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Abstract: Wireless Power Transfer (WPT) is a promising technology to replenish energy of sensors in
Rechargeable Wireless Sensor Networks (RWSN). In this paper, we investigate the mobile directional
charging optimization problem in RWSN. Our problem is how to plan the moving path and charging
direction of the Directional Charging Vehicle (DCV) in the 2D plane to replenish energy for RWSN.
The objective is to optimize energy charging efficiency of the DCV while maintaining the sensor
network working continuously. To the best of our knowledge, this is the first work to study the mobile
directional charging problem in RWSN. We prove that the problem is NP-hard. Firstly, the coverage
utility of the DCV’s directional charging is proposed. Then we design an approximation algorithm to
determine the docking spots and their charging orientations while minimizing the number of the
DCV’s docking spots and maximizing the charging coverage utility. Finally, we propose a moving
path planning algorithm for the DCV’s mobile charging to optimize the DCV’s energy charging
efficiency while ensuring the networks working continuously. We theoretically analyze the DCV’s
charging service capability, and perform the comprehensive simulation experiments. The experiment
results show the energy efficiency of the DCV is higher than the omnidirectional charging model in
the sparse networks.
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1. Introduction

Wireless power transfer is a promising technology to replenish energy to sensors in Rechargeable
Wireless Sensor Networks (RWSN), to keep the network working continuously [1]. Wireless Power
Transfer (WPT) is mainly using magnetic resonance coupling [1–3] or RF radiation technology [4,5].
To achieve efficient energy transfer in RF radiation technology, it generally requires directional
transmission by using high-gain and directional antennas for power transmitters and receivers to focus
the energy in narrow energy beams [6]. It has a more stable and higher efficiency of power transfer
compared with omnidirectional charging [7]. Consequently, in the mobile directional charging scenario
in RWSN, a rechargeable sensor can only receive power from a mobile charging vehicle equipped with
a directional power transmitting antenna, or called directional charging vehicle (DCV), when they are
located in the covered sector of the DCV’s directional antennas.

Products from Powercast [8] carry out wireless charging by leveraging the electromagnetic
radiation technique, with which energy transmitters broadcast the RF energy and receivers capture
the energy and convert it to DC. Applications of the electromagnetic radiation technique for wireless
charging have been reported in References [9–11]. As more and more applications of wireless charging
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technology have been envisioned, the Wireless Power Consortium [12] has been established to start the
efforts of setting an international standard for interoperable wireless charging.

Recently, most research works of mobile charging in RWSN adopted the omnidirectional power
transfer model [13–17]. Although some works have studied the directional charger’s deployment
problem in RWSN [9,18–20], to the best of our knowledge, there is no literature that has studied the
mobile directional charging problem. However, a directional antenna provides significant enhancement
over the omnidirectional antenna in terms of direction beam [21]. Moreover, when charging distributed
sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient
because of the smaller proportion of off-target radiation [22]. Inspired by the research issues in the
literature on mobile omnidirectional wireless charging scheduling [13–17], and directional charger’s
deployment [9,18–20], we propose the directional wireless charging optimization problem in this
paper. The complex factors of RF power transmission in practical environment are simplified in our
research problem.

In this paper, we investigate the mobile directional charging optimization problem in wireless
sensor networks. As shown in Figure 1, the data collection sensor network is deployed in a 2D plane
area. The sensors transmit data to the sink node through multiple hops route. The charger’s base
station serves for the DCV. The DCV starts from the base station and moves along the planned docking
spots and path to replenishing energy for all sensors in a charging cycle. The mobile directional
charging optimization problem is how to determine the DCV’s docking spots and charging directions
in the 2D plane, and plan the moving path through all docking spots to replenish energy for the sensor
network. The objective is to optimize Energy Charging Efficiency (ECE) of the DCV while maintaining
the sensor network working continuously. The ECE is the ratio of the energy received by all sensors to
the energy consumed by the DCV in a charging cycle. This problem is named as Charging Efficiency
Optimization Problem (CEOP) of mobile directional charging in RWSN.

Sensors 2019, 19, x FOR PEER REVIEW 2 of 24 

 

charging technology have been envisioned, the Wireless Power Consortium [12] has been established 
to start the efforts of setting an international standard for interoperable wireless charging. 

Recently, most research works of mobile charging in RWSN adopted the omnidirectional power 
transfer model [13–17]. Although some works have studied the directional charger’s deployment 
problem in RWSN [9,18–20], to the best of our knowledge, there is no literature that has studied the 
mobile directional charging problem. However, a directional antenna provides significant 
enhancement over the omnidirectional antenna in terms of direction beam [21]. Moreover, when 
charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is 
more energy-efficient because of the smaller proportion of off-target radiation [22]. Inspired by the 
research issues in the literature on mobile omnidirectional wireless charging scheduling [13–17], and 
directional charger’s deployment [9,18–20], we propose the directional wireless charging 
optimization problem in this paper. The complex factors of RF power transmission in practical 
environment are simplified in our research problem. 

In this paper, we investigate the mobile directional charging optimization problem in wireless 
sensor networks. As shown in Figure 1, the data collection sensor network is deployed in a 2D plane 
area. The sensors transmit data to the sink node through multiple hops route. The charger’s base 
station serves for the DCV. The DCV starts from the base station and moves along the planned 
docking spots and path to replenishing energy for all sensors in a charging cycle. The mobile 
directional charging optimization problem is how to determine the DCV’s docking spots and 
charging directions in the 2D plane, and plan the moving path through all docking spots to replenish 
energy for the sensor network. The objective is to optimize Energy Charging Efficiency (ECE) of the 
DCV while maintaining the sensor network working continuously. The ECE is the ratio of the energy 
received by all sensors to the energy consumed by the DCV in a charging cycle. This problem is 
named as Charging Efficiency Optimization Problem (CEOP) of mobile directional charging in 
RWSN. 

