,
including the mapping of individual plant species [40,41]. The reduction of the number of features
from hundreds to tens is recommended in the case of the Random Forest algorithm [26]. Therefore,
a dimension reduction step (MNF) was carried out and the first 30 bands selected for classification [26],
which also reduces the required number of on-ground training samples. For each result, Kappa and
F1 accuracy were calculated [42,43]. The whole classification workflow was scripted in Vegetation
Classification Studio [44], using its YAML-based Experiment Definition Language. To facilitate potential
comparison of our results with other studies, no specific Random Forest parameter tuning was done,
and most parameters were left at the commonly used defaults. There were 100 trees learned for each
model, with the Gini criterion used for determining splits, and taking into account the square root of
the number of features for each split.

The classification experiment was divided into three stages (0, 1, 2), which were carried out in
sequence. All pixels from given polygon was considered only for training or only for validation to avoid
autocorrelation. Stage 0 involved a classification for each target species, in which the set of 110 target
species polygons and 200 background polygons were randomly divided into a training and a validation
set in a proportion of 50/50. The internal heterogeneity of polygons was not taken into account in
this random division. To carry out the next two stages, the reference polygons (both types—target
species and background) were permanently divided into a training or validation set. Classification at
Stages 1 and 2 differed from each other only in the set of training polygons for the target species
(Figures 3 and 4). At Stage 1 the training polygons were selected based on the cover percentage of a
target species, while at Stage 2 the number polygons in the training data was considered.

The fixed validation dataset at Stage 1 and 2 for all scenarios consisted of 30 reference polygons
for target species and 100 for background polygons. The manually selected validation set was
characterized by following criteria: a homogeneous spatial distribution of polygons throughout the
study area; 10 target species polygons from each of three range cover classes: 20–40%, 50–70%, 80–100%;
the background polygons represented all types of ecosystems occurred in the given study area.

Since the training and validation set had to meet several criteria, it was not possible to conduct a
multiple and random division into training and validation. However, at stages 1 and 2, the relative
proportion of target species and background class polygons corresponded to their proportions in the
landscape. 110 polygons were collected during on-ground data acquisition, but only 30 was selected to
each scenario.

At Stage 1, the same set of scenarios was created for all four target species, which differed in the
range of species percentage cover in the training polygons (scenarios SC0, SC1, SC2, SC3 and SC4),
while maintaining a constant number of species and background polygons (Figure 3). The background
training set was constant in all scenarios and consisted of 100 polygons which represented all types of
ecosystems in the given study area. The set of background polygons was selected manually so that
polygons of the same ecosystems were included in the set of training and validation polygons.

Stage 2 followed the completion of Stage 1. Two additional scenarios with 20 and 40 target species
training polygons were carried out for the best-rated scenario in Stage 1. The objective of Stage 2 was
to check how the change in the number of species training polygons affects the result of classification.
The background training polygons and the whole set of validation polygons did not change with
respect to Stage 1 and was constant during the classification process at Stage 2. In accordance with this
scheme, the classification was performed for all four target species.
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Figure 4. Stage 2 scheme. Changes in the number of species polygons and the number of background
polygons taken into account during the training in particular scenarios. The group of polygons with
the green background is constant and invariable during Stage 2. The yellow rectangle indicates the best
scenario from Stage 1. The group of blue rectangles indicates scenarios, which change during Stage 2,
differing in the number of species training polygons (FU—Filipendula ulmaria, MC—Molinia caerulea,
PA—Phragmites australis, SG—Solidago gigantea).

Three methods were used to assess whether the classification result was correct and acceptable
by end user. The first criterion, used at all stages, were the accuracy measures, i.e., Kappa and F1.
At stages 1 and 2, the next criterion was the quantitative analysis of the percentage contribution of
correctly classified target species pixels in validation polygons divided into three cover classes: 20–40%,
50–70% and 80–100%. The third criterion was the assessment with compatibility with field mapping
(see Section 2.5). All the obtained classification results (Stage 0, Stage 1, Stage 2) were evaluated.
The result of the classification for each scenario was compared with the map of the actual occurrence of
the species patches mapped during field campaign in the control area. The calculations were made
using zonal statistics in ArcGIS (version 10.6), assigning the classification pixels to one of four groups:
True Positive (target species pixels classified in actual species patches mapped during field work),
False Positive (target species pixels classified in background patches), True Negative (background
pixels classified in the background patches) and False Negative (background pixels classified in the
target species patches). Each of the classification results was assessed independently, using the three
measures described above (Kappa and F1 measure, compatibility with field mapping) and the best
classification result was selected on their basis.
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3. Results

