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Abstract: The finite-set statistics (FISST) foundational approach to multitarget tracking and information
fusion has inspired work by dozens of research groups in at least 20 nations; and FISST publications
have been cited tens of thousands of times. This review paper addresses a recent and cutting-edge
aspect of this research: exact closed-form—and, therefore, provably Bayes-optimal—approximations
of the multitarget Bayes filter. The five proposed such filters—generalized labeled multi-Bernoulli
(GLMB), labeled multi-Bernoulli mixture (LMBM), and three Poisson multi-Bernoulli mixture (PMBM)
filter variants—are assessed in depth. This assessment includes a theoretically rigorous, but intuitive,
statistical theory of “undetected targets”, and concrete formulas for the posterior undetected-target
densities for the “standard” multitarget measurement model.
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1. Introduction

Suppose that, at times t1, . . . , tk, a single sensor collects a time-series z1:k: z1, . . . , zk of measurements
from a target with dynamically evolving state x. Then, the Bayes-optimal approach for tracking the
target is the recursive Bayes filter:

. . . →fk−1|k−1(x|z1:k−1)→fk|k−1(x|z1:k−1)→fk|k(x|z1:k)→ . . .

where fk|k(x|z1:k) is the probability distribution of the unknown state x at time tk; where:

fk|k−1(x|z1:k−1) =

∫
fk|k−1(x|x′) · fk−1|k−1(x′|z1:k−1)dx′, fk|k(x|z1:k) ∝ fk(zk|x) · fk|k−1(x|z1:k−1) (1)

and where fk|k−1(x|x′) is the target’s Markov state-transition density and fk(z|x) is the sensor’s
measurement density. Suppose that these are linear-Gaussian:

fk|k−1(x|x′) = NRk(x− Fkx′), fk(z|x) = NQk(z−Hkx). (2)

Then the family of linear-Gaussian distributions solves the Bayes filter in exact closed form. That
is, if the initial distribution is linear-Gaussian—i.e., if f0|0(x) = NP0|0(x− x0|0)—then [1]:

fk|k−1(x|z1:k−1) = NPk|k−1(x− xk|k−1), fk|k(x|z1:k) = NPk|k(x− xk|k) (3)

where . . . → (xk−1|k−1,Pk−1|k−1)→ (xk |k−1,Pk |k−1)→ (xk |k,Pk |k)→ . . . is the Kalman filter. The family of
Gaussian mixture distributions also solves the Bayes filter in exact closed form [2].

An unexpected recent development has been the generalization of this approach to the multitarget
case. Let:

. . . →fk−1|k−1(X|Z1:k−1)→fk|k−1(X|Z1:k−1)→fk|k(X|Z1:k)→ . . .

be the multitarget recursive Bayes filter, where fk|k(X|Z1:k) is the probability distribution of the
unknown multitarget state-set X and Z1:k:Z1, . . . , Zk is the time-sequence of collected multitarget
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measurement-sets. Suppose that F is a family of parametrized multitarget distributions f (X|p)
with parameter p ∈ ℘. Then F solves the multitarget Bayes filter in exact closed form if
fk|k−1(X|Z1:k−1) = f (X|pk |k−1) and fk|k(X|Z1:k) = f (X|pk |k) with pk |k-1,pk |k∈ ℘. In this case, the multitarget
Bayes filter can be replaced by an equivalent, but potentially computationally more tractable, filter: . . .
→pk−1|k-1→pk |k−1→pk |k→ . . . .

Remark 1. References [3–9] employ the terminology “conjugate filter” rather than “exact closed-form filter.”
The latter usage is more accurate since “conjugate” refers specifically to exact algebraic closure of F with respect
to fk(Zk|X) (and not fk|k−1(X|X′)).

Five such filters have been proposed (where the earliest-published papers are indicated):

1. Generalized labeled multi-Bernoulli (GLMB) filter [8].
2. Labeled multi-Bernoulli mixture (LMBM) filter [10].
3. Poisson multi-Bernoulli mixture (PMBM) filter, in three distinct versions:

a. “Unlabeled” or U-PMBM filter [11].
b. “Label-augmented” or LA-PMBM filter [12].
c. “Hybrid labeled-unlabeled” or H-PMBM filter [4].

The purpose of this review paper is to provide an in-depth assessment of these five filters, especially
in regard to the following questions: Is this filter theoretically rigorous? Is it a true multitarget tracker?
Is it actually exact closed-form?

The basic issue distinguishing (3a, 3b, 3c) from (1, 2) is the form of the initial multitarget distribution
and the target-birth model: Poisson or non-Poisson? In particular, the Poisson component of the
PMBM distribution fk|k(X|Z1:k−1) is claimed to be a model of the “undetected targets” at time tk—i.e.,
those targets never detected at times t1, . . . , tk.

This physical interpretation forces us to address the following question: What is an “undetected
target”? This, in turn, requires the formal statistical theory of “undetected targets” developed in
Section 5. This theory results in the following formulas for the probability generating functionals
(PGFLs) of the measurement-updated random finite set (RFS) Ξk|k and its associated detected-target
RFS Ξd

k|k and undetected-target RFS Ξu
k|k(Section 5.7):

Gk|k[h|Z1:k] ∝

∫
f ∗k (Zk|X) · (pDh)X

·
δGk|k−1

δX
[h(1− pD)]δX (4)

Gd
k|k[h|Z1:k] ∝

∫
f ∗k (Zk|X) · (pDh)X

·
δGk|k−1

δX
[1− pD]δX (5)

Gu
k|k[h|Z1:k] ∝

∫
f ∗k (Zk|X) · pX

D ·
δGk|k−1

δX
[h(1− pD)]δX. (6)

The major conclusions of the paper are as follows:

1. The GLMB, LMBM filters solve the labeled multitarget Bayes filter in exact closed form.
2. They are, therefore, true multitarget trackers.
3. The U-PMBM filter solves the unlabeled multitarget Bayes filter in exact closed form.
4. The “undetected-targets” interpretation of the U-PMBM filter appears to be valid.
5. It is theoretically impossible to prune U-PMBM distributions in a practical manner.
6. The U-PMBM, LA-PMBM and H-PMBM filters are not true multitarget trackers.
7. The LA-PMBM and H-PMBM filters are theoretically and physically questionable.
8. In particular, the H-PMBM filter does not solve the “hybrid” multitarget Bayes filter in exact

closed form.
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The paper is organized as follows: overview of FISST-based multitarget tracking (Section 2); the
GLMB and LMBM filters (Section 3); the three versions of the PMBM filter (Section 4); a theory of
undetected targets (Section 5); mathematical derivations (Section 6); and conclusions (Section 7).

2. Overview of FISST-Based Multitarget Tracking

This section summarizes those concepts necessary to understand the paper. Greater detail can be
found in books [13–16], tutorials [17–20], and a short survey of advances ca. 2015 [21]. Additionally,
systematic investigations of FISST vs. “point processes” can be found in [19,22] and of FISST vs.
measurement-to-track approaches in [23,24].

The section is organized as follows: Random finite sets (Section 2.1); multitarget calculus
(Section 2.2); important RFSs (Section 2.3); the multitarget Bayes filter (Section 2.4); and the PGFL form
of the multitarget Bayes filter (Section 2.5).

2.1. Random Finite Sets (RFSs)

Let = be a single-target state-space (e.g., a region of a Euclidean space) with x, x′ ∈ = and let ℵ be
the sensor measurement-space with z ∈ ℵ. Then the state of a multitarget system is represented as a
finite subset X = {x1, . . . , xn} ⊆ = with X = ∅ for n = 0. The number of elements in X is denoted as |X|.
In a Bayesian approach, unknown states are random variables. Thus, an unknown multitarget state is
a random finite set (RFS) Ξ ⊆ =.

Similarly, the “measurement” collected from the targets in X is a finite subset Z = {z1, . . . , zm}
⊆ ℵ with Z = ∅ for m = 0. Since measurement-sets are random, multitarget measurements will be
represented as random finite measurement-sets Σ ⊆ ℵ.

Remark 2. It is sometimes claimed that multitarget states can be rigorously modeled as variable-length
concatenated vectors (x1, . . . , xn) ∈ ∪ n ≥ 0 =

n. This is not the case—see Section 2.4 of [19].

2.2. Multitarget Calculus

A multitarget density function is a function f (X) ≥ 0 of the finite-set variable X ⊆ = such that the
units of measurement of f (X) are ι −|X| where ι is the unit of measurement of =. The set integral of f (X) is:∫

f (X)δX = f (∅)+
∑
n≥1

1
n!

∫
fn(x1, . . . , xn)dx1 · · · dxn (7)

where fn(x1, . . . , xn) = f ({x1, . . . , xn})/n! for distinct x1, . . . , xn [14] (p. 361). Every random finite state-set
Ξ has a multitarget probability distribution fΞ (X):

∫
fΞ (X)δX = 1. The cardinality distribution of Ξ is:

pΞ(n) = Pr(|Ξ| = n) =

∫
|X| = n

fΞ(X)δX =
1
n!

∫
fΞ({x1, . . . , xn})dx1 · · · dxn. (8)

The probability generating functional (PGFL) of Ξ is, for “test functions” 0 ≤ h(x) ≤ 1:

GΞ[h] =

∫
hX
· fΞ(X)δX (9)

where hX = 1 if X = ∅ and hX = Πx ∈Xh(x) otherwise. The simplest nontrivial PGFLs are:

s[h] =

∫
h · s(x)dx (10)

where s(x) ≥ 0 is a density function on =. The power functional hX satisfies the generalized binomial
theorem [13] (Equation (3.6)):
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(h1 + h2)
X =

∑
Y⊆X

hY
1 · h

X−Y
2 . (11)

The intuitive definition of the functional derivative of GΞ [h] is:

δGΞ

δx
[h] = lim

ε↓0

GΞ[h + ε · δx] −GΞ[h]
ε

(12)

where δx(y) is the Dirac delta function concentrated at x. (For a rigorous definition see [13,18].) If
X = {x1, . . . , xn} with |X|=n then the general functional derivative is GΞ [h] if X = ∅ and, otherwise:

δGΞ

δX
[h] =

δnGΞ

δx1 · · · δxn
[h] =

δ
δxn

δn−1GΞ

δx1 · · · δxn−1
[h]. (13)

The PGFL and multitarget distribution of an RFS are related by:

fΞ(X) =
δGΞ

δX
[0]. (14)

The probability hypothesis density (PHD) of Ξ is:

DΞ(x) =

∫
fΞ({x} ∪X)δX =

δGΞ

δx
[1]. (15)

FISST includes an extensive “toolbox” of “turn-the-crank” rules for set integrals and functional
derivatives—see [14] (pp. 383–389) or [13] (pp. 69–80).

2.3. Important RFSs

Various RFSs of importance to this paper are most easily described using their PGFLs:

1. Poisson RFS: GΞ [h] = eD[h−1] where D[h] =
∫

h(x)·D(x)dx and where D(x) ≥ 0 is a PHD—i.e., a
density function on x∈ =.

2. Bernoulli RFS: GΞ [h] = 1 – q + q·s[h] where 0 ≤ q ≤ 1 and probability density s(x) are, respectively,
the existence probability and spatial distribution of a single target.

3. Multi-Bernoulli (MB) RFS: GΞ[h] =
∏N

i = 1 (1− qi + qi · si[h]) where 0 ≤ qi ≤ 1 and probability
density si(x) are, respectively, the existence probability and spatial distribution of the i-th of
N targets.

4. Multi-Bernoulli Mixture (MBM) RFS: GΞ[h] =
∑N

l = 1 wl
∏Nl

i = 1 (1− ql.i + ql,i · sl,i[h]).