The CEOP problem has two main technical challenges. The first challenge is that since both the 
DCV’s docking spots and its charging orientations are continuous values, it is hard to determine the 
DCV’s docking spots and charging orientations to meet the charging coverage for all sensors. The 
second challenge is how to plan a DCV’s moving path that ensures no sensors will run out of energy 
during the charging cycle. 

The CEOP is an NP-hard problem and it is difficult to design a global optimal solution. We 
consider dividing the CEOP problem into two sub-problems: 1) How to determine the appropriate 
docking spots of the DCV in the 2D plane and the DCV’s charging direction at each docking spot; 2) 
How to plan the DCV’s moving path and charging time at each docking spot to meet the network’s 
energy requirements and optimize the DCV’s energy charging efficiency. 

 
Figure 1. Directional mobile charging scenario for the data collection network in RWSN (Rechargeable 
Wireless Sensor Networks). 

We model the charging docking point planning on the 2D plane as a location optimization of 
mobile charging with the objective of minimizing the number of docking points under the constraints 
and of maximizing the charging coverage utility locally. Then, we use the TSP optimization to 
minimize the charging path loop and maximizing energy charging efficiency for the whole network. 

The main contributions are as follow: 
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Wireless Sensor Networks).

The CEOP problem has two main technical challenges. The first challenge is that since both the
DCV’s docking spots and its charging orientations are continuous values, it is hard to determine the
DCV’s docking spots and charging orientations to meet the charging coverage for all sensors. The
second challenge is how to plan a DCV’s moving path that ensures no sensors will run out of energy
during the charging cycle.

The CEOP is an NP-hard problem and it is difficult to design a global optimal solution. We
consider dividing the CEOP problem into two sub-problems: (1) How to determine the appropriate
docking spots of the DCV in the 2D plane and the DCV’s charging direction at each docking spot; (2)
How to plan the DCV’s moving path and charging time at each docking spot to meet the network’s
energy requirements and optimize the DCV’s energy charging efficiency.

We model the charging docking point planning on the 2D plane as a location optimization of
mobile charging with the objective of minimizing the number of docking points under the constraints
and of maximizing the charging coverage utility locally. Then, we use the TSP optimization to minimize
the charging path loop and maximizing energy charging efficiency for the whole network.

The main contributions are as follow:
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• As far as we know, this is the first work investigating the mobile directional charging problem
in WRSN aiming to maximize the energy charging efficiency and maintain the networks
working continuously.

• We prove that the problem is NP-hard.
• We propose the coverage utility of the DCV’s directional charging, and design an approximation

algorithm to determine the docking spots and their charging orientations while minimizing the
number of the DCV’s docking spots and maximizing the charging coverage utility. It ensures the
mobile charging coverage for all the sensors in the network and improves the energy charging
efficiency locally.

• We propose a moving path planning algorithm for the DCV’s mobile charging to optimize the
DCV’s energy charging efficiency while ensuring the networks working continuously.

• We theoretically analyze the DCV’s charging service capability, and perform the comprehensive
simulation experiments. The experiment results show that energy charging efficiency is higher
than omnidirectional charging model in the data collection network.

The remainder of the paper is organized as follows: In Section 2, we review the related work
of RWSN; In Section 3, we present the description of directional charging model, network energy
consumption and problem definition; In Section 4, we propose the optimization algorithms; In Section 5,
we give analysis of network size and area size that one DCV can serve; In Section 6, we present
simulation result; Section 7 concludes this paper.

2. Related Works

The existing wireless energy transfer can be divided into Single-Input Single-Output energy transfer
model [23–34] and Single-Input Multiple-Output energy transfer model [13–17,31–35]. Energy transfer
optimization problems can be divided into static charging stations’ deployment [11,18–20,35–38] and
mobile charging vehicles’ dispatching problems [13–17,23–34].

Mobile omnidirectional wireless charging problem. All existing works considering the mobile
wireless charging adopt the omnidirectional power transfer model. Unlike the omnidirectional charging
problem, we should not only determine the charging stop point and plan the charging path, but also
determine the charging direction at each charging stop point. Yi et al. [13] investigate how to schedule
the omnidirectional charging vehicle to maximize its vacation time and achieve higher charging
efficiency of sensor networks. Xie et al. [17] investigate the mobile charging problem of co-locating
the mobile base station on the wireless charging vehicle. Wu et al. [15] studied the omnidirectional
charger vehicle dispatch problem to maximize the network lifetime and improve the energy efficiency
for large-scale WSNs. Khelladi et al. [14] modeled the omnidirectional charger dispatching problem
as a charging path optimization problem, and aimed to minimize the number of stop locations in
the charging path and reducing the total energy consumption of the mobile charger. Jiang et al. [16]
consider the on-demand mobile charging problem which schedules the omnidirectional charger to
maximize the covering utility.

Directional wireless chargers deployment problem. All existing charging works which adopt
the directional power transfer model only concern the directional chargers’ deployment problem in
RWSN, rendering them not applicable to our problem. Dai et al. [9] investigated directional chargers’
deployment problem to optimize charging utility for the sensor network. Dai et al. [18] proposed
the notion of omnidirectional charging and studied the omnidirectional chargeability under the
deterministic deployment of chargers and random deployment of chargers. The goal is to achieve that
at any position in the area with any orientation can be charged by directional chargers with power
being no smaller than a given threshold. Jiang et al. [19] studied the wireless charger deployment
optimization problem, which is to deploy as few as possible chargers to make the WRSN sustainable.
Ji et al. [20] further investigated the deployment optimization problem of wireless chargers equipped



Sensors 2019, 19, 2657 4 of 24

with 3D beamforming directional antennas, and achieve the deployment of as few as possible chargers
to make the WRSN sustainable.

To best of our knowledge, this is the first work to study the mobile directional charging problem
in RWSN. The closest to our work is mobile omnidirectional charging and deployment of directional
charger. Compared with omnidirectional power transfer model, there are two strengths to introduce
directional power transfer model in mobile charging application in RWSN. The first is that in the sparse
sensor networks, using high gained RF radio directional power transfer antenna can reduce energy
transmission waste and improve energy charging efficiency. The second is that the directional charger
can cover longer distance and transfer more stable energy.

