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Abstract: The world’s population is aging: the expansion of the older adult population with multiple
physical and health issues is now a huge socio-economic concern worldwide. Among these issues,
the loss of mobility among older adults due to musculoskeletal disorders is especially serious as it has
severe social, mental and physical consequences. Human body joint monitoring and early diagnosis
of these disorders will be a strong and effective solution to this problem. A smart joint monitoring
system can identify and record important musculoskeletal-related parameters. Such devices can be
utilized for continuous monitoring of joint movements during the normal daily activities of older
adults and the healing process of joints (hips, knees or ankles) during the post-surgery period. A viable
monitoring system can be developed by combining miniaturized, durable, low-cost and compact
sensors with the advanced communication technologies and data processing techniques. In this
study, we have presented and compared different joint monitoring methods and sensing technologies
recently reported. A discussion on sensors’ data processing, interpretation, and analysis techniques is
also presented. Finally, current research focus, as well as future prospects and development challenges
in joint monitoring systems are discussed.

Keywords: wearable sensors; joint monitoring system; joint angles; range of motion (ROM); skeletal
tracking; goniometer; optical sensors; textile-based sensors; inertial measurement unit (IMU);
sensor fusion

1. Introduction

The human body is a well-developed mechanical structure. The skeleton of the human body is
made up of 206 differently shaped bones, which serves as a framework of the body, and the joints
are the locations where bones meet each other. Joints hold the bones together and give the skeleton
stability and mobility [1]. As we grow older, joints begin to deteriorate due to wear and tear as well as
disease states. Three types of joints are present in the human body: fibrous (immovable), cartilaginous
(semi-movable) and synovial (freely movable) joints [2]. Synovial joints (Figure 1a) are the key joints of
our body because they provide mobility by allowing load-bearing, low-friction, wear-resistant smooth
movement between articulating bone surfaces [3]. We have six groups of synovial joints in our body.
These are categorized by the apposing bone surface at joints and the types of movement they permit:
pivot, hinge, saddle, plane, condyloid and ball-and-socket joints [3]. These are presented in Table 1
and illustrated in Figure 1b.

Sensors 2019, 19, 2629; doi:10.3390/s19112629 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-0517-6008
https://orcid.org/0000-0002-6390-0933
http://www.mdpi.com/1424-8220/19/11/2629?type=check_update&version=1
http://dx.doi.org/10.3390/s19112629
http://www.mdpi.com/journal/sensors


Sensors 2019, 19, 2629 2 of 39

Sensors 2019, 19, x FOR PEER REVIEW 3 of 37 

 
(a) 

 
(b) 
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monitoring of joint activity and health can record and extract important parameters for early 
diagnosis, leading to early treatment of mobility-related problems. Analysis of human joint posture 

Figure 1. (a) Synovial joints; (b) Types of synovial joints. Image source: https://opentextbc.
ca/anatomyandphysiology/chapter/9-4-synovial-joints/under a Creative Commons Attribution 4.0
International License.

All synovial joints of the human body are bound by a complicated system of ligaments, muscles,
tendons and cartilage [4]. There are protective membranes and synovial fluid which lubricate those
joints to facilitate smooth movements and load bearing [5]. Throughout our life and for every functional
activity, these joints are critical and several bear our weight and are key to our movements. With ageing,
synovial fluid production is reduced, cartilage wears, and the articulating bones come into direct
contact, causing irregular articular surface and loss in bone density which are commonly known as
musculoskeletal damage. Pain, stiffness, deformation, inflammation and swelling in the joints are
the signs of this musculoskeletal damage. Worldwide, musculoskeletal disorders have become a
serious threat to healthy aging. Musculoskeletal disorders are one of the major causes of work loss and
early retirement, lost retirement wealth [6] and reduced productivity [7]. This disorder is the second
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most common cause of disability [8]. Persons with these disorders have significant morbidity and
higher mortality rates than their age- and gender-matched peers [9]. When considering death and
disability together, musculoskeletal disorders rank fourth (6.7%) in total global death and disability
burden [10]. According to the Global Burden of Disease Study 2010 (GBD 2010), the impact on global
disability burden due to musculoskeletal conditions is enormous, and it is the top-ranked common
cause of disability among older adults. The proportion of years lived with disability (YLDs) due to
musculoskeletal disorders is significantly higher while considering older age groups (50 years and
more) in both developed and developing countries (Figure 2), and are predicted to increase dramatically
in the coming decades [8].

Table 1. Types of synovial joints.