3.1. Classification—Simply Approach (STAGE 0)

At Stage 0, relatively high values of Kappa (0.67–0.75) and F1 score (0.73–0.80) were obtained
for all target species (Figure 5). At the same time, the compatibility with field mapping and the
classification results on the control area showed an overestimation in the target species classes, at the
level between 10.7% for PA to 54.7% for FU false-positive pixels (Table 4). The results for all target
species in this scenario were not useful for nature conservation. Although they were characterized by
a high degree of target species detection, they also had too much overestimation in the background
patches (Figures 6–9).
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Figure 5. Classification accuracy described by Kappa and F1 measures (columns) and percentage of
area occupied by the species on the final map (the black line) for four target species (FU—Filipendula
ulmaria, MC—Molinia caerulea, PA—Phragmites australis, SG—Solidago gigantea) in the classifications
performed at Stage 0.
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Figure 7. Classification results of Molinia caerulea (MC) in all stages and scenarios. The black line areas
show the target species patches identified during the field mapping. The best scenario for Stage 1 is
marked by green line. The best scenario for Stage 2 is marked by blue line.
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show the target species patches identified during the field mapping. The best scenario for Stage 1 is
marked by green line. The best scenario for Stage 2 is marked by blue line.
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Figure 9. Classification results of Phragmites australis (PA) in all stages and scenarios. The black line
areas show the target species patches identified during the field mapping. The best scenario for Stage 1
is marked by green line. The best scenario for Stage 2 is marked by blue line.
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Table 4. Division of the classification results from each stage and scenario to the area of the target
species and their background and to the percentage of True Positive, False Positive, True Negative, and
False Negative in the control area selected for each target species (FU—Filipendula ulmaria, MC—Molinia
caerulea, PA—Phragmites australis, SG—Solidago gigantea).

Target
Species

Stage and
Scenario

Control Area
of Target

Species [m2]

Control Area of
Back-Ground

[m2]

True
Positive

[m2]

False
Positive

[m2]

True
Negative

[m2]

False
Negative

[m2]

True
Positive

[%]

False
Positive

[%]

True
Negative

[%]

False
Negative

[%]

MC

Stage 0

14189 85667

9784 1946 83739 4387 69 14 98 31

Stage 1 SC0 10840 3449 82236 3331 76 24 96 23
Stage 1 SC1 9812 1774 83911 4359 69 13 98 31
Stage 1 SC2 7578 878 84807 6593 53 6 99 46

Stage 1 SC3 6953 694 84991 7218 49 5 99 51

Stage 1 SC4 5102 460 85225 9069 36 3 99 64

Stage 2
SC1_20 6123 402 85283 8048 43 3 100 57

Stage 2
SC1_30 9812 1774 83911 4359 69 13 98 31

Stage 2
SC1_40 9343 1737 83948 4828 66 12 98 34

FU

Stage 0

10797 89203

8134 5910 83149 2663 75 55 93 25

Stage 1 SC0 6486 4406 84653 4311 60 41 95 40

Stage 1 SC1 7102 5006 84053 3695 66 46 94 34

Stage 1 SC2 6679 4590 84469 4118 62 43 95 38

Stage 1 SC3 6287 3454 85605 4510 58 32 96 42
Stage 1 SC4 6457 3126 85933 4340 60 29 96 40

Stage 2
SC4_20 4684 1482 87577 6113 43 14 98 57

Stage 2
SC4_30 6457 3126 85933 4340 60 29 96 40

Stage 2
SC4_40 6453 3057 86002 4344 60 28 96 40

SG

Stage 0

11477 88523

7076 3398 84981 4401 62 30 96 38

Stage 1 SC0 4208 10431 77948 7269 37 91 88 63

Stage 1 SC1 1488 4128 84251 9989 13 36 95 87

Stage 1 SC2 1916 581 87798 9561 17 5 99 83
Stage 1 SC3 4061 665 87714 7416 35 6 99 65