3. Problem Formation

Table 1 describes the symbols used in this paper.

Table 1. Symbol and Notations.

Symbol Meaning

sk Coordinate of docking spot k
oi Coordinate of sensor node i
→

θsk
DCV’s charging orientation at docking spot k

d(sk, oi) Euclidean distance between sensor node oi and the docking spot sk
Pk,i(sk, oi) DCV’s energy transfer function at docking spot sk for sensor node oi

A Charging angle of DCV (◦)
v The moving speed of DCV (m/s)
D Effective charging distance of DCV (m)

Pout Energy transmit power of DCV (J/m)
ωc Moving energy consumption of DCV (J/m)

Cmax Energy capacity of DCV
ωoi Energy consumption of sensor node i
es Energy consumption for sensing one unit data
et Energy consumption for transmitting one unit data
er Energy consumption for receiving one unit data

Roi Sensing data generation rate of sensor node i
L × L Size of the area

3.1. Directional Charging Model

As shown in Figure 2, we introduce the DCV’s directional power transfer model as follows. When
the effective charging distance of directional charger is D and charging coverage angle is A, the effective

charging coverage area is a sector determined by its docking spot sk and charging orientation vector
→

θkj.
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For a sensor node oi is located at zoi , in order to determine whether the node oi can be charged

by the DCV stopped at docking spot sk with charging orientation vector
→

θsk , we have two judgment



Sensors 2019, 19, 2657 5 of 24

conditions: (1) The node oi is within the coverage angle A of the charger, denotes as inequality (1); and,
(2) The distance between node oi and charger is less than D, denotes as inequality (2).(

→

sk − zoi

)
×

→

θsk ≥‖ skzoi ‖ ×cos
(A

2

)
(1)

where ‖ skzoi ‖ denotes the distance between the location of the charger sk and the location of sensor
node zoi .

‖ skzoi ‖≤ D (2)

We refer the RF wireless charging model in Reference [11] to calculate a node’s energy received
from a wireless charger:

Pr =
GsGrη

L

(
λ

4π(d + β)

)2

Pout (3)

where d is the distance between a sensor node and a wireless charger, Pout is the charger’s transmission
power, Gs is the transmitting antenna gain, Gr is the node’s receiving antenna gain, L is polarization
loss, λ is the wavelength, η is rectifier efficiency, and β is a parameter to adjust the Friis’ free space
equation for short distance transmission. Except for distance d, all other parameters in Equation (3) are
constant values based on the environment and device settings. Therefore, we simplify the charging
model in Equation (3) as Equation (4).

Pr =
α

(d + β)2 (4)

where d is the distance from a sensor node to the DCV, and α represents other constant environmental
parameters including Pout, Gs, Gr, L, λ and η in Equation (3).

From Equation (4), we can deduce Pk,i(sk, oi), the effective charging power of the sensor node oi

received from the DCV which stopped at docking spot sk with charging orientation vector
→

θsk :

Pk,i(sk, oi) =


α

(d(sk,oi)+β)
2 ,

‖ skzoi ‖≤ D and(
→

sk − zoi

)
×

→

θsk ≥

‖ skzoi ‖ ×cos
(

A
2

)
0, others

(5)

3.2. Network Energy Consumption Model

We consider that each sensor node consumes energy for data sensing, transmission, and reception.
We assume sensor node oi generates sensing data with a rate Roi (b/s). Assuming PSN(oi) is the set of
previous sensor nodes that use sensor node oi on the routing path to the sink node. Equation (6) shows
the total energy consumption of sensor node oi.

ωoi =
∑

ol∈PSN(oi)

(
et + er

)
×Rol +

(
et + es

)
×Roi (6)

Here es, et, and er represent the energy consumption of one unit data for sensing, transmitting,
and receiving respectively [15].

Then we determine the data routing of the network through the minimum energy routing [39].
As shown in Figure 3, nodes o1, o2, o3, o4, and o5 sending data to the sink node through node o6. Then,
we have PSN(o6) = {o1, o2, o3, o4, o5}.
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3.3. Problem Formulation

We consider a set of wireless rechargeable sensor nodes O = {o1, o2, . . . , oN} randomly distributed
on a L× L 2D area, each sensor node oi generates sensing data with a rate Roi(b/s), i ∈ N. There is a
sink node located at Base Station which gathers the data from all sensors in the sensor network. A
Multi-hop data routing tree is constructed for forwarding all sensing data to the sink node, as shown
in Figure 4.
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Aiming to keeping the network working continuously, a DCV with an energy capacity of Cmax

is periodic dispatched to travel through a set of Docking Spots (DS = {s1, s2, · · · , sM}), M denotes the
number of docking spots. The DCV stops at each docking spot and rotates its RF charging antenna to a
specific orientation to charging the nearby sensors.

In a charging cycle, the DCV starts from the base station, moves through each docking spot and
finally returns back to the base station to wait for the next charging cycle. The charging cycle T consists
of the moving time Tmov, the charging time Tcha, and the time rest at the base station Tres. The moving
time Tmov is determined by the length Lc of the DCV’s moving path and moving speed v. The charging
time Tcha is the sum of the dwell times at all docking spots, denote as Tcha = {t1 + . . .+ tk + · · ·+ tM}.
The remaining time of each cycle is the DCV’s rest time Tres.

T = Tres + Tmov + Tcha = Tres +
Lc

v
+

M∑
k=1

tk (7)

Here Lc
v denotes moving time of the DCV, tk denotes the DCV’s charging time at docking spot sk,

the sum of tk denotes the total charging time of the DCV.
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Assume the DCV travels through DS to charging the sensor network. The DCV stops at a docking

spot sk and rotates to a specific charging orientation vector
→

θl
sk

. The sensor nodes which are effectively

covered by the DCV denote as SNCl
k

(
sk,
→

θl
sk

)
. The DCV’s dwell time is tk at docking spot sk.