5. Poisson Multi-Bernoulli (PMB) RFS: GΞ[h] = eD[h−1]∏N
i = 1 (1− qi + qi · si[h]).

6. Poisson Multi-Bernoulli Mixture (PMBM) RFS: GΞ[h] = eD[h−1]∑N
l = 1 wl

∏Nl
i = 1 (1− ql.i + ql,i · sl,i[h]).

2.4. Multitarget Recursive Bayes Filter

As noted earlier, this is:

. . . →fk−1|k−1(X|Z1:k−1)→fk|k−1(X|Z1:k−1)→fk|k(X|Z1:k)→ . . .

where:

fk|k−1(X|Z1:k−1) =

∫
fk|k−1(X|X′, Z1:k−1) · fk−1|k−1(X′|Z1:k−1)δX′ (16)

fk|k(X|Z1:k) ∝ fk(Zk|X, Z1:k−1) · fk|k−1(X|Z1:k−1) (17)

and where fk|k−1(X|X′,Z1:k−1) is the multitarget Markov state-transition density and fk(Z|X,Z1:k−1) is the
sensor’s multitarget measurement density. It is usually assumed that fk|k−1(X|X′,Z1:k−1) = fk|k−1(X|X′)
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and fk(Z|X,Z1:k−1) = fk(Z|X); but the original forms allow (for example) the target-birth process and the
clutter process, respectively, to be estimated from the measurements in Z1:k−1.

In this paper we will be concerned with fk(Z|X) for only the “standard” multitarget measurement
model, which has PGFL:

Gk[g|X] =

∫
gZ
· fk(Z|X)δZ = eκk[g−1]

· (1− pk
D + pk

DLk
g)

X
. (18)

Here, at time tk, pk
D(x) is the sensor probability of detection, fk(z|x) = Lk

z(x) is the sensor measurement
density, kk(z) is the intensity function of a Poisson clutter process, and Lk

g(x) =
∫

g(z) · fk(z|x)dz. For
notational simplicity we will usually suppress the time-index k—e.g., pk

D(x) = pD(x),Lk
z(x) = Lz(x), etc.

Likewise, we will be concerned with fk|k−1(X|X′) for only the “standard” multitarget motion model,
which has PGFL:

Gk|k−1[h|X′] =

∫
hX
· fk|k−1(X|X′)δX = Gk|k−1

B [h] · (1− pk|k−1
S + pk|k−1

S Mk|k−1
h )

X′
. (19)

Here, at time tk, pk|k−1
S (x′) is the target probability of survival, fk|k−1(x|x′) = Mk|k−1

x (x′) is the target

Markov density, Gk|k−1
B [h] is the PGFL of a multitarget birth RFS, and Mk|k−1

h (x′) =
∫

h(x) · fk|k−1(x|x′)dx.

For notational simplicity we will usually suppress the time-index k—e.g., pk|k−1
S = pS, Mk|k−1

x = Mx, etc.

2.5. PGFL Form of the Multitarget Bayes Recursive Filter

The PGFL form of Equation (16) for the standard motion model is [14] (Equation (14.273)), [13]
(Equation (5.94)):

Gk|k−1[h|Z1:k−1] = Gk|k−1
B [h] ·Gk−1|k−1[1− pS + pSMh|Z1:k−1]. (20)

The PGFL form of Equation (17) is [14] (Equation (14.280)), [13] (Equation (5.58)):

Gk|k[h|Z1:k] =

δFk
δZk

[0, h]
δFk
δZk

[0, 1]
=

[
δFk
δZk

[g, h]
]

g = 0[
δFk
δZk

[g, h]
]

g = 0.h = 1

(21)

where, for the standard measurement model [14] (Equation (14.290)), [13] (Equation (5.104)):

Fk[g, h] = eκk[g−1]
·Gk−1|k[h(1− pD + pDLg)|Z1:k−1]. (22)

In what follows, we will notationally suppress the dependence of these PGFLs on Z1:k−1.

3. The GLMB and LMBM Filters

The section is organized as follows: labeled RFSs (Section 3.1); important labeled RFSs (Section 3.2);
the GLMB filter (Section 3.3); and the LMBM filter (Section 3.4).

3.1. Labeled Random Finite Sets (LRFSs)

Track labeling (or, more generally, target identity) in an RFS context was first addressed in 1997
in [25] (pp. 135, 196–197) and in 2007 in [14] (pp. 505–508). However, the first implementations of RFS
filters did not take track labels into account because of computational concerns. Later implementations,
such as the Gaussian mixture cardinalized probability hypothesis density (GM-CPHD) filter, addressed
labeling heuristically [13] (pp. 244–250). The labeling issue was not addressed in a theoretically
rigorous and systematic fashion until 2011 in the labeled RFS (LRFS) papers of Vo and Vo [7,8].
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In LRFS theory, single-target states are assumed to have the form x = (u,`) ∈ = × L0 where u ∈ = is
a kinematic target state-vector and ` is an element of a countable set L0 of target labels. The integral on
= × L0 is defined by: ∫

f (x)dx =
∑

`∈L∞
f (u, `)du (23)

where, by assumption,
∫

f (u,`)du = 0 for all but a finite number of `. The corresponding set integral is:∫
f (X)δX =

∑
n≥0

1
n!

∑
(`1,...,`)∈Ln

∞

f (
{
(u1, `1), . . . , (un, `n)

}
)du1 · · · dun. (24)

Let X = {(u1,`1), . . . , (un,`n)} ⊆ = × L0. Then the set of labels of the targets in X is denoted as
XL = {`1, . . . , `n}. Given this, X is a labeled multitarget state-set if |XL| = |X|—i.e., if its elements have
distinct labels, in which case targets are uniquely identified. An RFS Ξ ⊆ = × L0 is a labeled RFS (LRFS)
if |ΞL| = |Ξ| for all realizations Ξ = X of Ξ. Consequently, the distribution of an LRFS Ξ has the following
property: fΞ(X) = 0 if |XL| , |X|.

In LRFS theory, labels ` are unknown random state variables, which must be Bayes-optimally estimated
along with the unknown random kinematic states u1, . . . , un. By way of contrast, in conventional
track-management approaches labels are deterministic, heuristic bookkeeping devices.

The LRFS approach requires appropriate definitions of pk|k−1
S (u′, `′), pk

D(u, `), fk(z|u,`)
and fk|k−1(u,`|u′,`′) when (u,`), (u′,`′) ∈ = × L0. The primary distinction is that
fk|k−1(u,`|u′,`′) = δ`,`′ ·fk|k−1(u|u′,`′)—i.e., targets do not change labels. For purposes of multitarget
tracking and classification (see Remark 4), these quantities will usually depend on the labels. However,
for general tracking it can usually be assumed that pk|k−1

S (u′, `′) = pk|k−1
S (u′),pk

D(u, `) = pk
D(u),

fk(z|u,`) = fk(z|u), and fk|k−1(u|u′,`′) = fk|k−1(u|u′).

3.2. Important Labeled RFSs

These are most simply defined in terms of their PGFLs, where 0 ≤ h(u,`) ≤ 1 are labeled
test functions:

1. Labeled Multi-Bernoulli (LMB) LRFS: GΞ[h] =
∏
`∈J (1− q` + q` · s`[h]) where J ⊆ L0 is finite, 0 ≤ q`

≤ 1 and s`[h] =
∫

h(u,`)·s(x,`)du and s`[1] = 1 for all ` ∈ J.

2. Labeled Multi-Bernoulli Mixture (LMBM) LRFS: GΞ[h] =
∑N

i = 1 wi
∏
`∈Ji

(1− q` + q` · s`[h]).
3. Generalized Labeled Multi-Bernoulli (GLMB) LRFS: GΞ[h] =

∑
o∈O

∑
L⊆L∞ wo(L)

∏
`∈L so,`[h] where:

(a) O is a finite set of indices o; (b) so,`(u) = so(u,`) with
∫

so,`(u)du = 1 for each o,` is the spatial
distribution corresponding to the target label ` and the index o; (c) ωo(L) ≥ 0 for all finite L ⊆ L0;
(d) Σ o∈ O Σ Lωo(L) = 1; and (e) so,`[h] =

∫
h(u,`)·so(u,`)du.

Any labeled multitarget distribution can be approximated by a GLMB distribution that has the
same PHD and cardinality distribution [26].

Remark 3. A Poisson RFS Ξ ⊆ = × L0 is not an LRFS. For, let D(u,`) ≥ 0 be a PHD on = × L0—i.e.,
∫

D(u,`)du = 0 for all but a finite number of ` ∈ L0 with µ = Σ`
∫

D(u,`)du. Let fΞ(X) be Poisson with PHD
D(u,`): fΞ(X) = e−µΠ(u,`) ∈ XD(u,`) and let X0 = {(u1,`0), . . . , (un,`0)} with |X0| = n. Then, fΞ(X0) , 0 even
though the target with label `0 has n different kinematic states.

3.3. The GLMB Filter

This filter was introduced in 2011 in [8] and elaborated in [6,7]. Suppose that L0 = {0,1, . . . ,} ×
{1, . . . } and if ` = (k,i) then tk is the time that track` was initiated and i ≥ 1 distinguishes it from any
other track created at time tk. At time tk, a finite number of labels in Lk = {k} × {1, . . . } are assigned
to hypothesized newly-appearing tracks. Thus, at time tk, the set L[0:k] of all currently assigned track
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labels is a finite subset of L0:k = {0,1, . . . , k} × {1, . . . }; and each such label is an unknown discrete
random variable ` ∈ L[0:k] which must be estimated.

Given this, the family of GLMB distributions solves the labeled multitarget Bayes filter in exact
closed form. In particular, at time tk:

fk|k(X|Z1:k) = δ|X|,|XL |

∑
(α1,...,αk)

ωk|k
α1,...,αk

(XL) · (s
k|k
α1,...,αk

)
X (25)

where the summation is taken over all (α1, . . . ,αk) ∈ A1 × . . . × Ak; where each αi:L[0:i]→ {0,1, . . . , |Zi|}
is a label-to-measurement association—i.e., if αi(`) = αi(`′) > 0 then ` = `′; where sk|k

α1,...,αk
(u, `) is a target

spatial distribution; and where Ai denotes the set of all such associations αi at time tk.
The GLMB filter is a true Bayesian multitarget tracker because it is guaranteed to propagate target

tracks with unique track labels (a “true” tracker), which in turn are realizations of unknown random
identity-variables (a “Bayesian” tracker).

Moreover, because it is an exact closed-form solution of the labeled multitarget Bayes filter, the
GLMB filter has provably Bayes-optimal track-management. At time tk−1, an (approximate) Bayes-optimal
multitarget state estimate Xk−1|k−1 is extracted from fk−1|k−1(X|Z1:k−1). At time tk, a similar estimate Xk|k
is extracted from fk|k(X|Z1:k). If (u,`) ∈ Xk−1|k−1 and (u′,`) ∈ Xk|k then (u,`) and (u′,`) both belong to the
track with label `. If (u′,`) ∈ Xk|k for any u′ then track ` has been dropped. If (u,`) ∈ Xk|k but (u′,`) ∈
Xk−1|k−1 for any u′ then a track with label ` has been initiated or reacquired.

Due to the number of association-vectors (α1, . . . , αk) increases without bound, the summation
in Equation (25) must be pruned at every time-step. The information loss due to pruning can be
characterized exactly—i.e., the L1 norm between the pruned and unpruned distributions is the sum of
the weights of the pruned terms [6] (Proposition 5).

Using Gibbs stochastic sampling techniques, the GLMB filter can be implemented with
computational order O(n2m) where m is the current number of measurements and n the current
number of tracks [5]. This is particularly advantageous when clutter is dense. The most recent
such implementations can simultaneously track over a million 2D targets in significant clutter using
off-the-shelf computing equipment [27].

Remark 4. Every target has a unique identity state variable [25] (pp. 135, 196–197). A track label is a
provisional identity assigned to a target in lieu of its actual identity. The GLMB filter can be generalized from
joint multitarget detection and tracking to joint multitarget detection, tracking, and identification. This is
accomplished by incorporating identity information into target labels [9].

