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Abstract

:

Prestress detection of structures has been puzzling structural engineers for a long time. The inductance–capacitance (LC) electromagnetic oscillation method has shown a potential solution to this problem. It connects the two ends of a steel strand, which is simulated as an inductor, to the oscillation circuit, and the stress of the steel strand can be calculated by measuring the oscillation frequency of the circuit through a frequency meter. In the previous studies, the authors found that stress-frequency relation of 1.2 m steel strand was negatively correlated, while the stress-frequency of 10 m steel strand was positively correlated. To verify this conflict, two kinds of electrical inductance models of steel strands were established to fit the lengths. With the models, the stress-frequency relations of steel strands with different lengths were analyzed. After that, two kinds of experimental platforms were set up, and a series of stress-frequency relationship tests were carried out with 1.2 m, 5 m, 10 m and 15 m steel strands. Theoretical analysis and experimental results show that when the length is less than 2.013 m, the stress and oscillation frequencies are negatively correlated; when length is more than 2.199 m, the stress and oscillation frequencies are positively correlated; while when length is between 2.013 m and 2.199 m, the stress-frequency relationship is in transit from negative correlation to positive correlation.
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1. Introduction


Compared with ordinary reinforced concrete structures, prestressed concrete structures have a lighter weight, smaller cross-section size, and better economy. The determination of the prestress loss is an important criterion for judging the bearing capacity of the prestressed structure. However, the prestress loss caused by the shrinkage and creep of the concrete and the relaxation of the prestressed steel strand directly threatens the safety of the structure. Therefore, it is particularly important to detect the effective prestressing force in the existing structure. The current prestress detection research includes the following.



1.1. Ultrasound Guided Wave Method


The ultrasonic guided wave method uses the penetration and propagation of ultrasonic waves to achieve stress detection. In recent years, ultrasonic guided waves have made some progress in the field of concrete structural stress nondestructive detection. For example, Qian et al. [1] verified the effect of ultrasonic guided wave energy entropy spectroscopy on the stress of 7-wire steel strands by numerical simulation and a series of tests. Niederleithinger et al. [2] used a network of 20 ultrasonic transducers to qualitatively detect the stress state of concrete beams. Feng et al. [3] designed an instrument with an excitation and receiving frequency greater than 100 kHz for steel strand damage detection based on the principle of the ultrasonic guided wave. The device can identify the frequency change caused by the groove with a cross-section loss of 1.13%. Xu et al. [4] used the ultrasonic guided wave below 400 kHz to realize the detection of steel strand breakage defects. Farhidzadeh et al. [5,6,7] achieved some success.




1.2. Embedded Fiber Sensors or Magnetoelastic Devices


Embedded fiber optic sensors use the change of optical signal to monitor the stress of structures. This type of technology has achieved some significant results in the field of civil engineering [8,9,10]. Typically, Huynh et al. [11] embedded optical fiber sensors in unbonded prestressed concrete beams to monitor the stress loss of prestressing tendons under temperature. Kim et al. [12] used fiber optic sensors to monitor the stress variation of the 60 m span beam during the whole construction process. Compared with the traditional Bragg grating, the advantage is that these sensors can still effectively monitor the strain after the concrete has begun cracking. In addition, Lan et al. [13] made some great progress in the research of fiber optic sensors to monitor the stress of steel strand.



The magneto-elastic devices, which are based on the magneto-elasticity method, utilize the characteristics that the ferromagnetic material changes magnetically under mechanical stress to perform stress monitoring. As a typical ferromagnetic material [14], steel strands have a corresponding relationship between stress and magnetic properties. The magneto-elastic effect is mainly used in cables, stress detection of unbonded steel strands [15,16], and prestress monitoring of new structures with a bonded steel strand [17,18,19]. Usually, the excitation coil emits the excitation magnetic field, and the receiving coil receives the magnetic field passing through the material. According to the relationship between the output voltage and the permeability of the material, the corresponding stress of the cable under a certain voltage is obtained. Yim at al. [20] developed a set of stress devices by using the magnetostrictive inverse effect of ferromagnetic materials, which was applied to stress monitoring of bridge cables. By comparing the numerical analysis and monitoring results, the effectiveness of the electromagnetic device in cable force monitoring was verified.




1.3. Electromagnetic Oscillation Method


Inspired by the magneto-elastic effect, the author proposed a prestressed steel strand stress detection method based on LC electromagnetic oscillation [21,22], indirectly measuring the strand stress through the electromagnetic oscillation frequency. According to the electrical theory, prestressed steel strands exhibit single conductance properties in low frequency oscillating circuits and can be divided into inductors, capacitors and resistors. When the steel strand is tensioned axially, the rate of inductance change is much larger than that of capacitance and resistance. Therefore, based on the LC electromagnetic oscillation to measure the stress of the prestressing strand, the capacitance and resistance can be neglected, and the steel strand can be modeled as an inductance. In the stress detection process, only the two ends of the strand were connected to the oscillating circuit. The axial tensile force was applied to the steel strand, and the stress signal of the prestressed steel strand was converted into a circuit oscillation frequency signal, and the stress value of the steel strand can be calculated by collecting the oscillation frequency by the frequency meter.