For a DCV’s charging Path, CP = BSsp1 · · · spk · · · spM
}
, spk ∈ DS, we define EECE, the Effective

Charging Energy received by all sensor nodes from DCV in a charging cycle T as follows:

EECE =
∑

sk∈DS

∑
oi∈SNCl

k(sk,
→

θl
sk
)

Pk,i(sk, oi) × tk (8)

Here Pk,i(sk, oi) denotes the receiving power of the sensor node oi when the DCV is at docking

spot sk; and SNCl
k

(
sk,
→

θl
sk

)
denotes the sensor set covered by the DCV at sk and charging direction

→

θl
sk

.

In a charging cycle T, the DCV’s energy consumption includes moving and charging energy,
denote as Emov and Echa respectively. Charging consumption is determined by charging time and the
DCV’s output power Pout. Moving energy consumption is determined by the length of path Lc and its
energy consumption per unit of moving length ωc. Then the DCV’s Energy Consumption, EDCV is
denoted as Equation (9).

EDCV = Emov + Echa = Pout

M∑
k=1

tk +ωc × Lc (9)

Here tk denotes the DCV’s charging time at docking spot sk, Lc denotes the DCV’s length of
moving path, ωc denotes DCV’s consumption power of moving.

We define the DCV’s Energy Charging Efficiency as follows.
Energy Charging Efficiency η: the ratio of effective charging energy received by the network to

the DCV’s total energy consumption in a charging cycle T, denoted as Equation (10):

η =
EECE
EDCV

(10)

Here EECE denotes the Effective Charging Energy received by all sensor nodes from DCV in a charging
cycle which can be calculated by Equation (8), and EDCV denotes the DCV’s energy consumption in a
charging cycle which can be calculated by Equation (9).

We define the residual energy value of node oi at the time τ as eoi(τ) in a charging cycle. The
node’s residual energy value at any time should be not lower than minimum value Emin, and not
greater than maximum value Emax.

The variation of node’s residual energy value in a cycle is divided into three stages: 1) before
charging; 2) charging stage; 3) after charging. For a sensor node oi, eoi(τ) varied in a charging cycle T
as shown in Figure 5. ck denotes the arrival time of the DCV at docking spot sk in the first cycle T, tk
denotes the DCV’s dwell time at docking spot sk.
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Figure 5. The variation of energy value function of node oi.

The DCV carries limited energy Cmax, so we have to make sure that the energy consumed by the
charging car is no more than Cmax in a cycle.

We define the CEOP problem of mobile directional charging as follow:
For the set of wireless rechargeable sensor nodes O = {o1, o2, . . . , oN} randomly distributed on a

L× L 2D area, how to plan the charging docking spots and charging path where the DCV moves along
the path to replenishing energy for all sensors and maintains the sensor network working continuously.
The objective is to maximize the DCV’s energy charging efficiency while maintaining the network
working continuously.

CEOP problem is formulated as follow:
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4. Design and Analysis of Algorithms 

It is difficult for the CEOP problem to be solved directly. We solve the problem in two steps and 
divide it into two sub-problems: 

Here η denotes Energy Charging Efficiency, Emax denotes the maximum capacity of node, Emin
denotes minimum energy value of node. eoi(τ) denotes residual energy value of node oi at the
time τ,when τ ∈ [ωT,ωT + ck], eoi(τ) = eoi(ωT) − ωoi × τ, eoi(τ) denotes the remaining energy of
the node before charging, when τ ∈ (ωT + ck,ωT + ck + tk] , eoi(τ) = Emin +

(
Pk,i(sk, oi) −ωoi

)
× τ,

eoi(τ) denotes the remaining energy of the node during charging, when τ ∈ (ωT + ck + tk, (ω+ 1)T] ,
eoi(τ) = Emax −ωoi × τ, eoi(τ) denotes the remaining energy of the node after charging. EECE denotes
the Effective Charging Energy received by all sensor nodes from the DCV in a charging cycle, EDCV
denotes the DCV’s energy consumption in a charging cycle, Cmax denotes maximum energy capacity
of the DCV.
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4. Design and Analysis of Algorithms

It is difficult for the CEOP problem to be solved directly. We solve the problem in two steps and
divide it into two sub-problems:

(1) First, we find the set of Docking Spots (DS = {s1, s2, · · · , sM}) and their corresponding Charging

Orientation (CO =
{
→

θs1 ,
→

θs2 , · · · ,
→

θsM

}
) to maximize the charging coverage utility and ensure the

mobile charging coverage of the network (Section 3.1).
(2) Second, we plan the DCV’s charging path to travel through all docking spot in DS and the

charging residence time at each docking spot to optimize the overall energy charging efficiency
while maintaining the sensor network working continuously (Section 3.2).

4.1. Find Charging Docking Spots and Charging Directions

For the 2D plane on which the sensors are randomly deployed, we divide it into grids, and take
grid vertices as the DCV’s possible docking spots. Then we find the minimum number of the DCV’s
candidate docking spots and their charging directions to optimize the charging coverage utility locally
while achieving mobile charging coverage for the whole network.

We define the DCV’s Charging Coverage Utility at docking spot sk on the charging orientation
→

θl
sk

as the sum of received power of the charging covered nodes:

U
(
sk,
→

θl
sk

)
=

∑
oi∈SNC(sk,

→

θl
sk
)

Pk,i(sk, oi) (12)

where SNC
(
sk,
→

θl
sk

)
denotes the sensor nodes covered at docking spot sk in charging orientation

→

θl
sk

.

Suppose at the docking spot sk, the DCV has Qk optional charging directions, i.e., {
→

θ1
sk

,
→

θ2
sk

, . . . ,
→

θQk
sk

}.
The maximum charging coverage utility at docking spot sk is Umax(sk):

Umax(sk) = max
{

U
(
sk,
→

θ1
sk

)
, U

(
sk,
→

θ2
sk

)
· · ·U

(
sk,

→

θQk
sk

)}
(13)

Here U
(
sk,

→

θQk
sk

)
denotes charging coverage utility at docking spot sk in charging orientation

→

θl
sk

.