3.4. The LMBM Filter

In [10] it was shown that the family of LMBM distributions solves the labeled multitarget Bayes
filter in exact closed form. The corresponding LMBM filter is, therefore, a true Bayesian multitarget
tracker with provably Bayes-optimal track management. It is somewhat less computationally expensive
than the GLMB filter, but also less accurate since LMBM distributions are less accurate approximations
of labeled multitarget distributions than GLMB distributions.

4. The PMBM Filter

There are at least three successive versions of the PMBM filter. The section is organized as follows:
the “unlabeled” PMBM (U-PMBM) filter (Section 4.1); the “undetected targets” interpretation of this filter
(Section 4.2); the “label-augmented” PMBM (LA-PMBM) filter (Section 4.3); “hybrid labeled-unlabeled”
RFSs (Section 4.4); the “hybrid labeled-unlabeled” PMBM (H-PMBM) filter (Section 4.5); and theoretical
issues with the H-PMBM filter (Section 4.6).
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4.1. Unlabeled PMBM (U-PBMB) Filter

In this original 2012 version [11], all RFSs are unlabeled—LRFSs are never mentioned.

All target-birth RFSs are assumed to be Poisson—in our notation, Gk|k−1
B [h] = eDk|k−1

B [h−1] for all k ≥
1—as is the initial RFS: G0|0[h] = eD0|0[h−1]. Given this, the PMBM filter propagates PMBM distributions
in exact closed form. Specifically, Gk|k−1[h] = Fu

k|k−1[h] · F
d
k|k−1[h] and Gk|k[h] = Fu

k|k[h] · F
d
k|k[h] where

Fu
k|k−1[h] = eDk|k−1[h−1] and Fu

k|k[h] = eDk|k[h−1] are Poisson and where Fd
k|k−1[h] and Fd

k|k[h] are MBM.
The demonstration of this fact in [11,12] is somewhat sketchy. The following PGFL-based verification
of it will be useful in the sequel.

U-PMBM Filter Time-Update. According to Equation (20) and substituting Gk|k−1
B [h] = eDB[h−1],

the PGFL prediction formula is:

Gk|k−1[h] = eDB[h−1]
·Gk−1|k−1[1 + pSMh−1] (26)

where, by assumption, Gk−1|k−1[h] is PMBM:

Gk−1|k−1[h] = eD[h−1]
∑ν

l = 1
wl

∏Nl

i = 1
(1 + ql,i · sl,i[h− 1]). (27)

Thus, predicted PGFL is easily seen to be PMBM:

Gk|k−1[h] = eDk|k−1[h−1]
∑ν

l = 1
wl

∏Nl

i = 1
(1 + q′l,i · s

′
l,i[pSMh−1]) (28)

where:

Dk|k−1(x) = DB(x) + D[pSMx] = DB(x) +
∫

pS(x′) · fk|k−1(x|x′) ·D(x′)dx′ (29)

q′l,i = ql,i · sl,i[pS], s′l,i(x) =
si,i[pSMx]

sl,i[pS]
=

∫
pS(x′)· fk|k−1(x|x′)·sl,i(x′)dx′∫

pS(x′)·sl,i(x′)dx′
. (30)

U-PMBM Filter Measurement-Update. Let Z = {z1, . . . , zm} with |Z| = m be collected at time tk.
According to Equation (21) the measurement-updated PGFL is:

Gk|k[h|Z1:k] =
δF
δZ [0, h]
δF
δZ [0, 1]

(31)

where, by Equation (22), F[g,h] = eκ[g−1]
·Gk |k−1[h(1 + pDLg−1)] and, by assumption, Gk |k−1[h] is PMBM:

Gk|k−1[h] = eD[h−1]
∑ν

l = 1
wl

∏Nl

i = 1
(1 + ql,isl,i[h− 1]). (32)

Thus, F[g, h] =
∑ν

l = 1 wl · Fl[g, h], where:

Fl[g, h] = eκ[g−1]+D[h(1+pDLg−1)−1]
∏Nl

i = 1
(1 + ql,isl,i[h(1 + pDLg−1) − 1]) (33)

and the measurement-updated PGFL is:

Gk|k[h] =

∑ν
l = 1 wl ·

δFl
δZ [0, h]∑ν

l = 1 wl ·
δFl
δZ [0, 1]

=
∑ν

l = 1
w̃l ·Gl[h] (34)

where:

w̃l =
wl ·

δFl
δZ [0, 1]∑ν

l = 1 wl ·
δFl
δZ [0, 1]

, Gl[h] =

δFl
δZ [0, h]
δFl
δZ [0, 1]

. (35)
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Since each Fl[g,h] has the same Poisson factor eκ[g−1]+D[h(1+pDLg−1)−1], it is sufficient to show that
the measurement-update of a PMB PGFL is a PMBM PGFL Accordingly, in what follows we neglect
the index l in Fl[g,h].

Two cases must be considered: N = 0 and N > 0. If the former, then F[g, h] = eκ[g−1]+D[h(1+pDLg−1)−1]

and so from the chain rule for functional derivatives [14] (Equation (11.280)), we find that Gk |k[h]
is PMB:

Gk|k[h] = eD[(h−1)(1−pD)]
∏
z∈Z

κ(z) + D[hpDLz]

κ(z) + D[pDLz]
. (36)

Now assume N ≥ 1. Applying the general product rule for functional derivatives [14]
(Equation (11.274)) to Equation (33):

δF
δZ

[g, h] =
∑

W0∪W1∪...∪WN = Z

(
δ

δW0
eκ[g−1]+D[h(1+pDLg−1)−1]

) N∏
i = 1

δ
δWi

(
1 + qisi[h(1 + pDLg−1) − 1]

)
(37)

= eκ[g−1]+D[h(1+pDLg−1)−1]

 N∏
i = 1

(1 + qisi[h(1 + pDLg−1) − 1])

 ∑
W0∪W1∪...∪WN = Z

θW0
N∏

i = 1

δ
δWi

(1+qisi [h(1+pDLg−1)−1])
1+qisi [h(1+pDLg−1)−1] (38)

where θ(z) = k(z) + D[hpDLz]. The i-th fraction in the rightmost product is nonzero only if Wi is
empty or a singleton; and if Wi = ∅ then it is 1. Thus, each list W0, W1, . . . , WN is mathematically
equivalent to an association α:{1, . . . , N}→{0,1, . . . , m}—i (i.e., α(i) = α(i′) > 0 implies I = i′. Setting
g = 0, Equation (38) becomes, after some algebraic manipulations:

δGk|k

δZ
[0, h] = e−κ[1]+D[h(1−pD)−1]θZ

∑
α

(∏
i:α(i) = 0

(1 + qisi[h(1− pD) − 1])
)∏i:α(i)>0

qisi[hpDLzα(i) ]

θ(zα(i))

 (39)

where the summation is taken over all associations. Therefore, the measurement-updated PGFL for a
PMB predicted PGFL is:

Gk|k[h] = eD[(h−1)(1−pD)] ·

∑
α

(∏
i:α(i) = 0 (1 + qisi[h(1− pD) − 1])

)(∏
i:α(i)>0

qisi[hpDLzα(i) ]

θ(zα(i))

)
∑
α

(∏
i:α(i) = 0 (1− qisi[pD])

)(∏
i:α(i)>0

qisi[pDLzα(i) ]

θ(zα(i))

) . (40)

This can be rewritten as the PMBM PGFL:

Gk|k[h] = eDk|k[h−1]
∑
α

wα

 ∏
i:α(i) = 0

(1 + q′is
′
i[h− 1])


 ∏

i:α(i)>0

s̃α,i[h]

 (41)

where:
Dk|k(x) = (1− pD(x)) ·D(x), q′i =

qisi[1−pD]
1−qisi[pD]

(42)

s′i(x) =
(1− pD(x)) · si(x)

si[1− pD]
, s̃α,i(x) =

pD(x)·Lzα(i) (x)·si(x)

si[pDLzα(i) ]
(43)

wα =

(∏
i:α(i) = 0 (1− qisi[pD])

)(∏
i:α(i)>0

qisi[pDLzα(i) ]

θ(zα(i))

)
∑
α

(∏
i:α(i) = 0 (1− qisi[pD])

)(∏
i:α(i)>0

qisi[pDLzα(i) ]

θ(zα(i))

) . (44)
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4.2. Undetected-Target Interpretation of the U-PMBM Filter

The PMBM filter therefore, solves the unlabeled multitarget Bayes filter in exact closed form.
However, the PMBM approach goes beyond this to adopt a specific physical interpretation of PMBM
RFSs. Let:

GUP
k|k [h] = eDk|k[h−1]

∑Nk|k

l = 1
wk|k

l

∏Nk|k
l

i = 1
(1 + qk|k

l,i sk|k
l,i [h− 1]) = Fu

k|k[h] · F
d
k|k[h] (45)

be the PMBM PGFL at time tk. It is clear from Equations (29) and (41) that the time-
and measurement-updates for the Poisson factors are, respectively, Dk|k−1(x) = Dk|k−1

B (x) +

Dk−1|k−1[p
k|k−1
S Mk|k−1

x ] and Dk|k(x) = (1− pk
D(x)) ·Dk−1|k(x). The formulas for Dk |k−1(x) and Dk |k(x) thus

involve pi|i−1
S , 1− pi

D, and Mi|i−1
x , but not pi

D, Li
z, κi, Z1:i−1,Z1:i.

This fact has led to the interpretation of Fu
k|k[h] = eDk|k[h−1] as a model of the “undetected targets” at

time tk [4,11,12]. According to [11] (p. 1103), these are “ . . . targets that have never been detected”—i.e.,
not detected at times t1, . . . , tk. It was subsequently stipulated that “ . . . detected targets cannot become
undetected targets” [4] (p. 246).

The primary justification for the PMBM approach is the following: “One significant benefit of
the inclusion of a Poisson component is in initialization of the tracker . . . The Poisson distribution
provides a convenient mechanism for specifying a prior distribution on the number and position of
targets when little information is available” [12] (p. 1670).

However, this potential advantage is negated by a major theoretical obstacle: Poisson RFSs require
non-unique labels and so are not LRFSs (see Remark 3). Due to this, they cannot be used in any
theoretically rigorous, true multitarget tracker.

A more subtle obstacle is this: it is theoretically impossible to prune PMBM distributions in a practically
useful manner. When a GLMB distribution (Equation (25)) is pruned, the pruned distribution is a GLMB
distribution. When a PMBM distribution is pruned, however, it is usually not even a multitarget density
function. First consider an LMB distribution fΞ({x1, . . . , xn}) [14] (Equation (11.133)). Any term in it
has the form fi1,...,in(x1, . . . , xn) ∝ fi1(x1) · · · fin(xn) where x1, . . . , xn are distinct, 1 ≤ i1 , . . . , in ≤ ν,
and f 1(x), . . . , fν(x) are distinct density functions. Since fi1,...,in(x1, . . . , xn) is not symmetric in x1, . . . ,
xn—and therefore, not a multitarget density—neither is any other pruning of fΞ. Now, let fΞ be a PMB
distribution:

fΞ(X) = e−D[1]DX

 ν∏
i = 1

(1− qi)

∑
α

∏
i:α(i)>0

qi · si(xα(i))

(1− qi) ·D(xα(i))
(46)

where α: {1, . . . , ν}→ {0, 1, . . . , n} is an association. Its terms have the same form as before, except
that the f i can be equal to D but those f i that are not D are distinct. Since fi1,...,in is symmetric only
when fj = D for all j = 1, . . . , n, no pruning of fΞ other than this case is a multitarget density. What
is theoretically permissible is to prune an MBM (resp. PMBM) PGFL by eliminating one or more of
its MB (resp. PMB) PGFL terms. However, pruning the individual terms of the corresponding MB
(resp. PMB) distributions is not permissible—which is exactly what is required to eliminate specific
small-weight hypotheses.