In the previous study [21], the theoretical model of the stress and oscillation frequencies of a steel strand was established, and the axial tensile test was carried out with six sets of 7-wire prestressed steel strands with a length of 1.2 m. This study was the first time that the LC electromagnetic oscillation method had been applied to the stress measurement of a steel strand by the authors, and the feasibility of this method was proved. The theoretical analysis and experimental results of the study show that the circuit oscillation frequency decreases with the increase of steel strand stress. In another study [22], Taylor’s expansion equation was used to establish the relationship between steel strand stress and oscillation frequency, and a 7-wire prestressed steel strand with a length of 10 m was used for cyclic loading experiments. The research results show that the oscillation frequency of the circuit increases with the increase of stress.



The above studies find that the stress and oscillation frequency of the two different lengths of steel strands show opposite trends. In the case of using the same oscillating circuit and measurement method, the relationship between the stress of the 1.2 m and 10 m steel strands and the oscillation frequency is completely opposite. The results of previous studies [21,22] cannot explain the reasons for this phenomenon. Only the force–frequency variation trend of 1.2 m and 10 m steel strands were studied, and the feasibility of the inductance–capacitance (LC) electromagnetic oscillation method was verified, while the reasons for the positive (negative) correlation of force–frequency variation were not explained. According to the author’s preliminary analysis, this phenomenon is directly related to the length of steel strand. Therefore, this paper has carried out related theoretical and experimental research on the length effect of the LC electromagnetic oscillation method for the stress detection of steel strands.





2. Theories and Models


According to the electrical theory, as part of the LC low-frequency electromagnetic oscillating circuit, the axial stretching of the strand is mainly represented by the change of inductance. The possible reasons for the opposite stress-frequency relationship between different lengths of steel strands can be described by the following two aspects: (a) when the length is short, the spiral characteristics of the seven steel wires are not obvious, but are similar to the segment wire, so it mainly shows the inductance characteristics of the segment wire; (b) when a certain length is reached, the spiral characteristics of seven steel wires have been formed. The steel strand approximates the spiral coil structure, and mainly exhibits the spiral coil inductance characteristics.



Different length steel strands show different inductance characteristics. Therefore, in order to further study the influence of the relationship between stress and oscillation frequency, the author establishes the mathematical models of stress-frequency under two inductance models based on the model of conductor inductance and the model of spiral coil inductance and the principle of LC electromagnetic oscillation.



2.1. Principle of LC Electromagnetic Oscillation


If a steel strand under axial tension is regarded as having the equivalent inductance of an LC oscillating circuit, its magnetic and inductance parameters will change when stretched, and then the internal stress of the steel strand can be expressed by frequency through the oscillating relationship between inductance and capacitance in the electromagnetic oscillating circuit.



As shown in Figure 1, the LC oscillating circuit, also be called the LC resonant circuit, which consists of an inductor and a capacitor connected together. A steel strand is used instead of the inductor to connect to the oscillating circuit, and a fixed capacitor component is externally connected to form an LC oscillating circuit. The basic working principle can be described as follows: (a) when the capacitor starts to discharge, the inductor is charged. When the voltage of the inductor reaches the maximum, the capacitor is discharged and the inductor is charged; (b) the inductor begins to discharge, the capacitor is charged, and when the capacitor is charged, the inductor is discharged and the capacitor is charged. In this reciprocating operation, resonance occurs.



It is assumed that the circuit has no energy loss and is not affected by other external factors. When the circuit resonates, the inductive reactance XL of the inductor L in the oscillating circuit is equal to the capacitive reactance XC of the capacitor C.




XL=XC



(1)





The inductance XL of the inductor can be expressed as




XL=2πfL



(2)





The reactance XC of the capacitor can be expressed as




XC=12πfC



(3)





Therefore, the relationship between the oscillation frequency of the circuit and the inductance of steel strand can be obtained by combining Equations (1)–(3).




2πfL=12πfC



(4)





The oscillation frequency of the circuit can be expressed as




f=12πLC



(5)





In the equation, f is the oscillation frequency of the circuit, L is the inductance of the steel strand, and C is the capacitance of the circuit.



C is a constant, and the circuit oscillation frequency f can be directly measured by the frequency. Therefore, it is only necessary to establish the relationship between the inductance L and the stress σ, and the relationship model between the stress of the steel strand and the oscillation frequency of the circuit can be obtained.




2.2. Inductance Model of Segment Wire


When the steel strand is short, the spiral structure has not yet been formed, and its structural characteristics are similar to those of the line segment, so that the inductance characteristics of the segment wire are mainly exhibited. In this section, the model of stress-frequency of the steel strand is established based on the model of inductance of the segment wire.



2.2.1. Modeling


When a conductor passes a current, a magnetic field is generated inside and around the conductor. The magnetic circuit is a concentric closed magnetic field ring, and the direction is determined by the right hand rule. When the current changes, the magnetic linkage changes accordingly. For non-magnetic materials, the inductance of the conductor is the ratio of its total flux chain to the current, also known as static inductance.