Stage 1 SC4 2575 568 87811 8902 22 5 99 78

Stage 2
SC3_20 1636 211 88168 9841 14 2 100 86

Stage 2
SC3_30 4061 665 87714 7416 35 6 99 65

Stage 2
SC3_40 4770 638 87741 6707 42 6 99 58

PA

Stage 0

33106 66894

24417 3534 63216 8689 74 11 95 26

Stage 1 SC0 18279 3409 63341 14827 55 10 95 45
Stage 1 SC1 15426 1700 65050 17680 47 5 97 53

Stage 1 SC2 10979 657 66093 22127 33 2 99 67

Stage 1 SC3 8604 356 66394 24502 26 1 99 74

Stage 1 SC4 10450 473 66277 22656 32 1 99 68

Stage 2
SC1_20 3904 315 66435 29202 12 1 99 88

Stage 2
SC1_30 15426 1700 65050 17680 47 5 97 53

Stage 2
SC1_40 16393 1532 65218 16713 50 5 97 50

Green color—the best scenario for Stage 1, blue color—the best scenario for Stage 2.

3.2. Classification—Various Cover of Target Species in Training Polygons (STAGE 1)

The purpose of SC0 (20–70%) was to check the possibility of correctly mapping target species in
the absence of training polygons with high cover of target species (80–100%). The results obtained
for all target species were useless for end user, although high Kappa (>0.5) and F1 (>0.6) values were
obtained for two species (MC, FU; Figure 10). For three species: FU, MC, and SG, the results suggested
a significant overestimation (high number of false-positive pixels—from 24.3% to 90.9%), (Figures 6–8
and Table 4). However, in the case of the PA class, the result was underestimated (Figure 10). In most
cases, polygons with low species cover were correctly identified and the background was incorrectly
identified as the target species. The results indicate that SC0 has the best capacity for species mapping
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at an early stage of their expansion (20–40% species cover in a polygon), but at the same time it
significantly overestimates a target species (Figure 11 and Table 4).

Sensors 2019, 19, x FOR PEER REVIEW 16 of 26 

 

3.2. Classification—Various Cover of Target Species in Training Polygons (STAGE 1) 

The purpose of SC0 (20–70%) was to check the possibility of correctly mapping target species in 
the absence of training polygons with high cover of target species (80–100%). The results obtained for 
all target species were useless for end user, although high Kappa (>0.5) and F1 (>0.6) values were 
obtained for two species (MC, FU; Figure 10). For three species: FU, MC, and SG, the results suggested 
a significant overestimation (high number of false-positive pixels—from 24.3% to 90.9%), (Figures 6–
8 and Table 4). However, in the case of the PA class, the result was underestimated (Figure 10). In 
most cases, polygons with low species cover were correctly identified and the background was 
incorrectly identified as the target species. The results indicate that SC0 has the best capacity for 
species mapping at an early stage of their expansion (20–40% species cover in a polygon), but at the 
same time it significantly overestimates a target species (Figure 11 and Table 4).  

 
Figure 10. Classification accuracy described by Kappa and F1 measures (columns), percentage of area 
occupied by the target species on the final map (the black line) for four target species (FU—Filipendula 
ulmaria, MC—Molinia caerulea, PA—Phragmites australis, SG—Solidago gigantea) in five classification 
scenarios performed at Stage 1. 

Figure 10. Classification accuracy described by Kappa and F1 measures (columns), percentage of area
occupied by the target species on the final map (the black line) for four target species (FU—Filipendula
ulmaria, MC—Molinia caerulea, PA—Phragmites australis, SG—Solidago gigantea) in five classification
scenarios performed at Stage 1.Sensors 2019, 19, x FOR PEER REVIEW 17 of 26 

 

 
Figure 11. Percentage of correctly classified pixels (columns) and percentage of false-positive pixels 
(the orange line) in the set of validation polygons for four target species (FU—Filipendula ulmaria, 
MC—Molinia caerulea, PA—Phragmites australis, SG—Solidago gigantea) in four scenarios of Stage 1. 