For num grid points on the discrete 2D plane, we get the vertex set of grids: CS =

{cds1, · · · , cdsk, · · · , cdsnum}, cdsk is coordinates of vertexes. We have to choose a set of candidate
docking spots S = {s1, · · · , sk, · · · , sM}, sk ∈ CS, and their corresponding charging direction
θ =

{
θs1 , · · · ,θsk , · · · ,θsM

}
, θsk ∈

{
θ1

sk
, . . . ,θQk

sk

}
, where sk has Qk possible charging directions. We use

Umax
sum(s) denotes the maximum coverage utility of the set S of candidate docking spots as Equation (14).

Umax
sum(S) =

M∑
k=1

Umax(sk)

S = {s1, · · · , sk, · · · , sM}, sk ∈ CS
θ =

{
θs1 , · · · ,θsk , · · · ,θsM

}
, θsk ∈

{
θ1

sk
, . . . ,θQk

sk

} (14)

As shown in Figure 6, there are three candidate docking spots s1, s2, and s3. The docking spot s1

can choose two possible orientation {
→

θ1
s1

,
→

θ2
s1

}, the docking spot s2 can choose two possible orientation

{
→

θ1
s2

,
→

θ2
s2

}, and the docking spot s3 can choose orientation {
→

θ1
s3

}. Therefore, there are five different
coverage utility of different combinations of docking spots and orientation vectors. We can calculate
the possible coverage utilities at s1, s2, and s3 according to Equation (12). For s1, two possible coverage
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utilities are presented as Equation (15). For s2, two possible coverage utilities are presented as Equation
(16). For s3, one possible coverage utility is presented as Equation (17).

U
(
s1,
→

θ2
s1

)
= P1,4(s1, o4)

U
(
s1,
→

θ1
s1

)
= P1,1(s1, o1) + P1,1(s1, o2)

(15)


U
(
s2,
→

θ1
s2

)
= P2,1(s2, o4) + P2,5(s2, o5)

U
(
s2,
→

θ2
s2

)
= P1,6(s2, o6)

(16)

U
(
s3,
→

θ1
s3

)
= P3,2(s3, o2) + P3,3(s3, o3) + P3,6(s3, o6) (17)
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As shown in Figure 6, we can get Umax(s1) and Umax(s2) respectively, as Equations (18) and (19).

Umax(s1) = U
(
s1,
→

θ1
s1

)
(18)

Umax(s2) = U
(
s2,
→

θ1
s2

)
(19)

Then we get the maximum coverage utility of candidate set S = {s1, s2, s3} and their related

charging directions θ ={θ1
s1

,θ1
s2

,θ1
s3

}, Umax
sum(S) = U

(
s1,
→

θ1
s1

)
+ U

(
s2,
→

θ1
s2

)
+ U

(
s3,
→

θ1
s3

)
.

The DCV’s energy loss includes charging energy loss and moving energy costs. At each docking
spot, we aim to reduce the DCV’s charging loss and get higher charging effectiveness. By minimizing the
number of docking spots, we can reduce the DCV’s moving energy cost in the process of mobile charging.
Additionally, maximizing charging coverage utility can reduce the charging energy loss at each docking
spot. Hence it finally improves the energy charging efficiency in mobile directional charging.

To find the candidate docking spots and their charging directions for improvement of the mobile
charging energy efficiency, we propose the two-objective optimization problem as Equation (20), that is
Minimizing the number of Stop points and Maximizing charging Coverage Utility under the constraint
of charging coverage of all sensors, called the MSMCU (Minimizing the number of Stop points and
Maximizing charging Coverage Utility) problem.
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where ak is a binary decision variable that is equal to 1 if region sk belongs to the minimum stops, and
to 0 otherwise. Additionally, the n inequality constraints ensure that every node must belong to at
least one stop region in the minimum stops. We analysis Equation (20), give Theorem 1 and the proof
of Theorem 1.

Theorem 1. The MSMCU problem of finding specified docking spots and orientations with minimum the
number of stops and maximum coverage utility is NP-hard.

Proof of Theorem 1. We prove Theorem 1 by giving a special instance of the problem and explaining
that the instance is NP-hard.

Instance. We assume that the coverage utility is the maximum as long as a sensor is covered, then
the problem can be reduced to solve the Minimum Set Covering Problem. Because the Minimum Set
Covering Problem is NP-hard, the MSMCU problem is also NP-hard. �

Then we propose a Greedy approximation algorithm of Maximum Coverage Utility (GMCU).
GMCU algorithm firstly divides a 2D plane into grids. Secondly, it takes each grid vertex as a possible
stop point and computes its optimal charging Direction and Maximum Coverage Utility (DMCU).
Finally, it selects a set of candidate stop points to achieve overall maximum utility and network charging
coverage. Let us first introduce the GMCU algorithm, and then introduce the DMCU algorithm.

(1) GMCU algorithm

In the GMCU algorithm, we divide the plane into grids, and take each vertex as a possible docking
spot. The coverage of the charger is a 90◦ sector with radius D. The DCV only chooses one orientation
to charge each time it stops, so if the grid’s size is too large, some nodes will be missed. The grid’s size
d must satisfy Equation (21)

d ≤
√

2/2×D (21)

The GMCU algorithm firstly divides a 2D plane into grids, take each grid vertex as a possible
docking spot, denoted as CS, and cdsi represents coordinates of vertexes. Put each cdsi into the DMCU
algorithm to calculate the maximum coverage utility and the covered nodes set. Choose the docking
stops with the maximum value of coverage utility until all nodes are covered. The outputs are the
docking spot set (DSS) and the set of covered nodes set (SANC) at corresponding directions.

The procedure of GMCU algorithm is presented in Table 2.

(2) The DMCU algorithm

The DMCU algorithm is used to find the charging direction with maximum coverage utility at
each docking spot.
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Take Figure 7 as an example to illustrate the process of DMCU algorithm: (1) The DCV rotates
counter-clockwise with each different node as initial boundary; (2) Calculate the coverage utility of
each orientation.