Joint Type Joint Movement Examples
Pivot Rotation of one bone around another Top of the neck
Hinge Flexion/Extension Elbow/Knee/Ankle
Saddle Flexion/Extension/Adduction/Abduction/Circumduction Thumb
Plane Gliding movements Inter-carpal/Tarsal bones

Condyloid Flexion/Extension/Adduction/Abduction/Circumduction Wrist
Ball-and-socket Flexion/Extension/Adduction/Abduction/Rotation Shoulder/Hip
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(b) 70+ years; and developed countries (c) 50–69 years; (d) 70+ years. Source: The Global Burden of
Disease Study 2010 (GBD 2010).
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Among musculoskeletal disorders, arthritis is one of the most common, and it is a major contributor
to the world disability burden. From 1990 to 2013, it increased by 75% across the world’s population [10,
11]. There are more than 100 different types of arthritis [11]. It can affect virtually any joint [12],
and people of all ages, genders and races can have arthritis-related problems. Eventually, this leads
to physical impairment and loss of mobility by making the affected joints very hard to function.
According to the Arthritis Foundation [11], about 54.4 million adults in the U.S. (22.7 percent of
all adults) had formally diagnosed arthritis and among them, 23.7 million (43.5 percent of those
with arthritis) had arthritis-attributable activity limitation such as the inability to do daily activities
(e.g., walking or climbing stairs). Losing these kinds of mobility has severe physical, mental and social
consequences among older adults. Poor mobility gradually leads to a lack of independence, depression,
reduced productivity, weakened ability in handling daily activities, and worsening health related
quality-of-life [13]. The cost for direct treatment and healthcare services are a major social and financial
burden on society and caregivers. Also, costs due to lost productivity (the indirect economic loss to
society) outweigh the direct costs by a factor of five [14]. Responding to this increasing socio-economic
burden demands a multilevel, integrated response, including primary prevention, early detection and
effective intervention for persons at risk with common musculo-skeletal health issues.

Common factors that result in loss of mobility include aging, poor or infrequent physical activity
and/or poor diet that leads to obesity and several chronic diseases. A smart wearable monitoring and
assistive device can help a person by regularly monitoring the mobility status and assisting to maintain
regular physical activities/exercises [15]. Such wearable devices that provide continuous monitoring of
joint activity and health can record and extract important parameters for early diagnosis, leading to
early treatment of mobility-related problems. Analysis of human joint posture and movement is
fundamental for an extensive range of mobility-related activities such as rehabilitation, sports medicine,
human activity assessment and virtual guided training [16]. To perform such an analysis, a complete
set of data related to mobility and musculoskeletal health status is required. Then, mobility-related
parameters from the processed data can be interpreted by the medical experts to provide useful
information about the overall mobility status of the individual. Also, by comparing the measured
parameters of an individual person with the reference values, accurate diagnosis of mobility-related
problems becomes feasible. There are several sensing technologies capable of detecting joint parameters
and movements. Most existing joint monitoring systems are large and complex, with a sophisticated
and fragile structure [17–19]. Some systems also require a skilled operator and laboratory setup to
gather the data and extract joint-related information. Fortunately, with advances in sensor technology,
the monitoring process has become easier, more convenient and less costly to implement. Also, wearable
sensors are now very reliable, and so are extensively used for healthcare, entertainment, security and
consumer applications [20–22].

Wearable sensor-based health monitoring devices can monitor and record real-time information
about one's physiological condition and motion activities [23]. These monitoring systems are comprised
of a variety of miniaturized sensors that can be integrated into comfortable garments or directly
attached to the human body [20]. There are several wearable sensors which are capable of measuring
different physiological signals such as body temperature, heart rate (HR), electrocardiogram (ECG),
electromyogram (EMG), respiration rate (RR), blood pressure (BP), arterial oxygen saturation (SpO2)
and electrodermal activity (EDA) [20]. In addition, micro-electro–mechanical system (MEMS)-based
motion sensors (e.g., accelerometers, gyroscopes and magnetic field sensors) are widely used for activity
monitoring [19–22,24]. By combining those sensors with actuators, wireless communication modules
and signal processing units, different viable real-time wearable health monitoring systems could be
developed for various applications such as activity monitoring, fall detection, gait pattern and posture
analysis, in sleep assessment, or early detection and diagnosis of several cardiovascular, neurological
and pulmonary diseases. These systems can also raise an alarm in the case of any potential health issues
and transmit the measured data to the healthcare personnel or services via a secure wireless media
such as the internet or a cellular network, thereby functioning as the gateway to remote healthcare
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facilities. Thus, advanced sensors have opened the door of opportunity to develop a miniaturized
wearable joint monitoring device which is accurate, durable and able to connect wirelessly with smart
devices for easy, fast and seamless operation [24]. However, the selection of the sensor is critical,
and depends upon several associated factors related to performance, cost, calibration and service of the
entire system. To implement a comprehensive joint monitoring system, we need to integrate sensors,
a data transmission device and a feedback system.

Various types of joint monitoring devices based on different sensing techniques and algorithms
are suggested in literature [17,25–82]. The main focus of many researchers is to make the system simple,
easy-to-use, cost-effective, non-invasive, unobtrusive and wearable with wireless communications [77].
With these features, the system can be used in real time for monitoring and analyzing the
continuously collected data based on detailed input, requirements and specifications of the person
being monitored [15,23,83–85]. In this paper, we present a detailed survey of different proposed
and developed technologies and methods of joint monitoring. Three key parameters—joint angle,
motion and skeletal tracking—for joint monitoring and their measuring techniques are discussed in
the Section 2. Various types of sensors and technologies commonly used to develop joint monitoring
systems are explained and compared in Section 3, highlighting their working principles, measurement
parameters, data gathering and processing, and validation techniques. A short list of different types of
published sensors and technologies and monitored joint parameters are shown in Figure 3, while Table 2
presents a comparison among them, mentioning the measuring techniques, method of analysis, their
advantages and limitations. In addition, we also review several proposed sensor fusion methods
for developing joint monitoring systems. Data processing, interpretation and proper analysis are
also important to retrieve useful joint health information from the system data. Therefore, a brief
discussion on data processing and analyzing techniques for further feedback and prediction application
is presented in Section 4. Finally, in Section 5, we conclude the manuscript by summarizing the
importance of joint monitoring systems with some key challenges and future research opportunities.
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Table 2. Comparison among different published sensor technologies for monitoring joints.