The SC1 (20–100%) scenario was the best as assessed by all three methods (Table 5) for the two 
grass species characterized by a similar growth strategy, MC and PA. Also, the values of percentage 
of area occupied by the target species on the final map and expected percentage of study area 
occupied by the target species were quite similar to the estimated area (Figure 10). The advantage of 
SC1, compared to other scenarios for grass species, is more effective in correctly classifying the target 
species with lower cover, i.e., 20–40% and 50–70% (Figure 11), while also possessing a high accuracy 
in the cover class of 80–100%. Only grasses were not overestimated (MC 13% and PA 5% false-
positive pixels on the control area) (Table 4), which is reflected in the results for SG (36%) and FU 
(46%) (Figures 6 and 7). For large perennials (FU and SG), the SC1 scenario was not considered useful 
for nature conservation for two reasons; firstly, their overall abundance was overestimated; secondly 
the poor classification performance: for FU in the range of 20–40% and 50–70%, while for SG in the 
range of 20–40% and 80–100% (Figure 11). The SC2 (50–100%) scenario yielded only average 
validation scores. SC3 (70–100%) was the best as assessed by all three methods (Kappa and F1 
measure, compatibility with field mapping) for one of the target perennial species, SG. This scenario 
mainly correctly classifies the target species, SG, with higher cover—more than 80% (Figure 10). In 
other scenarios, SG was correctly categorized with lower accuracy, especially in the 80–100% cover 
range, and the result of classification reached lower values of Kappa and F1. For SG, the classification 
in SC3 was better than SC4 by comparing results in the control area due to a higher percentage of 
true-positive pixels (36% to 22%) (Table 4). SC4 (80–100%) gave the best results for the other perennial 
species, FU. Only this scenario allowed the correct classification of target species polygons in the 
range of 50–70% and 80–100%, as well as produces the highest values of Kappa and F1 score. The 
results for SG, MC, and PA were not useful for end user in SC4 (Figures 7–9). This was due to a worse 
ability to correctly classify species with lower cover classes, i.e., 20–40% and 50–70% (Figure 11). For 
these three target species, the results in the control area were significantly underestimated (they 
reached low value of true-positive pixels from 22 to 36% (Table 4). 

Table 5. A comparison of the three measures with the best independently chosen scenario of for each 
measure for Stage 1. 

Figure 11. Percentage of correctly classified pixels (columns) and percentage of false-positive pixels
(the orange line) in the set of validation polygons for four target species (FU—Filipendula ulmaria,
MC—Molinia caerulea, PA—Phragmites australis, SG—Solidago gigantea) in four scenarios of Stage 1.

The SC1 (20–100%) scenario was the best as assessed by all three methods (Table 5) for the two
grass species characterized by a similar growth strategy, MC and PA. Also, the values of percentage of
area occupied by the target species on the final map and expected percentage of study area occupied by
the target species were quite similar to the estimated area (Figure 10). The advantage of SC1, compared
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to other scenarios for grass species, is more effective in correctly classifying the target species with
lower cover, i.e., 20–40% and 50–70% (Figure 11), while also possessing a high accuracy in the cover
class of 80–100%. Only grasses were not overestimated (MC 13% and PA 5% false-positive pixels on
the control area) (Table 4), which is reflected in the results for SG (36%) and FU (46%) (Figures 6 and 7).
For large perennials (FU and SG), the SC1 scenario was not considered useful for nature conservation
for two reasons; firstly, their overall abundance was overestimated; secondly the poor classification
performance: for FU in the range of 20–40% and 50–70%, while for SG in the range of 20–40% and
80–100% (Figure 11). The SC2 (50–100%) scenario yielded only average validation scores. SC3 (70–100%)
was the best as assessed by all three methods (Kappa and F1 measure, compatibility with field mapping)
for one of the target perennial species, SG. This scenario mainly correctly classifies the target species,
SG, with higher cover—more than 80% (Figure 10). In other scenarios, SG was correctly categorized
with lower accuracy, especially in the 80–100% cover range, and the result of classification reached
lower values of Kappa and F1. For SG, the classification in SC3 was better than SC4 by comparing
results in the control area due to a higher percentage of true-positive pixels (36% to 22%) (Table 4).
SC4 (80–100%) gave the best results for the other perennial species, FU. Only this scenario allowed
the correct classification of target species polygons in the range of 50–70% and 80–100%, as well as
produces the highest values of Kappa and F1 score. The results for SG, MC, and PA were not useful
for end user in SC4 (Figures 7–9). This was due to a worse ability to correctly classify species with
lower cover classes, i.e., 20–40% and 50–70% (Figure 11). For these three target species, the results
in the control area were significantly underestimated (they reached low value of true-positive pixels
from 22 to 36% (Table 4).