L=ψI



(6)





In the equation, ψ is the self-inductive magnetic linkage of the conductor, I is the circuit current, and L is the inductance of the conductor.



In the previous study [21], the authors discussed the internal inductance of the wire, and the internal inductance Lin can be expressed as




Lin=ψinI=μl8π



(7)





In the equation, Lin is the internal inductance of the wire, μ is the permeability of the wire, and the l is the length of the wire.



As shown in Figure 2, for the external inductance produced by the wire segment, the external magnetic circuit contains the current of the whole wire. According to the Biot-Savart law, the magnetic induction intensity at any point outside the strand can be obtained.



The Biot-Savart law can be defined as




dB⇀=μ04π·Idl⇀×r⇀r3



(8)





The magnetic induction intensity dB produced by current element Idy at point P can be expressed as




dB=μ0I4π·dyc2sinθ=μ0I4π·Ixdyx2+y−b232



(9)





Hence the magnitude of the magnetic induction intensity scalar produced by the segment wire at point P is as follows:


B=μ04π∫0lIxx2+y−b232dy=μ0I4πl−bxx2+l−b2+bxx2+b2



(10)







If the wire radius is r, the total flux of the wire segment l is




Φe=∫B⇀dS⇀=∫r∞∫0lμ0I4πl−bxx2+l−b2+bxx2+b2dxdy=μ0I2πl·lnl+l2+r2r−l2+r2+r



(11)





All fluxes are only interlinked with a single wire, so the external magnetic linkage is equal to the flux. Which is




Φe=ψout



(12)





Therefore, the external inductance of the wire can be expressed as




Lout=ψoutI=μ02πl·lnl+l2+r2r−l2+r2+r



(13)





The inductance of the wire is the sum of the internal inductance and the external inductance. Namely,




L=Lin+Lout=μl8π+μ02πl·lnl+l2+r2r−l2+r2+r



(14)





The length of the wire is much larger than the radius, that is, l≫r, the above formula can be simplified to




L=μl8π+μ0l2πln2lr−1



(15)





The steel strand can be equivalent to a segment wire. Since the steel wire magnetic permeability μ is much larger than the vacuum magnetic permeability μ0, the upper equation can be simplified to




L=μl8π



(16)





The length of the steel strand after stretching can be expressed as




l=l0+Δl



(17)





In the equation, l0 is the original length of the steel strand, and Δl is the elongation of the steel strand.



From the constitutive relation of materials,




σ=Eε=EΔll



(18)





The elongation Δl can be expressed as




Δl=σl0E



(19)





In the equation, σ is the stress of the steel strand and E is the elastic modulus of the steel strand.



And the permeability of steel strand can be expressed as




μ=μ0μr



(20)





Combining (5), (17), (19) and (20), it can be obtained that




f=12πμ0μrl0+σl0E8π·C



(21)






2.2.2. Simulation Result


Substitute μ0=4π×10−7 H·m−1, μr=1500, l0=1.2 m, E=1.95×105 MPa, C=0.0059 uF,  into Equation (21) and it can be obtained that




f=10002π5.311+3.63×10−6σ



(22)





The simulation of the stress-frequency of the 1.2 m steel strand is shown in Figure 3.



According to the stress-frequency relationship of the strand and Figure 3, it can be obtained that the oscillation frequency of the circuit decreases with the increase of stress. This phenomenon coincides with the author’s study on the stress and frequency of a 1.2 m steel strand [21]. Therefore, it can be inferred that the 1.2 m steel strand mainly shows the inductance characteristics of the segment wire.





2.3. Inductance Model of Spiral Coil


When the steel strand reaches a certain length, the steel wire has formed a spiral structure, which is similar to the spiral coil and mainly shows the inductive characteristics of the spiral coil. It can be deduced from electrical theory that the inductance of a straight wire with a certain length is much smaller than the inductance of a spiral coil wound by a straight wire with the same length. Therefore, the inductance effect of the straight wire of the long steel strand can be neglected compared to the inductance effect of the spiral coil. Based on the spiral coil inductance model, this section establishes a relationship model between the stress and oscillation frequency of the long steel strand.



2.3.1. Modeling


As shown in Figure 4, when the steel strand is characterized by the spiral coil inductance, the peripheral steel wire can be regarded as a spiral coil, and the steel wire at the center of the cross section of the strand can be regarded as the core of the spiral coil.



The total magnetic linkage of the spiral coil can be expressed as




ψ=μHNS



(23)





In the equation, ψ is the total magnetic linkage of the spiral coil, μ is the magnetic permeability of the magnetic core in the spiral coil, H is the magnetic field intensity, N is the number of turns of the spiral coil, and S is the cross-sectional area of the spiral coil.



For a spiral coil, the magnetic field intensity can be defined as




H=NIl



(24)





In the equation, I is the current of the spiral coil, and l is the length of the spiral coil.