Ref. Types of
Sensor/Technology

Monitored Joint
Parameters * Measure Method of Analysis Advantages Limitations

[25–28] Optical fiber sensors Angle

Attenuation of the
transmitted

optical signal
power

Using the relation between
the attenuation and the

bending angle of the fiber

• High resolution
• Flexibility
• Light-weight
• Long term reliability
• Immunity to

electromagnetic interference

• Limited measurement range (Angle)
• Nonlinearity
• Sensitive to temperature and humidity

[17,29,30] Optical-based
goniometer Angle

Planar motion of
an optical

navigation sensor

Detecting navigation of the
sensor using a miniature
camera to calculate the

bending of the joint

• Compact and light-weight
• Flexibility
• High accuracy
• High speed of reaction

• Sensitive to placement location
• May hinder natural joint movement

during operation
• 3D sensing may not be possible

[31–36]
Imaging and

video-based tracking
system

Angle, motion,
skeletal tracking

Visual data of
several human

actions

Skeletal tracking using
anthropometric constraints
and known joint locations

in reference videos **

• High accuracy
and sensitivity

• Able to capture movements
of multiple joints at a time

• No body-worn sensors
are needed

• Complex procedure with expensive infrastructure
and sophisticated analyses

• Limited coverage area
• Requires body markers and adequate lighting

condition for accurate measurements
• Unreliable to differentiate between near and far

parts of human body, and for postures having
self-occlusions ***

[37]
Textile-based

conductive wire
sensors

Angle Changes of
resistance

Changes of resistance are
directly proportional to

joint angles

• Comfortable and suitable
for long-term monitoring

• Simple mechanism
• One-time calibration
• Low-cost

• Low resolution
• Low accuracy
• Nonlinearity
• Material uncertainties and hysteresis

[38–42] Textile-based flex
sensors Angle Changes of

resistance

Changes of resistance are
directly proportional to

joint angles

• Flexibility and stretchability
• Easily attachable with

comfortable garments
• Low-cost

• Fragile and lower lifetime (Prone to be damaged
due to numerous bending)

• Low accuracy with noisy signal
• Nonlinearity
• Sensors are wide and affixing multiple sensors on

the supportive garments is not feasible

[43–47] Textile-based strain
sensors

Angle, motion
and rotation

Changes of
resistance

Changes of resistance are
directly proportional to
joint angles and motion

• Flexibility and stretchability
• High sensitivity
• Low-cost

• Performance degradation due to large mechanical
strains and rigorous deformations

• Signal drift due to the viscoelasticity of materials
• Limited to sense movements in the sagittal plane
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Table 2. Cont.

Ref. Types of
Sensor/Technology

Monitored Joint
Parameters * Measure Method of Analysis Advantages Limitations

[48]

Piezoresistive sensors
– chopped carbon fiber
(CCF)/polydimethylsiloxane

(PDMS) yarns

Motion Changes of
resistance

Variation of relative
resistance under

mechanical deformation
due to joint movements

• Flexibility
• High sensitivity
• Easy integration into

textile structures

• Nonlinearity
• Material uncertainties and hysteresis
• Applying higher strain may cause piezoresistive

performance (i.e., sensitivity) decay and delays
the piezoresistivity transition

[49–54]

Smartphone sensors
–accelerometer,

gyroscope,
magnetometer and

camera

Angle, motion

Acceleration,
inclination and

camera
measurements

Using smartphone
applications to gather

inbuilt sensors and camera
data for measuring the

range of motion

• No external sensors
are needed

• No external communication
and data processing
module are needed

• Applications are easy
to implement

• Lower accuracy comparing to other external
sensors-based applications

• Difficult to place smartphones around different
body joints

• Unable to monitor complex joint movements
• No standardized testing procedures are reported

for clinical application

[55–59]

Acoustic emission
(AE) sensors

–piezoelectric-films/MEMS-based
microphones

Angle, motion

High-frequency
sound signal

occurring during
joint motion

Changes of surface
resistance due to acoustic

emission

• Low-cost
• Light-weight
• Easy to attach around

different body joints

• High background and interface noise
• Nonlinearity
• Low accuracy

[60] Gyroscope Angle Three axes
angular rate

Joint angle is calculated by
comparing the angular rate

between two calibrated
gyroscopes (below and

above the joint)

• Small size
• Low-cost
• Light-weight
• High resolution
• Easy to attach around

different body joints

• Produces some large drift over time
• Complex algorithms are needed to reduce noise

and drift error
• At least two sensors are needed to measure

accurate angle
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Table 2. Cont.