Table 2. The Procedure of the GMCU (Greedy approximation algorithm of Maximum Coverage
Utility) Algorithm.

GMCU algorithm: find candidate docking spots and their charging directions

1. Input: The length of area: L; Farthest distance DCV can reach: D; Charging angle of DCV: A
2. Discrete the L x L plane into grids, get the vertex set of grids: CS = {cds1, cds2, · · · , cdsk, · · · , cdsnum}, cdsk

is coordinates of vertexes
3. DDS = ∅, SANC = ∅, k = 0
4. //DDS candidate docking spots
5. //SANC set of cover set which associated with DDS
6. While O , ∅ // O set of sensor nodes
7. SNCtemp = ∅, Utemp = 0, CDStemp = 0
8. //find a stop point with max cover utility
9. While k < len(CS)
10. Call DMCU(cdsk) to get max coverage utility
11. Umax(cdsk), cover set SNCk at docking

12. point cdsk with charging direction
→

θsk

13. If Umax(cdsk) > Utemp
14. Utemp = Umax(cdsk)

15. SNCtemp = SNCk
16. CDStemp = cdsk
17. End If
18. k = k + 1
19. End While

20. SANC = SANC∪
{
SNCtemp

}
21. DDS = DDS∪

{
CDStemp

}
22. O = O− SNCtemp

23. CS = CS – { CDStemp
}

24. k = 0
25. End While
26. Output: set of docking points DDS and set of charging cover sets SANC at related charging directions
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Six different coverage utility values can be obtained; the output is orientation with maximum
coverage utility of a docking spot and the sensor nodes set that the combination of docking spot and
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this charging orientation can cover. Figure 7a–f show the set of nodes covered by the DCV at dock spot

sk in each orientations (
→

θ1
sk
∼

→

θ6
sk

), SNC
(
sk,
→

θ1
sk

)
∼ SNC

(
sk,
→

θ6
sk

)
represent the corresponding nodes sets.

The procedure of DMCU algorithm is presented in Table 3.

Table 3. The Procedure of the DMCU Algorithm.

DMCU algorithm: Find the max utility, cover set and charging orientation at sk

1. Input: Sensor node set: O = {o1, o2, · · · , oi, · · · , oN}; Coordinates of certain docking spot sk:
(
cx, cy

)
;

Farthest charging distance DCV can reach: D; Charging angle of DCV: A
2. OCS = ∅ // OCS sensors’ set possible covered by sk
3. i = 0
4. While i < N: //find sensors’ set OCS at docking spot sk
5. Calculate Euclidean distance between sensor oi
6. and docking spot di
7. If di < D:
8. OCS = OCS∪ {oi}

9. End If
10. i = i + 1
11. End While
12. If OCS , ∅:
13. L = len(OCS)
14. Calculate the all possible charging angles:
15. ϕ =

{
γ1,γ2, · · · ,γ, · · · ,γL

}
16. Sort sensors in set OCS in ascending order
17. according to the value of angles.
18. DCS = ∅, k = 0
19. // calculate L directions’ cover sets
20. While k < L
21. m = 0, SNCtmp = ∅
22. While m < L
23. If γk ≤ γm ≤ (γk + A)%360:
24. SNCtmp = SNCtmp ∪ {om}

25. End If
26. m = m + 1
27. End while

28. DCS = DCS∪
{
SNCtmp

}
29. k = k + 1
30. End while
31. CUStmp = ∅, SNCtmp = ∅, j = 0, γtmp = 0
32. // find the cover set with max utility
33. While j < len(DCS)
34. Calculate cover utility CUS[ j] of DCS[ j]
35. If CUS[ j] > CUStmp
36. CUStmp = CUS[ j]
37. SNCtemp = DCS[ j]
38. γtmp = ϕ[ j]
39. End If
40. j = j +1
41. End While
42. Umax = CUStmp, SNC = SNCtemp, γ = γtmp
43. End If
44. Output: max utility Umax, covered set SNC, direction γ
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OCS represents a coverage set of a candidate docking spot, the initial value is null. If the distance
between the node and the candidate stop is not greater than D, then add the node into OCS. γ j in ϕ
represents the angle formed by each node in OCS at each candidate dock spot. DCSk represents a
coverage set of candidate stop with kth charging direction, and the CUSj indicates the corresponding
coverage utility value. The DMCU algorithm finally outputs the maximum value Umax

sk
in CUS j and

the set of covered nodes SNC
(
sk,
→

θl
sk

)
covered at this docking spot sk with corresponding direction

→

θl
sk

.

As shown in Figure 8, we randomly deploy 100 nodes in the 20 × 20 m2 area and run the GMCU
algorithm to determine specified docking spots and orientations with maximum coverage utility and
minimum the number of docking spots.
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4.2. Plan Moving Path and Charging Residence Time

In this section, we plan the DCV’s charging moving path to travel through all candidate docking
spots chosen by the GMCU algorithm and the charging residence times at each docking spot to maintain
the network’s continuous working and optimize the overall charging energy efficiency.

Firstly, we introduce the charging cycle T. As shown in Figure 9, the charging cycle T consists of
the DCV’s moving time, the charging residence time at each docking spot, and the rest time at the base
station. The moving time is determined by the length of charging path. The charging residence time at
each docking spot is determined by charging energy requirement of sensors covered by the DCV.
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To achieve the goal of maintaining network perpetually, the charging process can be repeated
periodically. Then this periodical charging cycle must meet two requirements:

(1) The energy received by a sensor is greater or equal to the energy consumed in a charging cycle;
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(2) The residual energy value of a node will not be lower than Emin during a charging cycle.

The cover sets charged by the DCV at dock spot sk on charging orientations
→

θl
sk

:

SNC
(
sk,
→

θl
sk

)
=
{
okl

1 , okl
2 , · · · , okl

m

}
. We can derive the minimal charging residence time tk according to the

charging cover sets SNC
(
sk,
→

θl
sk

)
at docking spot sk:

tk = max
oi∈SNC(sk,

→

θl
sk
)

{
ωoi

Pk,i(sk, oi)

}
× T (22)

Hereωoi denotes the energy consumption of sensor node oi, Pk,i(sk, oi) denotes the receiving power
of the sensor node oi when the DCV is at docking spot sk.