4.3. “Label-Augmented” PMBM (LA-PMBM) Filter

As was noted at the beginning of Section 3.1, unlabeled RFS-based filters, such as the GM-CPHD
filter, can heuristically propagate tracks even though they are not true multitarget trackers. The U-PMBM
filter can propagate tracks using similar heuristics, but it—like the GM-CPHD filter—is not a true
multitarget tracker since it is unlabeled. Accordingly, in 2015 it was modified as follows: “ . . . [the
Vo-Vo paper [7]] shows that the labelled case can be handled within the unlabeled framework by
incorporating a label element in to the underlying state space” [12] (p. 1675). That is, it was claimed
that the PMBM filter can be extended to the labeled case by replacing the unlabeled single-target state
space =with the labeled state space = × L0.
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This modified PMBM filter will be referred to as the “label-augmented” PMBM (LA-PMBM) filter.
It must propagate PMBM RFSs of = × L0 with PGFLs:

GLAP
k|k [h] = eDk|k[h−1]

∑Nk|k

l = 1
wk|k

l

∏Nk|k
l

i = 1
(1 + qk|k

l,i sk|k
l,i [h− 1]) = Fu

k|k[h] · F
d
k|k[h]. (47)

Now, however, the PHD Dk |k and spatial distributions sk|k
l,i must have the respective forms Dk |k(u,`)

and sk|k
l,i (u, `), where

∫
Dk |k (u,`)du = 0 and

∫
sk|k

l,i (u, `)du = 0 for all but a finite number of ` and where

sk|k
l,i [1] =

∑
`

∫
sk|k

l,i (u, `)du = 1 for all l,i.

There is a serious theoretical difficulty, however: the sk|k
l,i are not track distributions. For if

otherwise,
∫

sk|k
l,i (u, `)du = 1 would imply that sk|k

l,i [1] > 1, a contradiction. Therefore, sk|k
l,i appears to be

physically meaningless.
Beyond this, the above claim—that “the labelled case can be handled within the unlabeled

framework”—is untrue. As was noted in Remark 3, a Poisson RFS on = × L0 is not an LRFS since
it requires nondistinct target labels. Consequently, it is not possible for the LA-PMBM filter to be a
true multitarget tracker. Instead, it “ . . . is able to maintain track continuity implicitly based on the
information provided by metadata” [4] (p. 245)—that is, only heuristically.

4.4. “Hybrid Labeled-Unlabeled” RFSs

Like the U-PMBM filter, the LA-PMBM filter is not a true multitarget tracker—a fact that was
pointed out in 2017 in [23] (Section XI-E). Apparently to address this issue, it was modified in 2018
as follows [4] (p. 246): A single common label—`*, say—is assigned to all “undetected targets”
at all times, whereas “detected targets” are uniquely labeled as in LRFS theory. Additionally, the
“undetected-target” RFS at any time is assumed to be a Poisson RFS on = × {`*} (a slightly later
paper, [3], also appears to employ the H-PMBM approach, except that `* is implicit rather than explicit.)

No careful theoretical foundation for the hybrid approach was provided in [4]. It is, therefore,
necessary to construct one here. The label space is L0 = L\*∪{`*} where L\* = L0 − {`*}. Given a finite
subset X = {(u1,`1), . . . , (un,`n)} ⊆ = × L0, as usual let XL = {`1, . . . , `n} denote the set of labels in
X. Additionally, let X* = {(u,`) ∈ X|` = `*} be the subset of X of targets that are “undetected”; and
let X\* = X − X* be the targets in X that are “detected.” Then it is assumed that the only legitimate
state-sets X are those such that |X\*| = |XL − {`*}|—i.e., those for which the detected targets have distinct
labels other than `*. Let us refer to these as “hybrid state-sets.” Let Ξ be a “hybrid RFS”—i.e., an RFS
of = × L0 whose instantiations are hybrid. Then it must be the case that fΞ (X) = 0 if X is not hybrid.
Thus, every distribution defined for hybrid X must include the factor δ

|X\∗ |,|XL−{`∗}|
.

The goal of Sections XI-XIII of [4] is to apply the PMBM filter, Equations (28) and (41), to the hybrid
state space = × L0. This will be addressed in the next section. First, however, we must reformulate
pk|k−1

S (u′, `′), pk
D(u, `), fk(z|u,`), Dk|k−1

B (u, `), and fk|k-1(u,`|u′,`′) when (u,`), (u′,`′) ∈ = × L0 are hybrid.
For “detected targets” (i.e., ` , `* and `′ , `*), the usual LRFS formulation applies. For “undetected
targets,” it is reasonable to define pk|k−1

S (u′, `∗) = pk|k−1
S (u′), pk

D(u, `∗) = pk
D(u), and fk(z|u,`*) = fk(z|u).

It also makes sense to define Dk|k−1
B (u, `) = δ`,`∗ ·D

k|k−1
B∗ (u) for some Dk|k−1

B∗ (u) since, by definition,
targets that have just appeared cannot have been detected yet (to wit: “ . . . these states of . . . newborn
targets will be described by . . . a Poisson RFS . . . [whose] elements have label [`*]”[4] (p. 247).

Finally, consider fk|k−1(u,`|u′,`′) = pk|k−1(`|u′,`′)·fk|k−1(u|u′,`,`′) when ` = `* or `′ = `*. “Undetected
targets” must retain the label `*, since they cannot become “detected targets” in the absence of a detection
process that has not yet occurred, and if `′ , `* then pk|k−1(`*|u′,`′) = 0 since “ . . . detected targets
cannot become undetected targets” [4] (p. 246). Thus, pk|k−1(`|u′,`*) = δ`,`*·pk|k−1(`*|u′,`*), in which
case it is reasonable to assume that pk|k−1(`*|u′,`*) = pk|k−1(`*|`*) = 1 and fk|k−1(u|u′,`*,`*) = fk|k−1(u|u′).
(Note that if target identity is to be taken into account as per Remark 4, these simplifications are no
longer appropriate.)
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4.5. “Hybrid Labeled-Unlabeled” PMBM (H-PMBM) Filter

Now let:

GHP
k|k [h] = eDk|k[h−1]

∑Nk|k

l = 1
wk|k

l

∏
`∈Lk|k

l
(1 + qk|k

l,` sk|k
l,` [h− 1]) = Fu

k|k[h] · F
d
k|k[h] (48)

be the PGFL of a PMBM RFS Ξ on = × L0 with `* ∈ L0, where the MBM factor in Equation (45) has
been replaced by an LMBM factor since “detected targets” are now assumed to be uniquely labeled;
and where Lk|k

l are finite subsets of L0 and
∫

sk|k
l,` (u)du =

∫
sk|k

l (u, `)du = 1 for all ` ∈ Lk|k
l . Since the

Poisson factor Fu
k|k[h] = eDk|k[h−1] applies only to “undetected targets” with common label `*, it must

be the case that `∗ < Lk|k
l for every l = 1,..,Nk |k and that Dk|k(u, `) = δ`,`∗ ·D∗k|k(u) for some D∗k|k(u). We

will refer to Equation (48) as an “H-PMBM PGFL”.
Given this, f d

k|k(X
d
|Z1:k) and f u

k|k(X
u
|Z1:k) “ . . . .can be propagated in parallel, in both cases by

carrying out a prediction step and an update step . . . ” [4] (p. 248); where the undetected-target
distribution f u

k|k(X
u
|Z1:k) with Xu

⊆ = × {`*} is Poisson and the detected-target distribution f d
k|k(X

d
|Z1:k)

with Xd
⊆ = × (L0 − {`*}) is LMBM.

Moreover, the following claim is made about these two filters: “In the following development of
the prediction and update steps, we use the fact that the posterior pdf of the overall multitarget state
RFS . . . factorizes as . . . ” (in current notation):

fk|k(X|Z1:k) = f d
k|k(X

d
|Z1:k) · f u

k|k(X
u
|Z1:k). (49)

However, Equation (49) is untrue. For by Bayes’ rule:

fk|k(X|Z1:k) = fk|k(Xd, Xu
|Z1:k) = f d

k|k(X
d
|Xu, Z1:k) · f u

k|k(X
u
|Z1:k) (50)

It then follows from Equation (49) that f d
k|k(X

d
|Xu, Z1:k) = f d

k|k(X
d
|Z1:k). Likewise,

f u
k|k(X

u
|Xd, Z1:k) = f u

k|k(X
u
|Z1:k). Thus, RFSs Xu and Xd are statistically independent of each other. This

means that the filter for f d
k|k(X

d
|Z1:k) and the filter for f u

k|k(X
u
|Z1:k) are statistically decoupled. However,

this is not the case, since “ . . . the update step for Xd involves the prediction results for both Xd

and Xu . . . ” [4] (p. 248). (This is because the LMBM component of Gk |k[h|Z1:k] in Equation (41)
depends on the Poisson component eDk|k−1[h−1] of Gk |k−1[h|Z1:k−1] via θk(z) = κk(z)+Dk |k−1[hpDLz]. That
is, f d

k|k(X
d
|Xu, Z1:k) , f d

k|k(X
d
|Z1:k).)

4.6. Theoretical Issues With the H-PMBM Filter

From Section 4.1 we know that the PMBM filter on = × L0 is guaranteed to propagate PMBM
distributions on = × L0 in exact closed form. However, does it propagate hybrid PMBM distributions in
exact closed form? This does not appear to be the case.

Consider, for example, Equation (36) with k = 1 and with the single-target state space being = ×
L0 (with `*∈ L0) rather than =:

GHP
1|1 [h] = eD1|1[h−1]

∏
z∈Z1

1− q1|1
z + q1|1

z ·
D1|0

B [hp1
DL1

z ]

D1|0
B [p1

DL1
z]

 = eD1|1[h−1]
∏
z∈Z1

(
1− q1|1

z + q1|1
z · s

1|1
z [h]

)
. (51)

Here, D1|0
B [p1

DL1
z] = D1|0

B∗ [p
1
DL1

z] since p1
D and L1

z are independent of labels, and:

D1|1(u, `) = (1− p1
D(u)) ·D

1|0
B (u, `) (52)
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q1|1
z =

D1|0
B∗ [p

1
DL1

z]

κ1(z) + D1|0
B∗ [p

1
DL1

z]
, s1|1

z (u, `) =
p1

D(u)·L
1
z(u)·D

1|0
B (u,`)

D1|0
B∗ [p

1
DL1

z]
. (53)

Given that D1|0
B (u, `) = δ`,`∗ ·D

1|0
B∗ (u), D1|1(u,`) has the correct form for an H-PMBM PGFL

However, the product is not an LMB PGFL This is because the individual Bernoulli factors are indexed
by the elements of Z1, not by labels in L0.

Thus, as a heuristic workaround, a distinct label `z, `* is assigned to each z ∈ Z1: “For each
measurement . . . a new Bernoulli component is created, to which [a] unique label . . . is assigned” [4]
(following Equation (107)); and: “ . . . [e]ach measurement at each time step gives rise to a new
potentially detected target. That is, there is the possibility that a new measurement is the first detection
of a target, but it can also correspond to another previously detected target or clutter, in which case
there is no new target. As this target may exist or not, its resulting distribution is Bernoulli and we
refer to it as [sic] ‘potentially detected target’” [3] (p. 1885).

It follows that the labeled track distribution of the Bernoulli representation of the “potentially
detected target” corresponding to z∈ Z1 must be s1|1(u, `z) = s1|1

z (u, `z).
This workaround results in at least three theoretical difficulties:

1. There is an inherent theoretical conflict between labeling using `∈ L0 and labeling using z∈ Z1.

Since s1|1
z (u, `z) ∝ D1|0

B (u, `z) and since D1|0
B (u, `) = 0 if ` , `* and since `z , `*, it follows that

s1|1(u,`z) = 0 identically for all z ∈ Z1—a contradiction. One could sidestep this difficulty by
redefining s1|1

z (u, `z) ∝ p1
D(u) · L

1
z(u) ·D

1|0
B∗ (u, `), but this would be another heuristic workaround.