Combining Equations (6), (23) and (24), it can be obtained that




L=μN2Sl



(25)





The cross-sectional area and length of the spiral coil will change as the steel strand is stretched. Therefore, it is necessary to calculate the amount of change of S and l after steel strand is elongated.



For the stretched steel strand, the area of coil cross-sectional can be approximately expressed as




S=πR2=πR0−ΔR



(26)





In the equation, R0 is the initial section radius of the steel strand, and ΔR is the amount of change of radius.



By combining Equations (17), (19), (25) and (26), and ignoring high order item ΔR2, it can be obtained that




L=μπN2(R02+R0·R)l0+σl0E



(27)





Since R0≫ΔR, Equation (27) can be simplified to




L=μπN2R02l0+σl0E



(28)





By combining Equations (5), (20) and (28), it can be obtained that




f=12πμ0μr·πN2R02l0+σl0E·C



(29)






2.3.2. Simulation Result


Substitute μ0=4π×10−7 H·m−1, μr=1500, N=47, R0=0.01524 m, l0=10 m, E=1.95×105 MPa, C=0.0059 uF into Equation (29) and it can be contained that




f=1.95×105+σ0.439π2



(30)





The stress-frequency simulation result of the 10 m steel strand is shown in Figure 5.



It can be seen from the relationship between the stress and frequency of the strand and Figure 5 that the oscillation frequency of the circuit increases with the increase of the stress. This phenomenon is consistent with the author’s research on the stress and frequency variation of the 10 m steel strand [22]. Therefore, it can be inferred that the 10 m steel strand mainly exhibits the spiral coil inductance characteristics.



In summary, the steel strand exhibits different inductance characteristics in the LC electromagnetic oscillation circuit, and the length of steel strand is the main factor. Through the author’s previous research [21,22] and the two-inductance model based on the steel strand stress-frequency model, it can be seen that different lengths of steel strands exhibit different inductance characteristics, showing different force-frequency relationships under LC electromagnetic oscillation. Namely, it can be seen that, (a) when the strand is short, it can be modeled as a inductance model of segment wire. After the axial tensile stress is applied to the steel strand, the inductance becomes large, and the relationship between the stress and the oscillation frequency is such that the stress increases and the oscillation frequency decreases; and (b) when the strand reaches a certain length, it can be modeled as a inductance model of spiral coil. After the axial tensile stress is applied to the steel strand, the inductance is reduced, and the relationship between stress and oscillation frequency is such that the stress increases and the oscillation frequency also increases.






3. Experimental Studies


3.1. Parameters of Steel Strand


In order to analyze the inductance effect model of steel strands in a practical application, steel strands with lengths of 1.2 m, 5 m, 10 m and 15 m were selected as experimental objects in combination with the test conditions, and the parameters are shown in Table 1.




3.2. Experimental Systems


3.2.1. Experimental Devices and Procedure of Short Steel Strand (1.2 m)


The experimental system is presented in Figure 6. The steel strand, the frequency meter, and the LC oscillating circuit were connected in series to form a closed circuit, and the oscillating circuit and the frequency meter were supplied by the DC power. The hydraulic universal testing machine applied tension to the steel strand, and the stress and strain data was collected by the computer during the loading process. The accuracy of the frequency meter in the circuit is 0.0001 kHz.



The experimental process is as follows: firstly, open the material software of hydraulic universal testing machine, set parameters such as cross-sectional area of steel strand and tension rate applied in tension experiment. Then, turn on the power supply, control the universal testing machine to preload steel strand to 2 kN, and check whether the frequency meter and LC oscillation circuit are working properly. After confirming that the applied load and the strand deformation tend to be stable, uniformly apply the load to 8 kN at a loading rate of 10 mm/min.



During the loading process, it is necessary to observe the deformation of the steel strand and the accuracy of the frequency data collected by the frequency meter. The frequency meter collects frequency data once per second, and the collected data is transmitted to the mobile device via Bluetooth. Stop the loading when the load reaches 8 kN, and a set of stress and oscillation frequency test data will have been collected in one test. After the data acquisition is completed, the universal testing machine is controlled to unload the tensile force applied to the steel strand to zero while observing the trend of the frequency. A total of four sets of data were collected in the experiments.




3.2.2. Experimental Devices and Procedure of Long Steel Strand (5 m, 10 m and 15 m)


In the construction of the test system, the steel strand and hydraulic jack should be fixed on the steel reaction frame to ensure the normal follow-up work. Then, choose two areas near the middle span of the strand, grind the surface protective layer and rust with sandpaper, and paste the strain gauge. Finally, weld the wire of the circuit at the two free ends of the strand, and ensure the lead-out wire is connected to the LC oscillation circuit. Finally, connect the strain acquisition instrument, frequency acquisition instrument and oscillation circuit to the experimental system. The experimental framework is shown in Figure 7.



Before starting the experiment, it is necessary to check the wire connection at both ends of the steel strand, and confirm that the two welded ends are wrapped with insulating tape after the welding is firm, so as to avoid separation between the two during the experiment. In addition, the data line connecting the strain gauges needs to be fixed on the steel strands, because the steel strands will rotate and drive the data lines, which will affect the connection of the data lines and the strain gauges.