Table 5. A comparison of the three measures with the best independently chosen scenario of for each
measure for Stage 1.

Target Species RS Accuracy Measures
(Kappa, F1)

Correctly Classified
Species Pixels (%)

Compatibility with Field
Mapping (Control Area) Chosen Scenario

Molinia caerulea (MC) SC1 SC1 SC1 SC1
Filipendula ulmaria (FU) SC4 SC4 SC4 SC4
Solidago gigantea (SG) SC3 SC3 SC3 SC3

Phragmites australis (PA) SC1 SC1 SC1 SC1

3.3. Classification—Various Number of Target Species Training Polygons (STAGE 2)

The purpose of Stage 2 was to check how the change in the number of species training polygons
affects the result of classification. First, the best classification obtained at Stage 1 was selected. Then,
the set of training polygons for each species were modified to increase and decrease the number of
training polygons by 10. As a result, three classification scenarios were created with the following
numbers of training polygons for a target species: 20, 30, and 40.

Compared to the initial scenarios of Stage 1 (30 species training polygons), none of the scenarios
with 20 species polygons in the training set yielded a good classification result of classification when
considering all three methods of quality assessment. For all target species, the scenario with a reduced
number of species training polygons achieved the lowest Kappa and F1 values compared to other
scenarios of Stage 2, at the same time compatibility with field mapping (Figures 6–9 and Table 4),
analysis of correctly classified pixels (Figure 12) indicated an underestimation of classified species,
especially in the cover range of 20–40% and 50–70%. At the same time, all three criteria showed
very small differences between the scenarios based on 30 and 40 species training polygons, while the
correctly classified results indicated the possibility of classifying a species in patches with PA and
MC cover above 50%, and FU and SG cover above 70% (Figure 13). The best results for MC were
obtained with the scenario based on 30 species training polygons, taking into an account two of the
three measures of the assessment: accuracy measures and compatibility with field mapping (Table 6).
MC is correctly classified only in cases with at least 50% cover in a polygon; below this value the result
is not acceptable, only 34% of correctly classified pixels in the 20–40% class (Figure 12). On the other
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hand, the best scenario for FU, PA, and SG was the one based on 40 species training polygons, reaching
the highest values for all evaluated parameters (Table 6). Differences in the classification between
SC_30 and SC_40 were not significant for FU, PA, and SG. The analysis of the control area showed that
SC_40 was characterized by slightly better classification of the target species (true-positive pixels) and
at the same time stable and less overestimation (false-positive pixels) (Table 4).
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Figure 13. Classification accuracy described by Kappa and F1 measures (columns), percentage of area
occupied by the target species on the final map (the black line) for four target species (FU—Filipendula
ulmaria, MC—Molinia caerulea, PA—Phragmites australis, SG—Solidago gigantea) in three classification
scenarios performed at Stage 2.
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Table 6. A comparison of the three measures with the best independently chosen scenario of for each
measure for Stage 2.

Target Species RS Accuracy Measures
(Kappa, F1)

Correctly Classified
Species Pixels (%)

Compatibility with Field
Mapping Chosen Scenario

Molinia caerulea (MC) SC1_30 SC1_40 SC1_30 SC1_30
Filipendula ulmaria (FU) SC4_40 SC4_40 SC4_40 SC4_40
Solidago gigantea (SG) SC3_40 SC3_40 SC3_40 SC3_40