We denote ck as the arrival time of the DCV at docking spot k in the first cycle. Denote d0,1 as
the distance between the base station and the first docking spot, dl,l+1 as the distance between lth and
(l + 1) th docking spot.

ck =
k−1∑
l=0

dl,l+1

v
+

k−1∑
l=1

tl (23)

Here tl denotes the DCV’s charging time at docking spot sl.
According to Figure 5, we can derive from Equation (22):

Emax − min
oi∈SNC(sk,

→

θl
sk
)

{
eoi(ck)

}
≥ Emax − min

oi∈SNC(sk,
→

θl
sk
)

{
eoi(T)

}
(24)

That is to say eoi(m× T + ck) is the minimum value of eoi(τ). To have eoi(τ) ≥ Emin, it is sufficient
to have:

eoi(m× T + ck) = eoi(m× T) − ck ×ωoi ≥ Emin, oi ∈ SNC
(
sk,
→

θl
sk

)
(25)

while m ≥ 1:

eoi(m× T + ck) = eoi(m× T) − ck ×ωoi

= eoi((m− 1) × T + ck + tk) −
{
m× T − [(m− 1) × T + ck + tk]

}
− ck ×ωoi

= eoi((m− 1) × T + ck + tk) − (T − tk) ×ωoi= Emax − (T − tk) ×ωoi

(26)

Therefore, if Equation (27) holds, we have eoi ≥ Emin, the sensor sk can working continuously.

Emax − (T − tk) ×ωoi ≥ Emin (27)

We can get the Charging Cycle T when the two periodical charging requirements are met. Then
we plan the DCV’s charging moving path.

When the DCV moves along the shortest Hamiltonian circle, we can achieve the maximum energy
efficiency η.

We can proof this based on contradiction. Suppose the shortest travel route for the Hamilton Circle
is L = {s1s2 · · · sM}, and there exists a move route L̂ = {s3s2 · · · sMs1}. Assume that η̂ ≥ η is established.

η̂ =
E

ÊDCV

=

∑M
k=1

∑N
i=1 Pk,i(sk, oi) × t̂k

Pout ×
∑M

k=1 t j +ωc × L̂
(28)

η =
E

EDCV
=

∑M
k=1

∑N
i=1 Pk,i(sk, oi) × tk

Pout ×
∑M

k=1 tk +ωc × L
(29)
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The energy received by the node in this cycle is equal to the energy consumed. The numerator of
Equations (28) and (29) are equal. Because L ≤ L̂, η̂ ≤ η, thus leading to a contradiction. Therefore,
we can dispatch the DCV moving along the shortest Hamiltonian circle to achieve the maximum
energy efficiency.

We redefine Equation (11) as Equation (30)

max η

s.t. tk = max
oi∈SNC(sk,

→

θl
sk
)

{
ωoi

Pk,i(sk,oi)

}
× T

Emax − (T − tk) ×ωoi ≥ Emin

T = Tres + TTSP +
M∑

k=1
tk

Pout
M∑

k=1
tk +ωc × Lc ≤ Cmax

(30)

Here η denotes Energy Charging Efficiency, ωoi denotes the energy consumption of sensor node oi,
Pk,i(sk, oi) denotes the receiving power of the sensor node oi when the DCV is at docking spot sk, tk
denotes the DCV’s charging time at docking spot sk, Tres denotes rest time of the DCV, TTSP. denotes
the moving time of the DCV, the sum of tk denotes the total charging time of the DCV.

Finally, we get the charging residence time at each docking spot and energy efficiency by solving
the planning problem.

5. Analysis of the DCV’s Service Capability

We use only one DCV with energy capacity of Emax to maintain WRSN perpetually. Therefore, the
network size and area size are limited. This section will specifically analyze the service capability of
the DCV.

Assume that the number of stops is M, the charging time of each stop is tk, the distance between
adjacent stops is dk−1,k, the length of the return route is dback. Two constraints must be satisfied for
each round of charging: (1) the energy received by each node is not less than the energy consumed,
formulated as Equation (31); and (2) the DCV should not run out of energy in a round, formulated as
Equation (32).

min
oi∈SNC(sk,

→

θl
sk
)

{
Pk,i(sk, oi)

}
× tk ≥ max

oi∈SNC(sk,
→

θl
sk
)

{
ωoi

}
×

(
(t1 + · · ·+ tM) +

d1,2+···+dM−1,M+dback
v

)
, 0 ≤ k ≤M (31)

Pout × (t1 + · · ·+ tk + · · ·+ tM) + (d1,2 + d2,3 + · · ·+ dM−1,M + dback) ×ωc ≤ Cmax (32)

Here, Pout is the charger’s transmission power, v denotes the moving speed of the DCV, ωc denotes
DCV’s consumption power of moving, Cmax denotes maximum energy capacity of the DCV.

We first analyze the maximum size of area. Assuming that there are only two nodes in the network
and they are on the diagonal line of the network, the consuming power is the minimum ωmin, the DCV
stops at the nodes respectively, and the receiving power of the nodes is both Pout. Then the number of
stops is two (M = 2), the shortest distance of moving route is 2

√
2 ∗ l, l denotes length of the network

,then we can get Equation (33)

lmax =
Cmax × (Pout − 2×ωmin)

2
√

2×
(Pout×ωmin

v +ωc × (Pout − 2×ωmin)
) (33)



Sensors 2019, 19, 2657 17 of 24

Secondly, we analyze the minimum size of area. Assume that the nodes are evenly distributed in
the network, the consuming power is the maximum ωmax, the DCV stops at the nodes respectively, and
the receiving power is all the minimum Pmin. Then the number of stops is formulated as Equation (34). l

√
2

2 ×D


2

(34)

The longest distance of move route is formulated as Equation (35).