Ref. Types of
Sensor/Technology

Monitored Joint
Parameters * Measure Method of Analysis Advantages Limitations

[61] Magnetometer Angle, motion Change of
magnetic field

Change of magnetic field is
directly proportional to

joint motion

• Feasible to measure
complex joint angles

• Easy to control with
digital circuits

• Interference in the magnetic field by ferromagnetic
and EMF-producing objects in the environment
may decrease the accuracy of measurement

• Unreliable for detecting the orientations of joints
in a 3D environment

[62–82]

Inertial measurement
unit (IMU) sensors

–accelerometer,
gyroscope and
magnetometer

Angle, motion,
skeletal tracking

Three-dimensional
acceleration,

angular rate and
the magnetic field

vector

Three-dimensional angular
velocities and linear

accelerations are used to
detect the position and

orientation. Relative data
from two calibrated IMUs
are compared for tracking

the joint angle and gait
analysis

• A combination of three
sensors (Accelerometer,
gyroscope
and magnetometer)

• Compact and light-weight
• Small size
• Low-cost
• High resolution
• High accuracy
• Easy to attach around

different body joints
• Built-in wireless module
• Built-in algorithms in new

generation IMU sensors for
calibration and to fix the
sensors’ orientation with
respect to a global fixed
coordinate system

• Reliable for detecting the
position and orientations of
joints in a 3D environment

• Sensors alignment is required in a multiple
IMUs-based joint monitoring system

• Drift error from gyroscope (possible to
compensate by fusing data from accelerometer
and gyroscope)

* Joint angle: the angle between the two segments on either side of the joint; joint motion: the combination of the angle and the orientation of the joint; skeletal tracking: a technique to
build a skeletal model of a human body by detecting the joint positions. ** Anthropometric constraints: size, shape and composition of the human body. *** Self-occlusion: one part of an
object is occluded by another part from a certain viewpoint.



Sensors 2019, 19, 2629 9 of 39

2. Key Parameters for Joint Monitoring

The physiologic joint movement occurs through the isotonic contraction of the muscles and the
contractile force is closely related to the change of muscle length at the joint location [86]. During the
contraction, the magnitude of muscle length change varies with different joint angles, motions and
postures. By measuring the range of motion of a joint, it is possible to determine the maximum
force generated by the muscle which represents the health condition of a joint. Similarly, the joint
angles and postures at different activity levels also depict muscle strength and endurance [87].
Therefore, the principal focus of developing a joint monitoring system is to track and record the joint
activities in the form of meaningful data such as angle, range of motion (ROM), motion, and orientation,
which could potentially be used to estimate the joint health status and provide feedback to the person
being monitored. For measuring and assessing the mechanics of human joints in a variety of activities,
different tracking techniques are being used. These techniques can be categorized based on three key
extracted parameters: joint angle, joint motion and skeletal tracking.

2.1. Joint Angle

Each movable body joint has an optimal joint angle range for a specific activity or motion. To reach
that optimal angle, the muscle should have the correct length to bear the maximum strength [88].
There are several published reference values of the active range of joint angles or range of motions [89–91]
for a healthy adult. However, the ROMs vary depending on sex, age, physical structure, daily activities,
etc. [92]. In Table 3, the normative values of normal joint range of motion (ROM) in 674 normal
subjects by gender (54% females and 46% males) and four different age groups (2–8, 9–19, 20–44 and
45–69 years) measured in degrees [93] are presented. Figure 4 shows a pictorial view of the five joints’
movements. These reference values were calculated along with 95% confidence intervals for normal
range of motion for 11 different movements measured on five joints.Sensors 2019, 19, x FOR PEER REVIEW 11 of 37 

 

Figure 4. Different types of human body joints’ movements. 

From Table 3, for all joints, a downtrend of ROM values is visible with aging, for both male and 
female subjects. The greatest change was seen in knee flexion, with a 15° difference in mean ROM 
between the age groups of 2–8 years and 45–69 years. Although ROMs are generally affected by 
aging, there can be other reasons such as injuries or other health-related problems which can cause a 
reduction in the ROM of a joint. Therefore, it is very important and useful for therapists and 
physicians to study joint angles for the early detection of joint issues or determine the progress in 
joint rehabilitation. For joint angle measurements, several sensing systems were proposed and 
developed [26,42–44,48–53,63,66–72,94,95]. Most joint angle measurement systems were based on 
mechanical or electromechanical goniometers that used resistive potentiometers or strain gauges 
[17,29,96,97]. However, the major disadvantages of these systems were inflexibility and lower 
accuracy. To overcome these drawbacks, optical-based goniometers were developed using the optical 
properties of the sensor to calculate joint angle [17,29]. For example, some systems are based on 
optical fiber sensors which measure the attenuation of the transmitted optical signal power which is 
correlated with the bending angle of the fiber [25–27]. Other systems used textile-based conductive 
wire sensors or flex sensors in which the joint angle is proportional to the change in the sensor’s 
resistance [37–41]. However, compared to other sensor technologies, inertial measurement unit 
(IMU) sensors are now being increasingly used to measure the joint angle. This is because IMUs have 
small size, are low cost and can measure 3D angles with high precision and high accuracy [62]. An 
IMU is a compact device combining three different sensors: accelerometer, gyroscope and 
magnetometer. Inertial measurement unit sensors are now widely used in wearable devices for 
monitoring and measuring joint angles [62,63,65–68]. 