Phragmites australis (PA) SC1_30 SC1_40 SC1_40 SC1_40

4. Discussion

4.1. Effect of the Species Percentage Cover in the Training Dataset on the Classification Results

The effect of the percentage cover of herbaceous species within training polygons on the results of
identification using RS data has been very seldom analyzed in the literature. In some cases, this factor
was not taken into account because researchers either used reference training data not obtained at the
similar time as airborne data [45] or obtained information through analysis of digital orthophotos [46].
Publications often provide information on changes in the percentage cover of a species, for which
the reference was collected [47,48], but seldom include information on the distribution of the number
of study plots differing in the species cover [49]. Furthermore, a significant discrepancy between
the date of airborne and botanical data acquisition reduces the reliability of the conclusion [50].
Significant changes, related to the dynamics of growth and phenology, occur in the cover of individual
herbaceous plant species during the growing season as well as in the successive years [51]. In the
present research, an approach has been applied which takes into account both the time convergence of
data acquisition (Table 1) as well as detailed information on the species cover in the reference polygons
(Table 3). This approach has enabled a comprehensive analysis of the effect of species cover in training
polygons on the classification results and has indicated a significant influence on the results of Random
Forest classification. The lack of pre-selection of training polygons at Stage 0 (Figure 5), although
numerous, resulted in poor-quality classification results, while maintaining high values of Kappa and
F1 (Figure 5). It should be emphasized that values obtained for these typical accuracy measures at Stage
0 were much higher than those obtained at further stages of the experiment, which calls into question
the assessment of the reliability of classification outcomes by means of these measures alone. This is
confirmed by previous studies questioning the reliability of, among other things, Kappa measures [19],
which are commonly used in RS of the environment. At each of the analyzed sites, the area covered by
false-positive species pixels at Stage 0 was significantly larger than that obtained by the best-rated
scenario (Figure 5). The results clearly indicate that when designing a sampling plan and selecting
training polygons, the variability in cover and spatial patterns of a species, as well as the composition
of co-occurring vegetation in a polygon should be considered. This is supported by the reports of other
researchers who advocate the need to sample the ecosystem as faithfully and effectively as possible [52]
or risk a significant overestimation in species abundance.

The impact of different scenarios on the classification outcomes varied depending on the species,
but general trends can be observed. For all target species, training with polygons characterized by a
lower species cover in a polygon (20–70%), not allowing for spectral purity of target species pixels,
resulted in more effective identification at an early stage of expansion, i.e., in areas where a target species
achieved lower cover-abundance. At the same time, however, the result obtained during traditional
field mapping was rated worst due to the overestimation of a species (high number of false-positive
pixels). This result, due to the strong overestimation, is characterized by a low applicability in the
management of nature conservation. This overestimation is the result of no unique background species
compositions which co-exist with target species. The same background species can occur in both target
and background polygons and can achieve high cover when the target species has low cover. On the
other hand, training consisting of polygons with only high species cover (80–100%) resulted in the
underestimation of a species with a low cover, but the result was assessed as more favorable by the
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end user as it was not affected by an unfavorable overestimation. Therefore, when adopting a strategy
for reference data acquisition, one should be aware which result is better for the end user and then
design the acquisition of reference data.

The results also indicate that to obtain the best results, it is necessary to adjust the selection of
training polygons to traits of a given species. Effective classification requires adaptation of spatial,
spectral and temporal resolution of data to match traits of the target plant species [8,9]. In the case of
the analyzed species, the classification results were affected not only by phenological but also structural
traits and their variability in the surveyed areas, as well as the spectral characteristics of a given species.
The analyzed dicotyledonous perennials (SG, FU) are characterized by the small size of individuals,
especially at an early stage of expansion. Furthermore, their shoots usually intertwine with shoots
of other plant species, which means that even with a relatively high degree of cover in a polygon
and the optimal data acquisition date, their signature strongly affected by the reflectance of other
plants growing in the same polygon and will therefore possess a smaller spectral separation from the
background class [53]. For this reason, to obtain reliable results of classification for species with similar
spectral characteristics (Supplementary Materials, Section Spectral Profiles), mainly polygons with a
high degree of cover (up to 70–100%) should be used for training. Different results were obtained for
MC, which is a grass forming compact, relatively large tussocks and large amounts of necromass [24].
In the case of MC, successful results of classification were obtained using training polygons with a
cover of 20–100% (Figure 10).