After the above steps are completed, turn on the circuit to check the connection of each part and whether the circuit was oscillating. The stress and frequency test acquisition is carried out by controlling the loading and unloading of the piercing hydraulic jack to ensure the normal operation of the strain acquisition instrument and frequency acquisition device. Frequency meter and static strain acquisition instrument are set up once a second.



The stress and frequency data were collected when the stress of the steel strand reached 200 MPa, and the maximum stress applied was 900 MPa. The hydraulic jack is preloaded to 200 MPa, and the initial frequency data is collected and recorded. The stress was unloaded when loaded to 900 MPa, and the corresponding frequency data was recorded up to 200 MPa per 100 MPa of unloading. A total of four sets of data were collected in the cyclic loading experiments.





3.3. Experimental Data


In order to study the relationship between the stress and oscillation frequency of different lengths of steel strands, the median filter was used to process the frequency and stress data which were obtained under the same conditions, and the standard deviation and repeatability error of the oscillation frequency of steel strands with different lengths was calculated. Table 2, Table 3, Table 4 and Table 5 show the test data of the 1.2 m, 5 m, 10 m and 15 m steel strands. Figure 8, Figure 9, Figure 10 and Figure 11 show the fitting curves obtained from the test data of steel strands.



The following conclusions can be drawn from the analysis:




	(1)

	
The repeatability error of the 1.2 m steel strand test data does not exceed 0.023%, and that of the 5 m, 10 m and 15 m steel strands test data are less than 0.025%, 0.05% and 0.05%.




	(2)

	
Different lengths of steel strands have different stress-frequency trends. The data analysis of the tensile test of the 1.2 m steel strand shows that the frequency decreases with the increase of stress; while the test analysis of 5 m, 10 m and 15 m steel strands shows that the frequency increases with the increase of stress. It can be seen that the 1.2 m steel strands mainly exhibit the inductance characteristics of the segment wire, while the 5 m, 10 m and 15 m steel strands exhibit the inductance characteristics of the spiral coil.




	(3)

	
The linearity of stress and frequency fitting curves of different lengths of strands is diversity. The correlation of the stress-frequency fitting curves of the 5 m, 10 m and 15 m strands are 0.8569, 0.9221 and 0.9801. With the increase in the length of the steel strand, the more concentrated the experimental data of stress-frequency is, and the better linear correlation of the curves.




	(4)

	
In summary, the steel strands exhibit different inductance characteristics in the LC electromagnetic oscillation circuit, and the length of steel strand is the main factor.











4. Results and Discussion


The theoretical derivation and experimental analysis results show that length is the critical factor affecting the stress detection of steel strand in electromagnetic resonance method. Within different length intervals, steel strands show different inductance characteristics, which make the force–frequency curve show positive and negative correlation. In order to confirm the length interval of wire inductance or spiral coil inductance of steel strand, this section is based on experimental data and the stress-frequency mathematical model to analyze the length effect of experiment and simulation.



4.1. Analysis of Length Effect


In order to obtain the critical length of the long and short steel strands determined by the experiment, four sets of experimental data of different lengths were fitted to get the force-frequency relationship curves. The experimental data were normalized and analyzed to compare the stress-frequency variation of steel strands with different lengths. The normalized stress-frequency curves are shown in Figure 12.



It can be concluded from the figure that:




	(1)

	
The variation trend of stress-frequency curve of the four steel strands are different. The stress-frequency of the 1.2 m steel strand is negatively correlated, while the other three length are positively correlated.




	(2)

	
The stress-frequency variation trends of 1.2 m and 10 m steel strands coincided with the results of the author’s previous research. What is more, the force–frequency curve of the 1.2 m steel strand shows large dispersion, and the general variation trend is that the oscillation frequency decreases with the increase of the stress. Compared with the 1.2 m steel strand, the stress-frequency curves of 5 m, 10 m and 15 m steel strands have smaller dispersion and better repeatability. The general variation trend is that the resonant frequency increases with the increase of stress.




	(3)

	
The stress-frequency variation rule of steel strands transitions from a negative correlation of 1.2 m to a positive correlation of 5 m, indicating that the critical length of the long and short steel strands is within the range of (1.2 m, 5 m). Therefore, the critical length can be obtained by fitting the relationship between f and σ in the stress-frequency fitting curve obtained from the experimental data of each length.