 
 

Movements 
of different 

human body 
joints

Hip 

Knee 

Ankle 

Shoulder 

Elbow 

Elbow 

Figure 4. Different types of human body joints’ movements.



Sensors 2019, 19, 2629 10 of 39

Table 3. Active range of motion (ROM) (◦) for human joints by gender and age [92].

Age 2–8 years 9–19 years 20–44 years 45–69 years
Females (39) Males (55) Females (56) Males (48) Females (143) Males (114) Females (123) Males (96)

Joint Motion

Hip
extension

26.2
(23.9–28.5)

28.3
(27.2–29.4)

20.5
(18.6–22.4)

18.2
(16.6–19.8)

18.1
(17.0–19.2)

17.4
(16.3–18.5)

16.7
(15.5–17.9)

13.5
(12.5–14.5)

Hip flexion 140.8
(139.2–142.4)

131.1
(129.4–132.8)

134.9
(133.0–136.8)

135.2
(133.0–137.4)

133.8
(132.5–135.1)

130.4
(129.0–131.8)

130.8
(129.2–132.4)

127.2
(125.7–128.7)

Knee
flexion

152.6
(151.2–154.0)

147.8
(146.6–149.0)

142.3
(140.8–143.8)

142.2
(140.4–144.0)

141.9
(140.9–142.9)

137.7
(136.5–138.9)

137.8
(136.5–139.1)

132.9
(131.6–134.2)

Knee
extension

5.4
(3.9–6.9)

1.6
(0.9–2.3)

2.4
(1.5–3.3)

1.8
(0.9–2.7)

1.6
(1.1–2.1)

1.0
(0.6–1.4)

1.2
(0.7–1.7)

0.5
(0.1–0.9)

Ankle
dorsiflexion

24.8
(22.5–27.1)

22.8
(21.3–24.3)

17.3
(15.6–19.0)

16.3
(14.9–17.7)

13.8
(12.9–14.7)

12.7
(11.6–13.8)

11.6
(10.6–12.6)

11.9
(10.9–12.9)

Ankle
plantar
flexion

67.1
(64.8–69.4)

55.8
(54.4–57.2)

57.3
(54.8–59.8)

52.8
(50.8–54.8)

62.1
(60.6–63.6)

54.6
(53.2–56.0)

56.5
(55.0–58.0)

49.4
(47.7–51.1)

Shoulder
flexion

178.6
(176.9–180.3)

177.8
(176.7–178.9)

171.8
(169.8–173.8)

170.9
(169.1–172.7)

172.0
(170.9–173.1)

168.8
(167.3–170.3)

168.1
(166.7–169.5)

164.0
(162.3–165.7)

Elbow
flexion

152.9
(151.5–154.3)

151.4
(150.8–152.0)

149.7
(148.5–150.9)

148.3
(146.8–149.8)

150.0
(149.1–150.9)

144.6
(143.6–145.6)

148.3
(147.3–149.3)

143.5
(142.3–144.7)

Elbow
extension

6.8
(5.2–8.4)

2.2
(0.9–3.5)

6.4
(4.7–8.1)

5.3
(3.6–7.0)

4.7
(3.9–5.5)

0.8
(0.1–1.5)

3.6
(2.6–4.6)

-0.7
(–1.5–0.1)

Elbow
pronation

84.6
(82.8–86.4)

79.6
(78.8–80.4)

81.2
(79.6–82.8)

79.8
(77.8–81.8)

82.0
(81.0–83.0)

76.9
(75.6–78.2)

80.8
(79.7–81.9)

77.7
(76.5–78.9)

Elbow
supination

93.7
(91.4–96.0)

86.4
(85.3–87.5)

90.0
(88.0–92.0)

87.8
(85.7–89.9)

90.6
(89.2–92.0)

85.0
(83.8–86.2)

87.2
(86.0–88.4)

82.4
(80.9–83.9)
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From Table 3, for all joints, a downtrend of ROM values is visible with aging, for both
male and female subjects. The greatest change was seen in knee flexion, with a 15◦ difference
in mean ROM between the age groups of 2–8 years and 45–69 years. Although ROMs are generally
affected by aging, there can be other reasons such as injuries or other health-related problems
which can cause a reduction in the ROM of a joint. Therefore, it is very important and useful for
therapists and physicians to study joint angles for the early detection of joint issues or determine
the progress in joint rehabilitation. For joint angle measurements, several sensing systems were
proposed and developed [26,42–44,48–53,63,66–72,94,95]. Most joint angle measurement systems were
based on mechanical or electromechanical goniometers that used resistive potentiometers or strain
gauges [17,29,96,97]. However, the major disadvantages of these systems were inflexibility and lower
accuracy. To overcome these drawbacks, optical-based goniometers were developed using the optical
properties of the sensor to calculate joint angle [17,29]. For example, some systems are based on
optical fiber sensors which measure the attenuation of the transmitted optical signal power which is
correlated with the bending angle of the fiber [25–27]. Other systems used textile-based conductive
wire sensors or flex sensors in which the joint angle is proportional to the change in the sensor’s
resistance [37–41]. However, compared to other sensor technologies, inertial measurement unit (IMU)
sensors are now being increasingly used to measure the joint angle. This is because IMUs have small
size, are low cost and can measure 3D angles with high precision and high accuracy [62]. An IMU
is a compact device combining three different sensors: accelerometer, gyroscope and magnetometer.
Inertial measurement unit sensors are now widely used in wearable devices for monitoring and
measuring joint angles [62,63,65–68].