2× (M− 1) ×
√

2×D (35)

We bring Equations (34) and (35) into Equations (31) and (32) to get Equations (36).
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Therefore, the minimum length of area is Lmin, formulated as Equation (37).

Lmin =
⌊√

d2 ×M
⌋

(37)

When the network area is the smallest, assuming that the charger can charge CN nodes
simultaneously at most, the number of nodes can reach the maximum. Then the maximum number of
nodes is CNS, formulated as Equation (38).

CNS = M×CN (38)

In summary, when the size of the area is between Lmin and Lmax and the size of network is less
than CNS, the proposed charging model and approximate algorithm can satisfy the two constraints: 1)
the energy received by each node is not less than the energy consumed; and 2) the DCV should not run
out of energy in a round.

6. Simulation Experiments

In this section, we describe comprehensive simulation experiments to investigate the algorithms’
performance under different influence factors, such as grid size, area size, and network size. In
the existing literature, there are no related works that study mobile directional charging problem in
WRSN. Therefore, we conducted simulations experiments and compared charging efficiency with
mobile omnidirectional charging models [14]. The simulation experiments were performed on a 64-bit
Windows 10 system; the programming languages were C++ and Python. The algorithms were realized
in the C++ language. Additionally, the visualization of deployment results was realized in Python. In
the simulation experiments, we set up the parameters of the DCV and rechargeable sensor network, as
in Table 4.
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Table 4. Parameter Setting.

Parameter Value

Emax 10,000 J
Pou 3 J/s
ωc 0.3 J/m
D 3 m
v 0.5 m/s

Roi randomly generated in References [1,10] b/s
es 0.01 mJ/b
et 0.06 mJ/b
er 0.05 mJ/b
α,β 10

The number of sensor nodes 20, 40, 60, 80, 100, 120, 140, 160, 180,200
The size of area 15 × 15 m2, 20 × 20 m2, 25 × 25 m2, 30 × 30 m2, 35 × 35 m2,

6.1. Comparison Experiments on Different Grid Size

In our approach, we discretized the continuous 2D plane with gridding. We investigated how
grid size affects the algorithm’s performance. We randomly deployed 20, 40 and 60 nodes in the
15 × 15 m2 area, changed the grid size, and explored the variation of energy efficiency and docking
spots number. Figure 10 shows that with the decrease of grid size, the energy efficiency of the DCV
increase. Additionally, a stable grid size tends to be 0.2 m. Figure 11 shows that with the decrease of
grid size, the number of specified docking spots decreases. Additionally, it tends to be stable when
grid size is .2 m.Sensors 2019, 19, x FOR PEER REVIEW 19 of 24 
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6.2. Comparison Experiments on Different Network Size And Area Size

We investigated how network size affects the algorithm’s performance. We randomly deployed
20, 40, 60, 80, 100, 120, 140, 160, 180, 200 nodes in 15 × 15 m2, 20 × 20 m2, 25 × 25 m2, 30 × 30 m2,
35 × 35 m2 plane areas respectively, and explored the variation in the energy efficiency of DCV. It can
be seen in Figure 12 that as the number of nodes increases, the energy efficiency increases; because the
number of nodes increases in the same area, the number of nodes can be covered by the DCV increases,
so more energy is received by the nodes, and the energy efficiency is improved. As shown in Figure 13,
when the number of nodes remains unchanged and the area becomes larger, the energy efficiency
decreases. This is because as the area becomes larger, the distance between nodes becomes larger, the
moving path of the DCV becomes longer, and the energy consumed on moving increases, which leads
to the decrease of the energy efficiency of the DCV.Sensors 2019, 19, x FOR PEER REVIEW 20 of 24 
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6.3. Comparison Experiments on Mobile Omnidirectional and Directional Charging

In the existing literature, there are no related works that use directional charging model for mobile
charging in WRSN. Therefore, we conducted simulation experiments and compared charging efficiency
with mobile omnidirectional charging [14]. We randomly deployed 20, 40, 60, 80, 100, 120, 140, 160,
180 and 200 nodes in 15 × 15 m2, 20 × 20 m2 and 25 × 25 m2 areas. In experiments, we used DCV
and omnidirectional charging vehicle respectively to charge the network according to the algorithms
proposed in this paper, and compare their energy efficiency. Figures 14–16 show the variation of energy
efficiency in different area size and network size. The experiments show that the energy efficiency of
DCV is higher than that of omnidirectional charging vehicle in the network with sparse nodes. As
the node density increases, the energy efficiency of DCV and omnidirectional charging vehicle will
gradually converge. Hence our mobile directional charging algorithm is more suitable in a network
with sparse nodes compared with mobile omnidirectional charging.Sensors 2019, 19, x FOR PEER REVIEW 21 of 24 
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7. Conclusions

In this paper, we investigated the DCV’s charging efficiency optimization problem in RWSN while
maintaining sensor network working continuously. We proved that the problem is NP-hard. Firstly, we
proposed the coverage utility of directional charging. Then we transformed the finding of candidate
docking spots and their charging directions on the 2D plane into a two-objective optimization problem
of minimizing number of stop points and maximizing charging coverage utility. Additionally, we
proposed a greedy approximation algorithm to solve the two-objective optimization problem and
find the set of candidate stop points of the DCV. Finally, we planned the DCV’s charging moving
path to travel through all candidate docking spots to maintain the network’s continuous working and
optimize the overall energy charging efficiency. We theoretically analyzeed the DCV’s charging service
capability, and performed the comprehensive simulation experiments. The simulation experiment
results show that energy charging efficiency is higher than omnidirectional charging model in the
sparse networks.

As stated in the literature [40], WPT has several limitations when applied to a WSN. First, it has
very low energy transfer efficiency as distance increases. Second, it is sensitive to obstruction between
an energy source and a receiver. Therefore, this technology is only suitable in the ultra-low-power
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WSN scenario. In future work, we will further investigate more practical energy replenishment
optimization problem in WSN, in which we can use a hybrid energy replenishing scheme, such as
wireless charging for ultra-low-power sensor nodes and solar energy harvesting for high-power sensor
nodes in the network.
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