The critical length is related to the rate of change of the force frequency. Therefore, the length l and frequency f of the four kinds of steel strands and the slope kf/σ are taken as the data points of the length effect analysis. The fitting curve obtained by fitting the data points can determine the critical length. The length l of the strand has a corresponding relationship with the oscillation frequency f and the stress σ in the fitting curve equation, and the relationship can be described as a two-dimensional length effect point. Therefore, four different length steel strands correspond to four two-dimensional length effect points, and the relationship between l and kf/σ can be obtained by fitting. The two-dimensional length effect points obtained from the experimental data are (1.2, -0.000143), (5, 0.000174), (10, 0.000262) and (15, 0.000359). Thus, the experimental length effect curve equation can be expressed as




kf/σ=1.52×10−4lnl−0.546−5.828×10−5



(31)





Similar to the experimental length effect, the simulation critical length is obtained by the relationship between f and σ in the stress-frequency fitting curve of each length. From the stress-frequency mathematical models established in the Section 2, four sets of simulated two-dimensional length effect points are (1.2, –0.000120), (5, 0.000186), (10, 0.000261) and (15, 0.000345). The equation for the simulation length effect curve can be expressed as




kf/σ=1.27×10−4lnl−0.899−3.335×10−5



(32)





The experimental length effect curve and the simulation length effect curve are shown in Figure 13. In Equations (31) and (32), when kf/σ is zero, the critical length of the stress-frequency relationship of steel strand under the electromagnetic oscillation method can be obtained from the negative correlation to the positive correlation.




4.2. Analysis and Discussion


Figure 13 shows the relationship between the experimental length effect curve and the simulation length effect curve. According to length effect analysis and Figure 13, the following conclusions can be drawn from the analysis.



	(1)

	
The experimental length effect curves and Equation (31) show that the stress-frequency variation trend of steel strand is related to the length. The critical length for distinguishing long or short steel strands is l=2.013 m. When 0<l<2.013 m, the oscillation frequency decreases with the increase of stress; when 2.013 m<l≤15 m, the oscillation frequency increases with the increase of stress.




	(2)

	
Similar to the analysis results of experimental length effect, the stress-frequency variation trend of simulation length effect is also related to the length of steel strand. The critical length for distinguishing long or short steel strands is l=2.199 m. When 0<l<2.199 m, the oscillation frequency decreases with the increase of stress; when 2.199 m<l≤15 m, the oscillation frequency increases with the increase of stress.




	(3)

	
The error of critical length between experimental length effect and simulation length effect is 8.46%, which meets the requirement of application.




	(4)

	
It can be inferred from the trend of the length effect curve that when the length of steel strand is longer than 15 m, the oscillation frequency increases with the increase of stress.







It can be concluded that different length steel strands exhibit different inductance characteristics in stress detection based on LC oscillation. Both theoretical derivation and experimental analysis show that when the length of steel strand is short, the inductance characteristic of a segment wire is mainly exhibited, and the oscillation frequency decreases with the increase of stress. And when a certain length is reached, the steel strand mainly exhibits the inductance characteristics of spiral coil, and the oscillation frequency increases with the increase of stress.



To summarize, when 0<l<2.013 m, the stress is negatively correlated with the oscillation frequency, that is, the oscillation frequency decreases with the increase of stress, and the main performance of steel strand is the inductance of a segment wire. When l>2.199 m, the stress is positively correlated with the oscillation frequency, that is, the oscillation frequency increases with the increase of stress. At this time, the main performance of steel strand is the inductance characteristic of a spiral coil. The transition interval of length effect is 2.013 m≤l≤15 m, that is, the relationship between stress and oscillation frequency changes from a negative correlation to a positive correlation. The effects of length and external magnetic field are considered in this study, but if there are new influencing factors, the accuracy and consistency of the theoretical and experimental results cannot be guaranteed.



The prestress of the concrete bridge is mainly provided by the steel strand. Compared with other types of prestressed concrete bridges, the span of the simply supported girder bridges is the smallest and generally larger than 15 m. When the stress is measured by the LC electromagnetic oscillation method, the steel strand mainly shows the inductive characteristics of spiral coils. Consequently, it is appropriate to choose the stress-frequency mathematical model of steel strands based on the inductance characteristics of spiral coils in engineering applications.





5. Conclusions


This paper established the stress-frequency models of long and short steel strands. The theoretical models were validated by stress-frequency experiments of four lengths of 1.2 m, 5 m, 10 m and 15 m, and the inductance characteristics of each length of steel strand were analyzed. Both theoretical analysis and experimental research show that: (a) short steel strands mainly represent the inductance characteristics of the segment wires, the oscillation frequency decreases with the increase of stress; (b) while the long steel strands mainly represent the inductance characteristics of spiral coils, the oscillation frequency increases with stress increases.



The error of critical length obtained from the analysis of experimental length effect and simulation length effect is 8.46%, and the critical length interval for distinguishing long or short steel strands is (2.013 m, 2.199 m). When 0<l<2.013 m, the oscillation frequency decreases with the increase of stress. When l>2.199 m, the oscillation frequency increases with the increase of stress. When 2.013 m≤l≤2.199 m, the transition interval of the length effect of the stress measurement is based on the electromagnetic oscillation method, that is, the stress and the oscillation frequency are transitioned from a negative correlation to a positive correlation.