2. In [4] (pp. 245–246) the following was stated: “In cases of limited prior birth information, one
typically uses a heuristic to generate new Bernoulli components based on measurements from
the previous time step (Reuter et al. [28]). Such heuristics can be avoided with the MB-Poisson
model . . . ” This is untrue on both counts. First, and as was noted following Equation (17),
approaches that dynamically estimate the target-birth process “based on measurements from the
previous time step”—i.e., based on Zk-1—are theoretically permissible. Examples include [29]
and [30]—and [28]. Second, note that the “MB-Poisson model” employs a “heuristic to generate
new Bernoulli components based on measurements from”: the current time-step! Thus, how is it
conceptually different from the approach in [28]?

3. More seriously, the dynamical transition of undetected targets to detected ones occurs during
the measurement-update, as mediated by fk(Zk|X), rather than—as theoretically should be the
case—during the time-update, as mediated by fk|k−1(X|X′,Z1:k−1). Thus, fk(Zk|X) has been implicitly
assumed to have the form fk(Zk|X,X′)—which is not the case (see Equation (54)).

The H-PMBM filter therefore, does not appear to have a theoretically rigorous, closed-form
mechanism for assigning labels to newly-detected “undetected targets.” And this fact is a direct
consequence of the Poisson factor in Equation (48).

However, there is a far more fundamental theoretical and phenomenological difficulty: the hybrid
approach has no basis in physical reality. Targets are physically real entities regardless of whether or not
they are detected. They have distinct (but unknown) real-world identities and therefore, inherently
have distinct (unknown) labels. As was noted in Remark 4, target labels in L0 are provisional identities
assigned in lieu of more precise identifying information. LRFS labels are, therefore, not “artificial
variables that are added to the target states” [3] (p. 1884). Rather, they are standbys for the realizations
of a physically real random state-variable: target identity. The H-PMBM approach, by way of contrast,
requires targets with label `* to have multiple kinematic states simultaneously—a physical impossibility.

5. A Statistical Theory of Undetected Targets

The meaning of the “undetected target” concept is extremely unclear. Thus, the purpose of this
section is to devise a statistically rigorous—and yet intuitive—theory of undetected targets. As stated
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in the Introduction, our ultimate goal is to construct a concrete formula for the posterior “undetected
targets” PGFL Gu

k|k[h|Z1:k]. The argument presented is as follows.

1. Section 5.1: We surmise that the “undetected target” concept is meaningful only at the instant
that an observation process—in the form of the standard multitarget likelihood function
fk{Zk|X)—is applied.

2. Section 5.2: A more useful formula for fk{Zk|X), Equation (57).
3. Section 5.3: Thedetected-target likelihood function f d

k (Zk, Y|X), Equation (69).

4. Section 5.4: The detected-target density f d
k|k(Y|Z1:k), Equation (75).

5. Section 5.5: The undetected-target likelihood function f u
k (Zk, V|X), Equation (83).

6. Section 5.6: The undetected-target density f u
k|k(V|Z1:k), Equation (90).

7. Section 5.7: The measurement-updated PGFL and its associated detected-target and
undetected-target PGFLs, Equations (97), (100), and (101).

8. Section 5.8: Analysis of the “undetected target” interpretation.
9. Section 5.9: The detected-target and undetected-target PGFLs when the prior PGFL is Bernoulli,

Equations (110) and (112).

5.1. The “Undetected Target” Concept

At its most elemental level, the concept of “detected” vs. “undetected” target at time tk is
independent of previous measurement history. The multitarget predicted distribution fk:k-1(X|Z1:k-1)
determines how probable any given multitarget state-set X will be at time tk. However, only the current
multitarget likelihood function fk(Z|X) determines which elements of X are detected vs. undetected at
time tk.

The question then becomes: Given a finite subset X ⊆ =, which elements of X generated
measurements in Zk and which did not? The most that we can say is that, for each Y ⊆ X, there is some
probability pd

k(Y|X) that all elements of Y ⊆ X generated measurements in Zk. The detected-target set
is, therefore, a discrete RFS Ξd

k ⊆ X. Likewise, there is some probability pu
k (V|X) that no elements of V

⊆ X generated measurements in Zk. The undetected-target set is therefore, a discrete RFS Ξu
k ⊆ Xwith

Ξu
k = X − Ξd

k . Given this, the following questions will be addressed:

1. How do we extend the discrete distributions pd
k(Y|X) and pu

k (V|X) to posterior probability densities
f d
k|k(Y|Z1:k) and f u

k|k(V|Z1:k)?

2. What are the PGFLs Gd
k|k[h|Z1:k] and Gu

k|k[h|Z1:k] of f d
k|k(Y|Z1:k) and f u

k|k(V|Z1:k)?

3. If Gk |k−1[h|Z1:k−1] has a given algebraic form, then what forms do Gd
k|k[h|Z1:k] and Gu

k|k[h|Z1:k] have?

5.2. The “Standard” Multitarget Likelihood Function

This is, for Zk = {z1, . . . , zm} with |Z| = m and X = {x1, . . . , xn} with |X| = n, [14] (Equation (12.139)), [13]
(Equation (7.21)):

LZk(X) = fk(Zk|X) = e−λkκZk
k (1− pk

D)
X ∑
α∈Ak

∏
i:α(i)>0

pk
D(xi)·Lzα(i) (xi)

(1−pk
D(xi))·κk(zα(i))

(54)

where α:{1, . . . , n}→{0,1, . . . , m} is a measurement-to-track association (MTA) and Ak is the set of all
such associations at time tk. That is, α is such that α(i) = α(i′) > 0 implies i = i′. As usual, κk(z) denotes
the intensity function of the Poisson clutter process, λk =

∫
κk(z)dz, Lz(x) = fk(z|x) is the single-target

likelihood function, and pk
D(x) is the state-dependent probability of detection. We will abbreviate

κk(z) = κ(z), λk = λ, pk
D(x) = pD(x), and fk(z|x) = f (z|x).



Sensors 2019, 19, 2818 15 of 27

Remark 5. In general a multitarget state-set X will be labeled. However, the labeled version of Equation (54) is
almost identical in form to Equation (54): fk(Z|X) = e−λκZ if X is not labeled (not just if X = ∅). Additionally,
the “undetected target” concept was originally raised in the context of unlabeled RFSs. Thus, it is sufficient to
use Equation (54).

Choose a particular α ∈ A. Then Xd:α = {xi ∈ X|α(i) > 0} is the set of xi ∈ X that—according to the
hypothesis α—generated measurements in Z. Likewise, Xu:α = {xi ∈ X|α(i) = 0} is the set of those that
did not. Now note the following:

MTAs are in one-to-one correspondence with pairs (Y,τ) where Y ⊆ X with |Y| ≤ |Zk| and where
τ:Y⇒ Zk is a one-to-one function (i.e., τ(y) = τ(y′) implies y = y′).

For on the one hand, let us be given α. Then define the pair (Yα,τα) where Yα = {xi ∈ X|α(i) > 0}
and τα(xi) = zα(i) for xi ∈ Y. On the other, let us be given a pair (Y,τ). Then for each i ∈ {1, . . . , n} define
α(Y,τ)(i) = j if xi ∈ Y and τ(xi) = zj; but α(Y,τ)(i) = 0 if otherwise—i.e., if there is no j ∈ {1, . . . , m} such that
τ(xi) = zj. It is easily verified that the transformations α 7→ (Yα,τα) and (Y,τ) 7→ α(Y,τ) are inverses of
each other.

Now define:

L∗Z(X) = f ∗k (Z|X) =

{
e−λκZ∑

τ:Y⇒Z ρ
Y
τ i f Y , ∅

e−λκZ i f Y = ∅ (55)

where the unitless ratio:

ρτ(y) =
Lτ(y)(y)

κ(τ(y))
(56)

is a measure of how “target-like” vs. “clutter-like” the measurement τ(y) is (additionally, note that the
“∗” in “L∗Z” and “ f ∗k ” no longer refers to the label “`*” in Section 4.4.)

Given this, note that the multitarget likelihood function can be rewritten as:

LZ(X) = e−λκZ
∑
Y⊆X

∑
τ:Y⇒Z

(1− pD)
X−YpY

D
∏
y∈Y

Lτ(y)(y)
κ(τ(y)) =

∑
Y⊆X

(1− pD)
X−YpY

D · f ∗k (Z|Y). (57)

If pD = 1 then
fZ(X) =

∑
Y⊆X

0X−Y
· f ∗k (Z|Y) = f ∗k (Z|X). (58)

It therefore, follows that
∫

f ∗k (Z|X)δZ = 1 for all X. Thus, f ∗k (Z|X) is the same thing as fk(Z|X),
but under perfect-detection conditions.

For future reference note that if Y = {y1, . . . , yn} with |Y| = n, then:

∑
τ:Y⇒Z

ρY
τ =

∑
(z1, . . . , zn) ∈ Zn :
|{z1, . . . , zn}| = n

Lz1(y1)

κ(z1)
· · ·

Lzn(yn)

κ(zn)
= n!

∑
{z1,...,zn}∈Fn(Z)

Lz1 (y1)

κ(z1)
· · ·

Lzn (yn)

κ(zn)
(59)

where the third summation is taken over all {z1, . . . , zn} ⊆ Z of cardinality n = |Y| ≤ |Z|.

5.3. The General Detected-Target Likelihood Function

Given these preliminaries, let X be a fixed finite subset of = and define:

pd
k(Zk, Y|X) = 1Y

X · (1− pD)
X−YpY

D · f ∗k (Zk|Y) (60)

where, note, (1X)Y = 1 if Y ⊆ X and (1X)Y = 0 otherwise. This is a continuous density in Z and a
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discrete distribution in Y: ∫
pd

k(Z, Y|X)δZ = 1Y
X · (1− pD)

X−YpY
D (61)

∑
Y⊆X

∫
pd

k(Z, Y|X)δZ =
∑
Y⊆X

(1− pD)
X−YpY

D = (1− pD + pD)
X = 1 (62)

where the final equation follows from Equation (11). Equation (61) is the probability that all of the
elements of the subset Y of X generated measurements; and is largest when pD(x) ≈ 1 for x ∈ Y and pD(x)
≈ 0 for x ∈ X − Y, where “≈” denotes approximate equality. It is the distribution of the detected-target
RFS in X:

Pr(Ξd
k = Y|X) = 1Y

X · (1− pD)
X−YpY

D. (63)

Equation (57) has the following interpretation: LZ(X) is the unweighted average of hypotheses
pd

k(Z, Y|X) regarding the likelihood that subset Y of X generated measurements in Z. The factor

(1− pD)
X−YpY

D quantifies the “raw detectability” of Y, whereas f ∗k (Zk|Y) measures the degree to which
detectability is degraded by clutter under perfect-detectability conditions.

We need to transform pd
k(Z, Y|X) so that it becomes a continuous density f d

k (Z, Y|X) with respect
to Y. This is accomplished as follows. For X = {x1, . . . , xn} with |X| = n and Y = {y1, . . . , yν} with
|Y| = ν, define:

δ̃X(Y) =


1 i f Y = ∅∑

τ:{1:ν}⇒{1:n}
∏ν

i = 1 δxτ(i)(yi) i f 0 ≤ ν ≤ n
0 i f ν > n

(64)

where the summation is taken over all one-to-one functions τ:{1, . . . , ν} ⇒ {1, . . . , n}. This is a
multitarget density function with respect to Y.