4.2. Percentage Cover of Target Species that Enables Its Identification

In the studies of species classification by RS, it is very important to analyze the minimum target
species cover that can be successfully detected, as it determines the limit from which proper mapping
is possible. This knowledge allows us to deduce the extent to which it is possible to apply this method
to map the early stages of an invasion. At the same time, there are only a few examples of studies that
assess the ability to map smaller cover fractions [53,54]. One means of understanding the possibility of
successful classification depending on the species cover via the creation of separate classes of validation
polygons [45]. However, the disadvantage of this approach is that the observed inaccuracies often come
from confusion between different density classes, so it is not possible to draw robust conclusions. In the
present study, one class was used in the validation set and the quantitative analysis of the contribution
of correctly classified species pixels within the validation polygons was carried out, divided into three
cover classes: 20–40%, 50–70% and 80–100%. In addition, not only the standard measures of accuracy
were used to assess the quality of the results, but also the percentage of area occupied by the species on
the final map and comparison with the results of traditional field mapping. The analysis of correctly
classified pixels in the validation polygons by percentage cover indicates that it is possible to quantify
identify target species in heterogenous ecosystems when the percentage contribution of the species is
at least 50% (Figure 11). A training set consisting of polygons with species cover in the range 20–70%
allowed for slightly more effective mapping at an early stage (low cover) of expansion of a target
species. At the same time, it caused a significant overestimation of a species in the study area, which
precludes the practical application of this result. In addition, it should be noted that the high value
of typical accuracy measures often did not correspond with the results of traditional field mapping.
This was particularly evident during the analysis of the results of Stage 0 and Stage 1 in SC0 for the
species FU, MC, and SG (Figures 5 and 10 and Table 4). These scenarios yielded high values of Kappa
and F1, which would lead to an assumption of a correct and useful classification, obtained the lowest
compatibility with field mapping (Figure 10 and Table 4). Other studies also indicate that there are
discrepancies between the obtained accuracy measures and the actual assessment of the map of the
identified species [6].

There are several examples in the literature indicating the possibility of identifying plant species
even at very low degrees of cover [17]. However, for the results to be reliable and reproducible, a limit
(threshold) of 30–40% cover should be adopted [53]. Our research indicates a limit of 50% species



Sensors 2019, 19, 2871 21 of 25

cover, within the context of the specific methodology of this study. We hypothesize that there may
be a characteristic vegetation signature associated with low target species cover (below 50%) that is
significantly different from all other background-only signatures. If this hypothesis were correct, a high
ratio of true positives to false positives could be achieved for the species classes with low percentage
cover. If this hypothesis is not correct, the classification would be based only on the target species
signature alone, not the whole vegetation signature, then the classification would be successful only
for the species with higher than, in this case, 50% cover. In addition, the classification results depend
on the traits of a target species and its ecosystem. Therefore, trees, shrubs, and large perennials, as
well as plants occurring as weeds in cultivated fields, are easier to identify [55,56]. Significantly worse
results are obtained in the case of small herbaceous plants occurring in heterogeneous ecosystems [57].

In addition, other researchers argue that the interpretation of accuracy measures is usually the only
way to evaluate results. The reliability of their values is intrinsically associated with the quality and the
number of polygons used in validation, which is often insufficient and does not always cover all major
types of land cover [58]. The results of this study indicate the necessity of close cooperation between
end user and RS specialists at each stage of the research. Knowledge of a given area, and appropriate
verification of the results on maps, are crucial for a meaningful assessment of the classification results.
Particular attention should be paid to the appropriate selection of background polygons, not limited to
the basic on-ground classes, but also taking into account, among other things, the ecosystems in which
a target species may occur.