In the next stage, the influence of the length and permeability of steel strand on stress measurement will be considered comprehensively, and more frequency data will be collected to reduce the error in the experiment. In addition, the relationship between the stress and oscillation frequency of steel strands in concrete structures will also be studied as a key point in order to approach the practical engineering application.
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Figure 1. The inductance–capacitance (LC) oscillating circuit. 
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Figure 2. Calculation of external magnetic linkage of segment wire. (a) The distribution of external flux linkage; (b) Magnetic field model. 
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Figure 3. Stress-frequency simulation of the 1.2 m steel strand. 
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Figure 4. The structure of the steel strand. 
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Figure 5. Stress-frequency simulation of the 10 m steel strand. 
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Figure 6. The experimental system of short steel strand. 
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Figure 7. The experimental system of long steel strand. 
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Figure 8. Stress-frequency curve—1.2 m. 
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Figure 9. Stress-frequency curve—5 m. 
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Figure 10. Stress-frequency curve—10 m. 
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Figure 11. Curve—15 m. 
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Figure 12. Stress-frequency curve of four steel strands. 
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Figure 13. The length effect curves. 
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Table 1. Parameters of steel strands.
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	Structure of Steel Strand
	Length of

Steel Strand

l0

m
	Nominal Area of Steel Strand

S

mm2
	Nominal Diameter of Steel Strand

D

mm
	Ultimate Tensile Strength

Rm

MPa

No Less than
	Maximum Tension

Fm

kN

No Less than
	Maximum Elongation

AGT

%

No Less than





	1 × 7
	1.2, 5, 10 and 15
	139
	15.2
	1860
	260
	3.5
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Table 2. The experimental data—1.2 m.
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Average

Stress

σ/MPa

	
Measurement Times

	
SD

	
RE

	
MF

f/kHz




	
Loading 1

f/kHz

	
Loading 2

f/kHz

	
Loading 3

f/kHz

	
Loading 4

f/kHz






	
14.389

	
74.3009

	
74.2940

	
74.2748

	
74.2677

	
0.01566

	
0.0211%

	
74.2844




	
19.784

	
74.3018

	
74.2926

	
74.2746

	
74.2669

	
0.01604

	
0.0216%

	
74.2840




	
25.324

	
74.3018

	
74.2911

	
74.2740

	
74.2656

	
0.01636

	
0.0220%

	
74.2831




	
31.223

	
74.3010

	
74.2900

	
74.2733

	
74.2647

	
0.01633

	
0.0220%

	
74.2823




	
37.266

	
74.2995

	
74.2889

	
74.2720

	
74.2639

	
0.01610

	
0.0217%

	
74.2811




	
42.158

	
74.2995

	
74.2883

	
74.2720

	
74.2632

	
0.01626

	
0.0219%

	
74.2808




	
46.691

	
74.2984

	
74.2881

	
74.2712

	
74.2625

	
0.01621

	
0.0218%

	
74.2801




	
50.935

	
74.2972

	
74.2875

	
74.2705

	
74.2619

	
0.01600

	
0.0215%

	
74.2793




	
54.173

	
74.2951

	
74.2869

	
74.2696

	
74.2619

	
0.01528

	
0.0206%

	
74.2784




	
57.554

	
74.2951

	
74.2855

	
74.2687

	
74.2617

	
0.01528

	
0.0206%

	
74.2778











[image: Table]





Table 3. The experimental data—5 m.
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Average

Stress

σ/MPa

	
Measurement Times

	
SD

	
RE

	
MF

f/kHz




	
Loading 1

f/kHz

	
Loading 2

f/kHz

	
Loading 3

f/kHz

	
Loading 4

f/kHz






	
203

	
178.534

	
178.572

	
178.630

	
178.615

	
0.04345

	
0.0243%

	
178.5878




	
301

	
178.589

	
178.609

	
178.599

	
178.626

	
0.01578

	
0.0088%

	
178.6058




	
402

	
178.596

	
178.613

	
178.607

	
178.632

	
0.01508

	
0.0084%

	
178.6120




	
498

	
178.614

	
178.625

	
178.639

	
178.655

	
0.01775

	
0.0099%

	
178.6333




	
600

	
178.629

	
178.641

	
178.652

	
178.671

	
0.01784

	
0.0100%

	
178.6483




	
706

	
178.643

	
178.656

	
178.667

	
178.687

	
0.01863

	
0.0104%

	
178.6633




	
792

	
178.678

	
178.677

	
178.687

	
178.711

	
0.01582

	
0.0089%

	
178.6883




	
905

	
178.695

	
178.696

	
178.703

	
178.719

	
0.01109

	
0.0062%

	
178.7033
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Table 4. The experimental data—10 m.
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Average