2.2. Joint Motion

The normal motion of a joint describes its movement from the center of the joint location [98].
Joint motion includes flexion (bending), extension (straightening), adduction (movement towards the
center of the body), abduction (movement away from the center of the body) and rotations (inward and
outward movements) [99]. The range of motion (ROM) value denotes the full movement potential of
a joint (Table 3). Because of some health issues or injury, a joint may experience reduced ROM [99].
Therefore, ROM is a useful clinical indicator in evaluating the health status of a joint. Also, for joint
rehabilitation, continuous motion monitoring is very important. The measurement of a joint motion
includes both its angle and orientation. Therefore, joint monitoring systems based on goniometer [17,29],
optical fiber sensors [25–27] or flex sensors [37–41] cannot be used to monitor joint motion since they
can only measure single-axis movement which is interpreted as an angle. To estimate both the angle
and orientation of joints, the most common technique is imaging or video-based tracking where the
visual data of several human joint actions are captured to estimate joint motions using anthropometric
constraints (size, shape and composition of the human body) and known joint locations in reference
images/videos by applying image processing techniques [32,33]. Although this system is a reliable
and well-established monitoring technique, it needs a pre-equipped environment and setup which
does not allow for continuous and long-term monitoring, especially during normal daily activities.
On the other hand, a 3D IMU sensor is able to measure the 3D motion of joints [63–68]. The IMU’s
miniature size, low-cost and ease-of-use makes it suitable for a wearable, low-cost, continuous joint
monitoring system.

2.3. Skeletal Tracking

Skeletal tracking is a technique used to build a skeletal model of a human body by detecting the
positions of various joints on a human form [100]. Skeletal tracking helps to detect real-time human
pose by realizing and understanding the human posture for different functional activities [34]. The key
applications of skeletal tracking are to detect physical disability and analyze rehabilitation process by
assessing the body posture accurately [101–107]. Most skeletal tracking systems are based on image
processing techniques using a single camera [34] or a network of multiple cameras to capture images in
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different activities and covering a large area [32]. This technique includes the quantitative measurement
of the positions and movements, complicated image processing algorithms to analyze the depth of
image, and machine learning to track human joints and create the human model [100]. Instead of
using cameras or imaging sensors and complicated image processing techniques, some researchers
are replacing such imaging systems with multiple calibrated IMU sensors placed on different joint
locations on a human body for skeletal tracking [78,108,109], and this also make the IMU-system more
convenient and easier to use. Currently, skeletal tracking is widely used in several smart activity
monitoring systems, human-computer interaction, surveillance, virtual gaming, pattern recognition,
human behavior detection, athlete performance analysis and rehabilitation systems [18,32–36,49,77,83].

3. Sensors and Technologies

Sensors are the fundamental elements of a joint monitoring system to measure the physiological
parameters—angle, range of motion and posture—of joints. Various research groups [16,17,25–82] have
used different sensor types to build joint monitoring systems. Some systems were developed using a
single sensor; others were assembled with a combination of multiple sensor technologies using data
fusion methods. The selection of sensors is crucial when developing an accurate and reliable monitoring
system. The key features to be considered while developing such a system are high efficiency and
accuracy, good reliability, high sensitivity, small size, light-weight, lower energy consumption, and low
processing resources [24]. In this section, we will discuss various sensor technologies used to develop
joint monitoring systems.

3.1. Optical Sensors

Most of the common implementations of optical sensor-based joint monitoring system used either
intensity modulation or optical navigation methods [17,26,29,110]. Optical fiber sensors (OFS) were
used for intensity modulation [25,27,111]. The basic working principle of OFS-based systems is to detect
the attenuation of the transmitted optical signal power due to bending of the optical fiber [27]. On the
other hand, the systems using optical navigation sensors detect planar motion with joint movement.
The optical navigation-based monitoring device is also known as optical-based goniometer [17,29,30].

Optical fiber sensors are now often used for designing various health monitoring
systems [25,111–114], and several categories of OFS were developed for both health-related academic
research and commercial products. Depending upon the measuring techniques of the physical
parameters and their conversion methods from optical data, OFS can be categorized into four different
types: single-point, long-gauge, quasi-distributed and distributed sensors [25]. Optical fiber sensors
are made of flexible plastic optical fibers through which optical signals are transmitted. The basic
components of an OFS-based system are a light source, flexible optical fiber and a photodetector.
The light source generates the optical signal that travels through the flexible optical fiber and is received
by the photodetector at the end of the fiber. By measuring the attenuation of the optical signal, it is
possible to determine the bending angle of the fiber [26]. Due to this simple sensing principle and
structure, optical fiber sensors can be easily integrated into a monitoring system for measuring human
joint angles [111]. Basic configurations and working principles of an optical fiber and OFS-based joint
monitoring system are shown in Figure 5a,c.
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Figure 5. (a) Optical fiber configuration and working principle; (b) construction and operation method
of the fiber-optic curvature sensor with a “teeth-like” sensitive zone; (c) flexible optical fiber sensors
(OFS)-based joint monitoring system configuration.