Note that Equation (64) can be rewritten in the same form as Equation (59):

δ̃X(Y) =
∑
τ:Y⇒X

ρ̃τ = ν!
∑

{x1,...,xν}∈Fν(X)

δx1(y1) · · · δxν(yν) (65)

where the first summation is taken over all one-to-one functions τ:Y ⇒ X and where we define
ρ̃τ(y) = δτ(y)(y). Given this, in Sections 6.1–6.3 it is respectively shown that:∫

δ̃X(Y)δY =2|X| (66)

∫
δ̃X(Y) · f (X)δX =

∫
f (Y∪W)δW (67)∫

δ̃X(Y) · (1− pD)
X−YpY

DδY = 1 (68)

where Equations (66)–(68) are true for all finite X,Y ⊆ = and all multitarget densities f (X).
We are now in a position to define the general detected-target likelihood function:

f d
k (Zk, Y|X) = δ̃X(Y) · (1− pD)

X−YpY
D · f ∗k (Zk|Y). (69)

It is the likelihood that, given a target-set X, the following are simultaneously true: Zk is the
measurement-set collected at time tk; and Y ⊆ X is a subset of targets in X that generated measurements
in Zk. In Section 6.4 the following is verified:∫

f d
k (Zk, Y|X)δY = fk(Zk|X) = LZk(X). (70)
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5.4. The General Detected-Target Density

Let us be given the prior distribution fk |k−1(X|Z1:k−1). Since f d
k (Zk, Y|X) does not depend on Z1:k−1,

then f d
k (Zk, Y|X) = f d

k (Zk, Y|X, Z1:k−1) and so from Bayes’ rule and the total probability theorem
we obtain:

f d
k (Zk, Y|Z1:k−1) =

∫
f d
k (Zk, Y|X) · fk|k−1(X|Z1:k−1)δX. (71)

This is the probability (density) that, at time tk, the measurement-set Zk will be collected, and that
the elements of Y ⊆ = generated measurements in Zk.

Additionally, from Bayes’ rule, we get the general detected-target posterior density—i.e., the
probability (density) that all of the elements of Y ⊆ = generated measurements in Zk:

f d
k (Y|Z1:k) =

f d
k (Zk, Y|Z1:k−1)

fk|k−1(Zk|Z1:k−1)
=

f d
k (Zk, Y|Z1:k−1)∫

f d
k (Zk, W|Z1:k−1)δW

. (72)

It is the distribution of the general detected-target RFSΞd
k|k at time tk.

We thereby end up with the following specific formulas:

f d
k (Zk, Y|Z1:k−1) = f ∗k (Zk|Y) · pY

D ·
δGk|k−1

δY
[1− pD] (73)

fk(Zk|Z1:k−1) =

∫
f ∗k (Zk|Y) · pY

D ·
δGk|k−1

δY
[1− pD] δY (74)

f d
k (Y|Z1:k) =

f ∗k (Zk|Y) · pY
D ·

δGk|k−1
δY [1− pD]∫

f ∗k (Zk|W) · pW
D ·

δGk|k−1
δW [1− pD]δW

. (75)

For, substituting Equation (69) for f d
k (Zk, Y|X) and applying Equation (67):

f d
k (Zk, Y|X) =

∫
δ̃X(Y) · (1− pD)

X−YpY
D · f ∗k (Zk|Y) · fk|k−1(X|Z1:k−1)δX (76)

= pY
D · f ∗k (Zk|Y)

∫
δ̃X(Y) · (1− pD)

X−Y
· fk|k−1(X|Z1:k−1)δX (77)

= pY
D · f ∗k (Zk|Y)

∫
(1− pD)

(Y∪V)−Y
· fk|k−1(Y∪V|Z1:k−1)δV (78)

= pY
D · f ∗k (Zk|Y)

∫
(1− pD)

V
· fk|k−1(Y∪V|Z1:k−1)δV (79)

= pY
D · f ∗k (Zk|Y) ·

δGk|k−1

δY
[1− pD] (80)

where the final equation follows from Equation (11.251) of [14].

5.5. The General Undetected-Target Likelihood Function

The detected-target RFS Ξd
k ⊆ X was defined in Equation (63). By definition, the undetected-target

RFS in X is Ξu
k = X − Ξd

k . For all V ⊆ X, note that:

Pr(Ξu
k V|X) = Pr(Ξd

kX −V|X) = 1V
X · (1− pD)

VpX−V
D . (81)

(Note that (1X)V should be used rather than (1X)X-V—the latter is incorrect because it does not force V to
be a subset of X. For example, let V = {u} where x ∈ X. Then it should be the case that Pr(Ξu

k {x}|X) = 0.
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However, if we instead use (1X)X-V, then since (1X)X-{x} = (1X)X = 1 we would get the incorrect result
Pr(Ξu

k {x}|X) , 0.)
Additionally, note that Pr(Ξu

k V|X) is largest when pD(x) ≈ 0 if x ∈ V and pD(x) ≈ 1 if x∈ X − V—in
which case all of the elements of X − V should generate measurements in the manner described by
f ∗k (Zk|X −V). The undetected-target analog of Equation (60) is, therefore:

pu
k (Zk, V|X) = 1V

X · (1− pD)
VpX−V

D · f ∗k (Zk|X −V). (82)

From here on, the analysis for Ξu
k proceeds in the same manner as that for Ξd

k . That is, replace
pu

k (Zk, V|X) with:

f u
k (Zk, V|X) = δ̃X(V) · (1− pD)

VpX−V
D · f ∗k (Zk|X −V). (83)

This is the general undetected-target likelihood function—i.e., the likelihood that, given a target-set X,
the following are true: Zk is the set of generated measurements at time tk; and V ⊆ X is a subset of
targets in X that generated no measurements. Thus, by Equations (58) and (68):∫

f u
k (Z, V|X)δZ = δ̃X(V) · (1− pD)

VpX−V
D (84)

∫
f u
k (Z, V|X)δZδV =

∫
δ̃X(V) · (1− pD)

VpX−V
D δV = 1. (85)

5.6. The General Undetected-Target Density

Let fk |k−1(X|Z1:k−1) be the predicted multitarget distribution at time tk. Since
f u
k (Zk, V|X) = f u

k (Zk, V|X, Z1:k−1), from Bayes’ rule and the total probability theorem we obtain:

f u
k (Zk, V|Z1:k−1) =

∫
f u
k (Zk, V|X) · fk|k−1(X|Z1:k−1)δX. (86)

This is the probability (density) that, at time tk, the measurement-set Zk will be collected; and that
none of the elements of V ⊆ = generated measurements in Zk. Thus, the general undetected-target
density—i.e., the probability (density) that none of the elements of V ⊆ = generated measurements in
Zk—is:

f u
k (V|Z1:k) =

f u
k (Zk, V|Z1:k−1)

fk(Zk|Z1:k−1)
=

f u
k (Zk, V|Z1:k−1)∫

f u
k (Zk, W|Z1:k−1)δW

. (87)

This leads to the following specific formulas:

f u
k (Zk, V|Z1:k−1) = (1− pD)

V
∫

pU
D · f ∗k (Zk|U) · fk|k−1(V ∪U|Z1:k−1)δU (88)

fk(Zk|Z1:k−1) =

∫
f ∗k (Zk|U) · pU

D ·
δGk|k−1

δU
[1− pD] δU (89)

f u
k (V|Z1:k) =

(1− pD)
V∫

f ∗k (Zk|U) · pU
D · fk|k−1(V ∪U|Z1:k−1)δU∫

f ∗k (Zk|W) · pW
D ·

δGk|k−1
δW [1− pD]δW

. (90)

For, using Equation (67):

f u
k (Zk, V|Z1:k−1) =

∫
δ̃X(V) · (1− pD)

VpX−V
D · f ∗k (Zk|X −V) · fk|k−1(X|Z1:k−1)δX (91)

=

∫
(1− pD)

Vp(V∪U)−V
D · f ∗k (Zk|(V ∪U) −V) · fk|k−1(V ∪U|Z1:k−1)δU (92)
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= (1− pD)
V
∫

pU
D · f ∗k (Zk|U) · fk|k−1(V ∪U|Z1:k−1)δU (93)

and:

fk(Zk|Z1:k−1) =

∫
(1− pD)

V
∫

pU
D · f ∗k (Zk|U) · fk|k−1(V ∪U|Z1:k−1)δUδV (94)

=

∫
pU

D · f ∗k (Zk|U)

∫
(1− pD)

V
· fk|k−1(V ∪U|Z1:k−1)δVδU (95)

=

∫
pU

D · f ∗k (Zk|U) ·
δGk|k−1

δU
[1− pD]δU (96)

where the final equation results from Equation (11.251) of [14].

5.7. PGFLs of the Detected/Undetected Target Densities

The PGFL corresponding to f d
k|k(Y|Z1:k−1) (Equation (75)) is:

Gd
k|k[h|Z1:k] =

∫
hY
· f d

k|k(Y|Z1:k)δY =

∫
f ∗k (Zk|Y) · (hpD)

Y
·
δGk|k−1
δY [1− pD]δY∫

f ∗k (Zk|W) · pW
D ·

δGk|k−1
δW [1− pD]δW

. (97)

The PGFL corresponding to f u
k|k(Y|Z1:k−1)(Equation (87)) is simpler than f u

k|k(Y|Z1:k−1):

Gu
k|k[h|Z1:k] =

∫
hV
· f u

k|k(V|Z1:k)δV (98)

=

∫
pU

D · f ∗k (Zk|U) ·
(∫

hV
· (1− pD)

V
· f j|k−1(V ∪U|Z1:k−1)δV

)
δU∫

f ∗k (Zk|W) · pW
D ·

δGk|k−1
δW [1− pD]δW

(99)

=

∫
f ∗k (Zk|U) · pU

D ·
δGk|k−1
δU [h(1− pD)]δU∫

f ∗k (Zk|W) · pW
D ·

δGk|k−1
δW [1− pD]δW

(100)

where the final equation results from Equation (11.251) of [14].
Finally, in Section 6.5 it is shown that:

Gk|k[h|Z1:k] =

∫
f ∗k (Zk|U) · (hpD)

U
·
δGk|k−1
δU [h(1− pD)]δU∫

f ∗k (Zk|W) · pW
D ·

δGk|k−1
δW [1− pD]δW

. (101)

Thus, posterior PGFL at time tk is an amalgam of the undetected-target and detected-target PGFLs.
Note that if pD = 1 (all targets are perfectly detectable) then Gu

k|k[h|Z1:k] = 1 (there are no undetected

targets) and Gk|k[h|Z1:k] = Gd
k|k[h|Z1:k] (all targets are detected).

5.8. Analysis of the "Undetected Target" Interpretation

Let us now apply the preceding analysis to the “undetected-target” interpretation, in which:

1. “undetected targets” are those that “ . . . have never been detected . . . ” [11] (p. 1103); and
2. “ . . . detected targets cannot become undetected targets” [4] (p. 246).

In what follows it will be demonstrated that the second claim leads to a contradiction, whereas
the first one appears to be consistent with the formal theory of undetected targets.