Stress

σ/MPa

	
Measurement Sequence

	
SD

	
RE

	
MF

f/kHz




	
Cycle 1

f/kHz

Loading

	
Cycle 1

f/kHz

Unloading

	
Cycle 2

f/kHz

Loading

	
Cycle 2

f/kHz

Unloading

	
Cycle 3

f/kHz

Loading

	
Cycle 3

f/kHz

Unloading

	
Cycle 4

f/kHz

Loading

	
Cycle 4

f/kHz

Unloading






	
205

	
125.992

	
126.005

	
126.040

	
126.053

	
126.108

	
126.122

	
126.139

	
126.155

	
0.06241

	
0.0495%

	
126.0768




	
310

	
126.031

	
126.047

	
126.049

	
126.083

	
126.136

	
126.133

	
126.193

	
126.162

	
0.05999

	
0.0476%

	
126.1043




	
408

	
126.087

	
126.088

	
126.075

	
126.087

	
126.161

	
126.146

	
126.228

	
126.177

	
0.05543

	
0.0439%

	
126.1311




	
511

	
126.135

	
126.112

	
126.097

	
126.113

	
126.190

	
126.158

	
126.227

	
126.185

	
0.04571

	
0.0362%

	
126.1521




	
605

	
126.156

	
126.141

	
126.119

	
126.139

	
126.220

	
126.229

	
126.264

	
126.228

	
0.05407

	
0.0429%

	
126.1870




	
714

	
126.174

	
126.171

	
126.155

	
126.196

	
126.281

	
126.221

	
126.298

	
126.263

	
0.05474

	
0.0434%

	
126.2199




	
803

	
126.151

	
126.169

	
126.195

	
126.213

	
126.267

	
126.284

	
126.272

	
126.284

	
0.05403

	
0.0428%

	
126.2294




	
912

	
126.192

	
126.192

	
126.219

	
126.219

	
126.296

	
126.296

	
126.313

	
126.313

	
0.05427

	
0.0430%

	
126.2550
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Table 5. The experimental date—15 m.
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Average

Stres

σ/MPa

	
Measurement Sequence

	
SD

	
RE

	
MF

f/kHz




	
Cycle 1

f/kHz

Loading

	
Cycle 1

f/kHz

Unloading

	
Cycle 2

f/kHz

Loading

	
Cycle 2

f/kHz

Unloading

	
Cycle 3

f/kHz

Loading

	
Cycle 3

f/kHz

Unloading

	
Cycle 4

f/kHz

Loading

	
Cycle 4

f/kHz

Unloading






	
204

	
117.170

	
117.182

	
117.190

	
117.201

	
117.215

	
117.219

	
117.254

	
117.250

	
0.03049

	
0.0260%

	
117.2101




	
308

	
117.204

	
117.240

	
117.195

	
117.219

	
117.224

	
117.231

	
117.289

	
117.288

	
0.03524

	
0.0301%

	
117.2363




	
401

	
117.259

	
117.314

	
117.244

	
117.251

	
117.253

	
117.258

	
117.304

	
117.321

	
0.03172

	
0.0270%

	
117.2755




	
512

	
117.297

	
117.359

	
117.278

	
117.342

	
117.275

	
117.315

	
117.359

	
117.364

	
0.03722

	
0.0317%

	
117.3236




	
604

	
117.370

	
117.403

	
117.305

	
117.389

	
117.302

	
117.425

	
117.401

	
117.412

	
0.04747

	
0.0404%

	
117.3759




	
700

	
117.421

	
117.438

	
117.340

	
117.410

	
117.408

	
117.443

	
117.387

	
117.438

	
0.03424

	
0.0292%

	
117.4106




	
803

	
117.447

	
117.459

	
117.403

	
117.421

	
117.444

	
117.478

	
117.467

	
117.478

	
0.02681

	
0.0228%

	
117.4496




	
907

	
117.471

	
117.471

	
117.438

	
117.438

	
117.472

	
117.472

	
117.491

	
117.491

	
0.02038

	
0.0174%

	
117.4680








Notes: SD is standard deviation, RE is Repeatability error, MF is median frequency.


media/file8.jpg
Frequency (kHz)

10230

102.25

102.20

g
&

102.10

102.05

102.00

0

100 200 300 400 500 600 700 800 900 1000
Stress (MPa)






media/file13.png
Strain Monitoring Static Strainometer

Wireless

.+ Transmission ) _
I Steel Reaction Rack

Steel Reaction Rack

Working Anchorage Fixed Anchorage
- — -
» .
Steel Strand Strain Gauges
Center Hole
Hydraulic Jack
Oscillating Circuit Frequency Amplifier Frequency Meter

Wire

AC Power Frequency Monitoring





media/file12.jpg
‘Strain Monitoring ‘Static Strainometer

Wirdes

Tonsmission
et Reaction Rack

et Resction Rack

Waorking Anchorsge

Ficd Anchorsge

»
St Sund Stin Gouges

/

Certer Hole
Hydrutc Jack

Osilting Ciruit Froquency Ampliics  Frequncy Meter

Bluctooh Trnsission

'AC Power  —— %





media/file18.jpg
8
n

126,10

Frequency (kHz)

&
]
!

126,00+

100 200 300 400 500 600 700 800 900 1000

Stress (MPa)
«  Experimental Data Points —— Fitting Curve





media/file9.png
102.30

102.25

102.20

[EEY
o
N
[
o

102.10

Frequency (kHz)

102.05

102.00

100 200 300 400 500 600 700 800 900 1000
Stress (MPa)






media/file14.jpg
74.3