4.3. Impact of the Number of Target Species Training Polygons on the Result of Classification

According to current literature, the relative proportion of samples representing different classes
used for training and validation should correspond to the actual incidence of a given class in the
studied area [26]. Violation of these proportions, for example, over-representation of the target class in
the training data can lead to an overestimation of a class. Examples are the results of Fallopia japonica
identification using Random Forest [46] and Tamarix sp. identification using the Maximum Entropy
model [50]. The results of our research confirm that too many training polygons of a species occupying
only a small part of in the surveyed area (<5%) leads to an overestimation of the abundance of the
species in the classification result when using the Random Forest algorithm (Figure 5). The problem of
underestimation in all cover classes of target species occurred when the number of training polygons
of a target species was too small. A useful classification was not achieved for any target species when
using 20 training polygons (Figure 12), regardless of whether the study area covered 10 km2 (No. 2) or
40 km2 (No. 1). The best results of classification were obtained for the set of 30 target training polygons
in the case of MC and 40 target training polygons for FU, SG, PA (Table 6). Depending on the area,
the training polygons occupied from 0.01% to 0.07% of the surveyed area (calculated area covered by
the target species polygons). It can therefore be assumed that a set of polygons, optimized in terms
of the percentage cover of a species, allows for a correctly assessed classification with a significantly
lower sampling rate compared to 1–2% of the area described in the literature [59]. The correct result
of identification on a comparable set of training polygons was achieved with the use of the Mixture
Tuned Matched Filtering (MTMF) algorithm [58] when mapping Cardaria draba. It can be concluded
that the results confirm the high sensitivity of the Random Forest algorithm to the problem of class
balance [46]. Therefore, it seems justified to further test the Random Forest algorithm, accounting for
imbalanced classes to identify natural phenomena of unknown intensity during sampling design [60].
The use of such an algorithm may lead to better classification results when the actual abundance of a
target species in in the surveyed area is not known at the outset.

4.4. Applicability of the Obtained Results

One of the limitations of applying RS are high costs of field data acquisition [10,61]. This research
indicates that if polygons are effectively selected, the classification of an invasive or expansive species
can be carried out over 40 km2 with the use of 30–40 species polygons for training, provided a species
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occupies less than 5% of the surveyed area [7]. This may lead to a reduction in the duration of
on-ground botanical work, with an associated reduction in costs, and at the same time an increase
in the temporal consistency of airborne and field data. It is recommended to synchronize on-ground
botanical data acquisition with airborne data acquisition, since this minimizes the risk of changes in
reference polygons, such as changes in the percentage cover of a species through its growth, extinction,
mowing or overgrowing [57]. The results also indicate that the data classification algorithm selected
has its restrictions related to the species cover limit below which a species is not reliably detectable in a
polygon (Figures 11 and 12). The method adopted enables the reliable identification of a species with a
cover above 50% in heterogeneous ecosystems. In the case of lower cover, the obtained accuracies
exclude the possibility of using the result for species monitoring. This is particularly important when
monitoring alien invasive or expansive species where early detection (with low cover) of a species is
more likely to result in effective control [3].

5. Conclusions

1. To classify the species correctly, the training dataset should contain polygons with a species
cover ranging from 80–100%. Training performed only on polygons with a species characterized by
a varied but lower cover-abundance (20–70%), but missing samples in the range 80–100%, leads to
a high overestimation of species in the background class. Such a result of classification prohibits its
practical use for species mapping.

2. The ability to identify a species depends on its morphological and phenological traits. The results
indicate that in the case of large grasses (i.e., Phragmites australis, Molinia caerulea), the best classification
results are obtained when training polygons include species cover in range 20–100%. In the case of
large dicotyledonous perennials (i.e., Solidago gigantea, Filipendula ulmaria), the optimal cover content in
training polygons should include a narrower range with high cover, greater than 70% (Figure 10 and
Table 5).

3. The use of a training scenario adapted to the traits of a target species allows effective
identification of that species in areas where the actual species cover is above 50%, for heterogeneous,
species-rich ecosystems. The mapping results above these cover fractions are sufficiently reliable to be
further used in nature conservation.

4. It is possible to identify a target species that occupies up to 5% of a study area (10 to 40 km2)
using a training dataset covering less than 0.07% of the surveyed area.

5. Multi-criteria evaluation of classification results indicates an inconsistency between different
methods of assessing the correctness of classification results. The discrepancy was found when
comparing Kappa and F1 values with results of traditional field mapping. Bearing in mind the final
application of the research, compatibility with field mapping must be an integral part of species
mapping by RS methods. This problem results from the lack of the possibility of sufficiently dense
background sampling for validations in large area with very heterogeneous ecosystems.
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