Claim (2) Leads to a Contradiction. According to Equation (100), Gu
k|k[h|Z1:k] is the PGFL of

targets that are undetected only at time tk. According to Claim (2), if a target is undetected
at tk then it was also undetected at times t1, . . . , tk−1. Given this, it must be the case that
Gu

k|k[h|Z1:k] = Fu
k|k[h] = eDk|k[h−1]—and, in particular, that Gu

k|k[h|Z1:k] is always Poisson.
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However, this is not true. For, examine the first steps of the U-PMBM filter. Begin with

G0|0[h] = 1—i.e., no targets are initially present in the scene. Then G1|0[h] = eD1|0
B [h−1] where D1|0

B (x)

is the PHD of the Poisson target-appearance RFS; and so F1[g, h] = eκ1[g−1]+D1|0
B [h(1+p1

DL1
g−1)−1] by

Equation (20); and so G1|1[h|Z1] is a PMB PGFL as in Equation (36):

G1|1[h] = eD1|0
B [(h−1)(1−p1

D)]
∏
z∈Z1

κ1(z) + D1|0
B [hp1

DL1
z]

κ1(z) + D1|0
B [p1

DL1
z]

. (102)

In Sections 6.6 and 6.7 it is respectively shown that:

Gu
1|1[h] = eD1|0

B [(h−1)(1−p1
D)] (103)

Gd
1|1[h] =

∏
z∈Z1

κ1(z) + D1|0
B [hp1

DL1
z]

κ1(z) + D1|0
B [p1

DL1
z]

. (104)

These equations are consistent with the “undetected targets” interpretation, Equation (45), since:

G1|1[h|Z1] = Gu
1|1[h|Z1] ·Gd

1|1[h|Z1] = Fu
1|1[h] · F

d
1|1[h1] = GUP

k|k [h]. (105)

From Equation (20), the next predicted PGFL is PMB:

Gu
1|1[h] = eD2|1

B [h−1]
·G1|1[1 + p2|1

S M2|1
h−1|Z1] (106)

= eD2|1
B [h−1]+D1|0

B [(1−p1
D)p

2|1
S M2|1

h−1]
∏
z∈Z1

κ1(z) + D1|0
B [(1 + p2|1

S M2|1
h−1)p

1
DL1

z]

κ1(z) + D1|0
B [p1

DL1
z]

. (107)

It can be shown that Gu
2|2[h|Z1:2] is PMB, not Poisson. The claim that “detected targets” cannot

become “undetected targets”, therefore, leads to a contradiction. The proof of this fact for general
Gu

2|2[h|Z1:2] will not be proved here, since it suffices to address the following informative special case.

Let D2|1
B = 0, p1

D = 1, and |Z1| = 1, so that G2|1[h|Z1] is Bernoulli. Then in Section 5.9 we will determine
Gu

2|2[h|Z1:2] and Gd
2|2[h|Z1:2] and show that the former is Bernoulli—i.e., not Poisson.

Claim (1) is Consistent with the Formal Theory of Undetected Targets. Alter the preceding argument
as follows. Instead of predicting G1|1[h|Z1], predict its Poisson factor Gu

1|1[h|Z1] = Fu
1|1[h] to obtain

Gu
2|1[h|Z1] = eD1|0

B [(1−p1
D)p

2|1
S M2|1

h−1] = Fu
2|1[h]. Next, determine the undetected-target posterior PGFL of

Fu
21|1[h]—i.e., the PGFL of those targets undetected at times t1,t2. According to Equation (105), since

Fu
2|1[h] is Poisson it is equal to Fu

2|2[h]. Then predict Fu
2|2[h] to obtain the Poisson PGFL Fu

3|2[h]. Determine
the undetected-target posterior PGFL of Fu

3|2[h]—i.e., the PGFL of those targets undetected at times
t1,t2, t3. According to Equation (105), it is equal to Fu

3|3[h]. Repeat in this manner. At time tk, determine
the unpredicted-target posterior PGFL of the Poisson PGFL Fu

k|k−1[h]. It is the PGFL of those targets
undetected at times t1, . . . , tk and is equal to Fu

k|k[h].

5.9. Undetected/Detected-Target PGFLs for a Bernoulli Prior

Suppose that Gk |k−1[h|Z1:k−1] = 1 − q + q·s[h] is Bernoulli. Then the measurement-updated PGFL is
Bernoulli [14] (p. 520):

Gk |k[h] = 1 − q++q+
·s+[h] (108)

q+ =
q− qs[pD] + q

∑
z∈Zk

s[pDLz]
κ(z)

1− qs[pD] + q
∑

z∈Zk

s[pDLz]
κ(z)

, s+(x) =
q− qpD(x) + q

∑
z∈Zk

pD(x)·Lz(x)
κ(z)

1− qs[pD] + q
∑

z∈Zk

s[pDLz]
κ(z)

· s(x). (109)
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In Section 6.9 it is shown that the detected-target posterior PGFL is Bernoulli:

Gu
k|k[h] = 1− qd + qd

· sd[h] (110)

qd =
q
∑

z∈Zk

s[pDLz]
κ(z)

1− qs[pD] + q
∑

z∈Zk

s[pDLz]
κ(z)

, sd(x) =

∑
z∈Zk

pD(x)·Lz(x)
κ(z)∑

z∈Zk

s[pDLz]
κ(z)

· s(x). (111)

In Section 6.8 it is shown that the undetected-target posterior PGFL is not Poisson:

Gu
k|k[h] = 1− qu + qu

· su[h] (112)

qu =
q− qs[pD]

1− qs[pD] + q
∑

z∈Zk

s[pDLz]
κ(z)

, su(x) =
1− pD(x)
s[1− pD]

· s(x). (113)

Here, qu is the probability that the posterior undetected-target RFS is nonempty—i.e., it is the
target’s composite probability of undetectability. Note that qu + qd = q+.

Additionally, note that qu parses the distinction between nonexistent vs. undetectable targets. If
q> 0 (the target exists) and pD = 0 (it is undetectable), then no information can be collected about it and
so its composite undetectability is qu = q. For example, if q = 1 then qu = 1—i.e., if a definitely-existing
target is undetectable then it is compositely undetectable.

At the other extreme, if q = 0 (it does not exist) then qu = 0 (it is compositely detectable: 1 − qu = 1).
This seems counter-intuitive since a nonexistent target would seem to be inherently undetectable.
However, a nonexistent target is neither detectable nor undetectable. Whereas an existent target can
generate either an actual measurement z or the null measurement ∅, a nonexistent target cannot
generate any measurement. Thus, a nonexistent target has been “detected” if, as must be the case, it
has not generated any measurement. In this sense, all nonexistent targets are compositely detectable.

Now suppose that q = 1—i.e., that the target definitely exists. Then:

qu =
s[1− pD]

s[1− pD] +
∑

z∈Zk

s[pDLz]
κ(z)

. (114)

That is, the target’s composite undetectability qu is a composite of its “raw undetectability” s[1 −
pD] and the degree to which clutter density impairs its detectability. It varies between qu = 0 when
κ = 0 and qu = 1 when κ =∞. That is, the composite undetectability of a definitely-existing target is 0 if
there is no clutter; and its composite detectability 1 − qu is 0 if the clutter density is infinite (and, thus,
the signal-to-noise ratio is extremely small).

6. Mathematical Derivations

6.1. Proof of Equation (66)

Recall that n!C|X|,n is the number permutations of the elements of X taken n at a time; and that
C|X|,n is the number of subsets of X of cardinality n. Then:∫

δ̃X(Y)δY =
|X|∑

n = 0

1
n!

∫ ∑
τ:{1:n}⇒{1:|X|}

(
n∏

i = 1
δτ(i)(yi)

)
dy1 · · · dyn (115)

=
|X|∑

n = 0

1
n!

∑
τ:{1:n}⇒{1:|X|}

1 =
|X|∑

n = 0

n!
n! ·C|X|,n =

|X|∑
n = 0

C|X|,n = 2|X|. (116)
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6.2. Proof of Equation (67)

Let ν = |Y| and recall from Equation (65) that:∑
τ:{1:ν}⇒{1:n}

δxτ(1)(y1) · · · δxτ(ν)(yν) = ν!
∑

{x1,...,xν}∈Fν({x1,...,xn})

δx1(y1) · · · δxν(yν) (117)

where Fν(X) denotes the set of subsets of X of cardinality ν. Then:∫
δ̃X(Y) · f (X)δX =

∑
n≥ν

ν!
n!

∫ ∑
{w1,...,wν}∈Fν({x1,...,xn})

δw1 (y1) · · · δwν (yν) · f ({x1, . . . , xn})dx1 · · · dxn (118)

=
∑
n≥ν

ν!
n!

∫ ∑
{w1 ,...,wν}∈Fν({x1 ,...,xn})

δw1 (y1) · · · δwν (yν) · f ({w1, . . . , wν, x1, . . . , xn−ν})dw1 · · · dwνdx1 · · · dxn−ν (119)

=
∑
n≥ν

ν!
n!

∫  ∑
{y1,...,yν}∈Fν({x1,...,xn})

1

 · f ({y1, . . . , yν, x1, . . . , xn−ν
}
)dx1 · · · dxn−ν (120)

=
∑
n≥ν

ν!
n!

∫
Cn,ν · f (

{
y1, . . . , yν, x1, . . . , xn−ν

}
)dx1 · · · dxn−ν (121)

=
∑
n≥ν

1
(n− ν)!

∫
f (

{
y1, . . . , yν, x1, . . . , xn−ν

}
)dx1 · · · dxn−ν (122)

=
∑
j≥0

1
j!

∫
f (

{
y1, . . . , yν, x1, . . . , x j

}
)dx1 · · · dx j =

∫
f (

{
y1, . . . , yν

}
∪W)δW. (123)

6.3. Proof of Equation (68)

Note that: ∫
δ̃X(Y) · (1− pD)

X−YpY
DδY =(1− pD)

X ∫
δ̃X(Y) ·

( pD
1−pD

)Y
δY (124)

= (1− pD)
X

|X|∑
n = 0

1
n!

∫ ∑
τ:{1:n}⇒{1:|X|}

δxτ(1)(y1) · · · δxτ(n)(yn) ·
pD(y1)

1−pD(y1)
· · ·

pD(yn)

1−pD(yn)
dy1 · · · dyn (125)

= (1− pD)
X

|X|∑
n = 0

1
n!

∫ ∑
τ:{1:n}⇒{1:|X|}

δxτ(1)
(y1)·pD(y1)

1−pD(y1)
· · ·

δxτ(n) (yn)·pD(yn)

1−pD(yn)
dy1 · · · dyn (126)

= (1− pD)
X

|X|∑
n = 0

1
n!

∑
τ:{1:n}⇒{1:|X|}

(∫ δxτ(1)
(y1)·pD(y1)

1−pD(y1)
dy1

)
· · ·

(∫ δxτ(n) (yn)·pD(yn)

1−pD(yn)
dyn

)
(127)

= (1− pD)
X

|X|∑
n = 0

1
n!

∑
τ:{1:n}⇒{1:|X|}

pD(xτ(1))
1−pD(xτ(1))

· · ·
pD(xτ(n))

1−pD(xτ(n))
(128)

= (1− pD)
X

|X|∑
n = 0

n!
n!

∑
{x1,...,xn}∈Fn(X)

pD(x1)
1−pD(x1)

· · ·
pD(xn)

1−pD(xn)
(129)

= (1− pD)
X

|X|∑
n = 0

∑
W⊆X,|W| = n

( pD
1−pD

)W
= (1− pD)

X ∑
W⊆X

( pD
1−pD

)W
(130)

= (1− pD)
X
(
1 + pD

1−pD

)X
= 1 (131)

where the second-to-final equation follows from Equation (11).



Sensors 2019, 19, 2818 23 of 27

6.4. Proof of Equation (70)

Begin by noting that:∫
f d
k (Z, Y|X)δY =

∫
δ̃X(Y) · (1− pD)

X−YpY
D · f ∗k (Zk|Y)δY (132)

= e−λκZ(1− pD)
X
∫  ∑

τ′:Y⇒X

ρ̃Y
τ′

( pD

1− pD

)Y
 ∑
τ:Y⇒Z

ρY
τ

δY (133)

= e−λκZ(1− pD)
X
∫ ∑

τ:Y⇒Z

∑
τ′:Y⇒X

(
ρ̃τ′pDρτ
1− pD

)Y

δY (134)

where ρ̃τ′ was defined in Equation (65). Apply Equations (59) and (65) to obtain:

1
e−λκZ

∫
f d
k (Z, Y|X)δY = (1− pD)

X
∫ |X|∑

n = 0

1
n!