The main benefits of OFS are high resolution, flexibility, light-weight and immunity to
electromagnetic interference. Different techniques were developed to improve the sensitivity and
accuracy of OFS-based joint angle measurements [26]. For example, roughening or polishing the
surface in one side [28] of an OFS is a common method to improve the sensitivity by enhancing the
optical signal attenuation with bending [115]. In the work by L. Bilro et al. [26], a wearable knee motion
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monitoring system using a flexible plastic OFS placed in a commercial knee brace was developed.
The change of transmittance (the ratio of the light energy incident on an object to that transmitted
through it) was measured while bending the plastic optical fiber. One side of the fiber was polished to
improve the performance as macro-bending creates more attenuation [110,116]. This device was made
wearable and wireless by integrating a wireless communication board based on Bluetooth technology
with the main controller board. A comparative analysis with a reference video-based monitoring
system was made and the average deviation of angle measurement between the two systems was 2.1◦.

Another optical fiber sensor-based human joint monitoring system is presented in [27]. In this
system, the authors used a fiber-optic curvature sensor with a different sensitive zone configuration
and the diameter of the configured optical fiber was 1.5 mm. A “teeth-like” configuration was created
by drilling precisely on one side of the fiber [117] to make the sensitive zone (see Figure 5b). Due to
this sensitive zone, when the optical fiber bends while keeping the teeth on the convex side, the light
intensity on the outer side decreases. Conversely, the light intensity increases when the teeth are on the
concave side. LabVIEW software and ZigBee-based wireless communication were used to complete
the system. The optical intensity was exponentially dependent on the curvature angle and the angle
range of the system was −120◦ to 120◦ with a 1 Hz sampling rate. However, a linear characteristic was
found between −45◦ and 25◦, with an average sensitivity of 20 mV/◦ (voltage change per angle) and a
resolution of 1◦ [27]. The sensor had a high operating temperature limit (up to 70 ◦C) without any
deformation or characteristics change. Therefore, within certain ROM limitations, the proposed sensor
was suitable for developing a low-cost and simple wearable joint monitoring system with wireless
communication capabilities.

The goniometer is one of the most commonly used instruments in human joint related research and
clinical monitoring [17,29,96,97]. Goniometers can be used to determine the range of angular motion
of different human body joints such as the knee, elbow, or waist [29]. Most goniometer-based joint
monitoring systems use mechanical or electromechanical goniometers, which are based on resistive
potentiometers or strain gauges [17]. The main disadvantages of these kinds of goniometers are large
size, imprecision, flimsiness and fixed center configuration which does not provide flexibility with the
natural joint movement [97]. To overcome these difficulties, some researchers have proposed optical-based
goniometer systems for joint monitoring, as they are flexible, unobtrusive and of higher precision [17,29].

An optical fiber-based goniometer presented in [17] was made of a single-mode optical fiber.
Intensity modulation of a propagating laser beam was used to detect the changes in polarization
due to the rotation of adjacent portions of fiber. Controlled birefringence was induced by a fiber
loop with a fixed radius. The components of the reported goniometer and its working principle
are shown in Figure 6. A trans-impedance amplifier with a high gain-bandwidth product gave a
high-precision output signal with high sensitivity. A sample-and-hold circuit, an acquisition board and
a computer-based software program were designed to gather and process the data. The goniometer
was combined with a fabric to build a flexible, compact and accurate wearable joint monitoring system
with several applications such as testing an athlete’s performance and training status.
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Figure 6. Components and working principle of optical-based goniometer system. The system was
composed of five components: (1) a semiconductor laser as light source, (2) a Si p–i–n photodiode as
photo detector, (3,4) two linear polarizers as polarizing and analyzing filters, and (5) a single-mode
optical fiber as stress-induced birefringence polarization controller (SIBPC).
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In [29] another wearable system using optical-based goniometer for joint monitoring was proposed.
These authors used a technique similar to the optical mouse which has a small camera to identify
two-dimensional planar motion by detecting the displacement. They chose the elbow joint for their
experiments and their system consisted of two units: hardware and firmware. The hardware unit had
three components: the sensor, microcontroller and the joint module (a flexible strip). The firmware unit
was for the communication and data gathering. The proposed sensing system setup for elbow joint
measurement is shown in Figure 7. The flexible strip was placed around the joint with one end fixed,
and the sensing unit was placed on the other end. The sensing unit was able to move freely along with
the strip and measured the uniaxial displacement during bending of the elbow joint. The angle (a) was
calculated from this linear displacement (∆x) that is directly correlated with the bending (Equation (1)).

α =
∆x
R
·
360◦

2π
(1)
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(b) operation method of the system.

The joint radius (R) was assumed to be constant for this calculation. The proposed sensing module
is light-weight and easy to assemble as a joint monitoring system. However, the system can only
monitor one-dimensional movement which can affect the angle measurement accuracy for human
body joints.