∑
τ:{y1:n}⇒Z

∑
τ′:{y1:n}⇒X

n∏
i = 1

pD(yi) · δτ′(yi)
(yi) · Lτ(yi)

(yi)

κ(τ(yi)) · (1− pD(yi))
dy1 · · · dyn (135)

= (1− pD)
X
∫ |X|∑

n = 0

(n!)2

n!

∑
{z1,...,zn}∈Fn(Z)

∑
{x1,...,xn}∈Fn(X)

n∏
i = 1

pD(yi) · δxi(yi) · Lzi(yi)

κ(zi) · (1− pD(yi))
dy1 · · · dyn (136)

= (1− pD)
X
|X|∑

n = 0

n!
∑

{z1,...,zn}∈Fn(Z)

∑
{x1,...,xn}∈Fn(X)

n∏
i = 1

pD(xi) · Lzi(xi)

κ(zi) · (1− pD(xi))
(137)

= (1− pD)
X
|X|∑

n = 0

∑
{x1,...,xn}∈Fn(X)

n∏
i = 1

pD(xi)

1− pD(xi)
· n!

∑
{z1,...,zn}∈Fn(Z)

n∏
i = 1

Lzi(xi)

κ(zi)
(138)

= (1− pD)
X
|X|∑

n = 0

∑
{y1,...,yn}∈Fn(X)

n∏
i = 1

pD(yi)

1− pD(yi)

∑
τ:(y1:n)⇒Zk

n∏
i = 1

Lτ(yi)
(yi)

κ(τ(yi))
. (139)

After applying Equation (59) again we obtain, as claimed,

= (1− pD)
X
∑
Y⊆X

(
pD

1− pD

)Y
 ∑
τ:Y⇒Z

ρY
τ

 =
∑
Y⊆X

(1− pD)
X−YpY

D

∑
τ:Y⇒Z

ρY
τ =

1
e−λκZ · f (Z|X). (140)

6.5. Proof of Equation (101)

The PGFL of fk |k(X|Z1:k) is:

Gk|k[h|Z1:k] =

∫
hX
· fk(Zk|X) · fk|k−1(X|Z1:k−1)δX∫

fk(Zk|X) · fk|k−1(X|Z1:k−1)δX
. (141)

Substituting Equation (69) for fk(Z|X) we obtain:

Gk|k[h|Z1:k] =

∫
hX
·

(∫
δ̃X(Y) · (1− pD)

X−YpY
D · f ∗k (Zk|Y)δY

)
· fk|k−1(X|Z1:k−1)δX∫ (∫

δ̃X(Y) · (1− pD)
X−YpY

D · f ∗k (Zk|Y)δY
)
· fk|k−1(X|Z1:k−1)δX

(142)

=

∫
(

pD
1−pD

)
Y
· f ∗k (Zk|Y) ·

(∫
δ̃X(Y) · (h(1− pD))

X
· fk|k−1(X|Z1:k−1)δX

)
δY∫

(
pD

1−pD
)

Y
· f ∗k (Zk|Y) ·

(∫
δ̃X(Y) · (1− pD)

X
· fk|k−1(X|Z1:k−1)δX

)
δY

(143)
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where, because of Equation (67):∫
δ̃X(Y) · (h(1− pD))

X
· fk|k−1(X|Z1:k−1)δX =

∫
(h(1− pD))

Y∪U
· fk|k−1(Y∪U|Z1:k−1)δU (144)

= (h(1− pD))
Y
∫

(h(1− pD))
U
· fk|k−1(Y∪U|Z1:k−1)δU (145)

= (h(1− pD))
Y
·
δGk|k−1

δY
[h(1− pD)] (146)

where the final equation follows from Equation (11.251) of [14].
Then, as claimed:

Gk|k[h|Z1:k] =

∫
(

pD
1−pD

)
Y
· f ∗k (Zk|Y) · (h(1− pD))

Y
·
δGk|k−1
δY [h(1− pD)]δY∫

(
pD

1−pD
)

Y
· f ∗k (Zk|Y) · (1− pD)

Y
·
δGk|k−1
δY [h(1− pD)]δY

(147)

=

∫
f ∗k (Zk|Y) · (hpD)

Y
·
δGk|k−1
δY [h(1− pD)]δY∫

f ∗k (Zk|Y) · pD ·
δGk|k−1
δY [h(1− pD)]δY

. (148)

6.6. Proof of Equation (103)

Begin by noting that:
δG1|0

δY
[h(1− pD)] = eD[h(1−pD)] ·DY. (149)

Then, from Equation (100) the undetected-target PGFL is, as claimed:

Gu
1|1[h|Z1] =

∫
f ∗1(Z1|U) · pU

D ·
δG1|0
δU [h(1− pD)]δU∫

f ∗1(Z1|U) · pU
D ·

δG1|0
δU [1− pD]δU

=

∫
f ∗1(Z1|U) · pU

D · e
D[h(1−pD)] ·DUδU∫

f ∗1(Z1|U) · pU
D · e

D[1−pD] ·DUδU
(150)

=
eD[h(1−pD)]

∫
f ∗1(Z1|U) · pU

D ·D
UδU

eD[1−pD]
∫

f ∗1(Z1|U) · pU
D ·D

UδU
= eD[(h−1)(1−pD)]. (151)

6.7. Proof of Equation (104)

Begin by noting that:
δG1|0

δY
[1− pD] = e−D[pD] ·DY. (152)

From Equation (97):

Gd
1|1[h|Z1] =

∫
f ∗1(Z1|U) · (hpD)

U
·
δG1|0
δU [1− pD]δU∫

f ∗1(Z1|U) · pU
D ·

δG1|0
δU [1− pD]δU

=

∫
f ∗1(Z1|U) · (hpD)

U
· e−D[pD] ·DUδU∫

f ∗1(Z1|U) · pU
D · e

−D[pD] ·DUδU
(153)

=

∫ (∑
τ:U⇒Z1

ρU
τ

)
· (hpDD)UδU∫ (∑

τ:U⇒Z1
ρU
τ

)
· (pDD)U

· δU
. (154)

Abbreviate Dh = hpDD. Then, from Equation (59):∫ (∑
τ:U⇒Z1

ρU
τ

)
· (hpDD)UδU =

∫ (∑
τ:U⇒Z1

(ρτDh)
U
)
δU (155)
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=
∑
n≥0

1
n!

∫ ∑
(z1:n)∈Zn

1 :|{z1:n}| = n

Lz1(y1) ·Dh(y1)

κ(z1)
· · ·

Lz1(yn) ·Dh(yn)

κ(zn)
dy1 · · · dyn (156)

=
∑
n≥0

∑
{z1:n}∈Fn(Z1)

Dh[Lz1 ]

κ(z1)
· · ·

Dh[Lz1 ]

κ(zn)
=

∑
n≥0

∑
W⊆Z1:|Z1 | = n

∏
z∈W

Dh[Lz]

κ(z)
(157)

=
∑

W⊆Z1

∏
z∈W

Dh[Lz]

κ(z)
=

∏
z∈Z1

(
1 +

Dh[Lz]

κ(z)

)
(158)

where the final equation follows from Equation (11). Thus, as claimed:

Gd
1|1[h|Z1] =

∏
z∈Z1

(1 + Dh[Lz]
κ(z) )∏

z∈Z1
(1 + D1[Lz]

κ(z) )
=

∏
z∈Z1

κ(z) + D[hpDLz]

κ(z) + D[pDLz]
. (159)

6.8. Proof of Equation (113)

First note that:

δG1|0

δY
[h] =


1− q + qs[h] i f Y = ∅

qs(y) i f Y =
{
y
}

0 i f |Y| ≥ 2
. (160)

From Equation (100), the numerator of the undetected-target PGFL is:∫
f ∗k (Zk|U) · pU

D ·
δGk|k−1

δU
[h(1− pD)]δU (161)

= f ∗k (Zk|∅) ·Gk|k−1[h(1− pD)] +

∫
f ∗k (Zk|{y}) · pD(y) ·

δGk|k−1

δy
[h(1− pD)]dy (162)

= e−λκZk · (1− q + qs[h(1− pD)]) + e−λκZk

∫ ∑
z∈Zk

Lz(y)
κ(z)

· pD(y) · qs(y)dy (163)

= e−λκZk · (1− q + qs[h(1− pD)]) + e−λκZk
∑
z∈Zk

qs[pDLz]

κ(z)
. (164)

Thus, as claimed, the undetected-target PGFL of a Bernoulli RFS is Bernoulli:

Gu
k|k[h|Z1:k] =

1− q + qs[h(1− pD)] +
∑

z∈Zk

qs[pDLz]
κ(z)

1− qs[pD] +
∑

z∈Zk

qs[pDLz]
κ(z)

(165)

=
1− q + qs[h(1− pD)]

1− qs[pD] +
∑

z∈Zk

qs[pDLz]
κ(z)

+
qs[1− pD]

1− qs[pD] +
∑

z∈Zk

qs[pDLz]
κ(z)

·
s[h(1− pD)]

s[1− pD]
(166)

= 1− qu + qusu[h]. (167)

6.9. Proof of Equation (110)

Due to Equation (160), the numerator of the detected-target PGFL is:∫
f ∗k (Zk|U) · (hpD)

U
·
δGk|k−1

δU
[1− pD]δU (168)
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= f ∗k (Zk|∅) ·Gk|k−1[1− pD] +

∫
f ∗k (Zk|{y}) · h(y) · pD(y) ·

δGk|k−1

δy
[1− pD]dy (169)

= e−λκZk · (1− qs[pD]) + e−λκZk

∫ ∑
z∈Zk

Lz(y)
κ(z)

· h(y) · pD(y) · qs(y)dy (170)

= e−λκZk · (1− qs[pD]) + e−λκZk
∑
z∈Zk

qs[hpDLz]

κ(z)
. (171)

Thus, the detected-target PGFL is:

Gu
k|k[h|Z1:k] =

1− qs[pD] +
∑

z∈Zk

qs[hpDLz ]
κ(z)

1− qs[pD] +
∑

z∈Zk

qs[pDLz ]
κ(z)

=
1− qs[pD]

1− qs[pD] +
∑

z∈Zk

qs[pDLz ]
κ(z)

+

q
∑

z∈Zk

s[hpDLz ]
κ(z)

1− qs[pD] +
∑

z∈Zk

qs[pDLz ]
κ(z)

·

∑
z∈Zk

s[hpDLz ]
κ(z)∑

z∈Zk

s[pDLz ]
κ(z)

. (172)

7. Conclusions

This review paper has assessed and compared the following proposed exact closed-form solutions
of the multitarget Bayes filter:

1. Generalized labeled multi-Bernoulli (GLMB) filter [5–8].
2. Labeled multi-Bernoulli mixture (LMBM) filter [10].
3. Poisson multi-Bernoulli mixture (PMBM) filter, in three distinct versions:

a. “Unlabeled” or U-PMBM filter [11].
b. “Label-augmented” or LA-PMBM filter [12].
c. “Hybrid labeled-unlabeled” or H-PMBM filter [4].

It has been shown that:

1. The GLMB, LMBM filters solve the labeled multitarget Bayes filter in exact closed form.
2. They are, therefore, true Bayesian multitarget trackers.
3. The U-PMBM filter solves the unlabeled multitarget Bayes filter in exact closed form.
4. The “undetected-targets” interpretation of the U-PMBM filter appears to be valid.
5. The claim that detected targets cannot become undetected does not.
6. The equation fk|k(X|Z1:k) = f d

k|k(X
d
|Z1:k) · f u

k|k(X
u
|Z1:k) in [4] is untrue.

7. It is theoretically impossible to prune U-PMBM distributions in a practical manner.
8. The U-PMBM, LA-PMBM, and H-PMBM filters are not true multitarget trackers.
9. The LA-PMBM and H-PMBM filters are theoretically and physically questionable.
10. In particular, the H-PMBM filter does not solve the “hybrid” multitarget Bayes filter in exact

closed form.
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