3.2. Imaging and Video-Based Tracking System

Imaging and video-based human skeletal tracking is a well-accepted method for human joint
monitoring because of its broad applicability and reliability [31,32,34–36,101–107]. One or more
cameras are the core components of this system. The process flow of this method is to capture the
visual data of several human actions by using a single [34] or multiple camera network [32], and then
track the joints using anthropometric constraints (size, shape and composition of the human body) and
known joint locations in reference images/videos with the same action. These applications comprise
various fields of research such as biomechanics, image processing, machine learning and pattern
recognition [33]. The main challenge of this system is to construct a three-dimensional human model
using a single static camera. A new image processing method was proposed in [118] where they used
2D images to create a 3D model. They introduced a new image descriptor based on discrete cosine
transform (DCT), which was used in the pose-matching procedure for finding appropriate action in
the reference database using an interpolation and tracking process. The descriptor matrix was divided
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into three frequency regions for different levels of tracking: (1) low-frequency region containing the
general shape and intensity information of the joint; (2) middle-frequency region with general edge
information; and (3) high-frequency region consisting details of the tracked joints. Both discriminative
and tracking algorithms were used in this method to increase joint tracking accuracy. A block diagram
of an imaging-based human skeletal tracking is presented in Figure 8.
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A single camera-based system can only detect the joint location within its field of view, thus limiting
the range of observations. To solve this problem and track human joint motion in a large area with
multiple fields of view, a distributed camera network system was suggested in [32]. They set up
multiple cameras to make the network and used an information-weighted consensus filter (ICF) as
a distributed estimation algorithm to track human motion in a camera network inside the sensing
range. The distributed camera network setup is shown below in Figure 9a. They used the Microsoft
Kinect image sensor instead of a usual camera to build the camera network [32] because Kinect can
measure the joint locations without any markers [34,67]. Kinect is a high-end imaging device with an
RGB camera, a multi-array microphone and a built-in laser projector combined with a monochrome
CMOS sensor that make it capable of capturing color images and depth images (Figure 9b). In addition,
it has a skeletal tracking tool which is able to recognize 20 different joints’ locations of a human body.
Therefore, instead of a usual camera, Kinect has been chosen by many researchers who are working on
vision-based human joint monitoring and analysis problems [31,32,34–36].
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Although imaging and video-based joint tracking system is a popular and reliable monitoring
technique [31,32,34–36,101–107], it requires complex, expensive infrastructure and sophisticated
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analyses of data-intensive video streams. Also, this system is only effective with a pre-equipped
environment and setup, restricting users’ usual movements, which makes it unsuitable for continuous
and long-term joint monitoring in daily activities.

3.3. Textile-Based Sensors

Textile-based sensors (e.g., flexible conductive wire sensors, flex sensors, strain sensors, etc.) are
very suitable for developing a wearable joint monitoring system. The working principles of all these
sensors are similar. In all cases, changes of resistance are measured, and these changes are directly
related to the corresponding joint angles [38]. To develop a long-term and regular wearable monitoring
device, textile-based sensors can be a good choice because of their flexibility and simple sensing principle.
Furthermore, they can be easily integrated into stretchable skin-tight fabrics around the joints [37,38].

A flexible conductive wire sensor-based method was proposed in [37] where the authors incorporated
flexible conductive wires in flexible and comfortable fabrics for joint monitoring. They implemented
a single-axis arrangement with a single conductive wire designed for the knee joint (see Figure 10).
The parameter measured was the resistance changes of the conductive wire with the movements of the
joints. Figure 10 shows the implementation of the system where one end of the flexible conductive wire
was fixed to the fabric above the knee at point 1 and the other end was connected with an elastic cord at
point 3. The elastic cord was attached to the fabric below the knee at point 4 and helps the conductive
wire slide freely with bending and stretching. There was a wire contact point between point 2 and 3 along
the fiber and it was permanently stitched into the fabric at point 2 to keep it fixed. The fiber slides with
the movement of the knee, causing the change of conductive thread length between 2 and 3 as well as the
resistance in that portion [37]. The resistance value at a specific point is directly proportional to the knee
angle. They also proposed a multiple conductive wires-based system to monitor multi-axis joint (e.g.,
hip and shoulder) angles. Their future focus in this research is to improve the accuracy of the system by
applying a more precise technique of incorporating conductive wires into flexible, skin-tight fabrics and
adding a wireless module for data transmission.
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Flex sensor is another type of textile-based sensor which is usually made of a conductive material
with flexible and stretchable properties [38]. The shape of the sensor will change with the applied
force, causing the resistance change between two measuring points. Therefore, the flex sensor is
convenient for wearable joint monitoring systems by integrating it with comfortable garments [38–41].
The flex sensor is usually stitched to the flexible and skin-tight garment across the joint to be monitored.
Whenever the joint bends or stretches, the pressure changes on the sensor which causes the variation
of its electrical properties (resistance). This resistance variation due to the joint movement can be
measured using an electronic system to quantify the joint angle [40]. Textile-based highly stretchable
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strain sensors are also used by some researchers for human joint monitoring [43–48]. Conductive yarns
were employed as the conductive part of the strain sensor. Different textile materials with preferable
elasticity and conformability were used to fabricate the system comfortable for human joints [44,45].
Another type of textile-based sensor was developed in [48] by using flexible and stretchable CCF
(chopped carbon fiber)/PDMS (polydimethylsiloxane) conductive yarns. The CCF/PDMS composite
sensors were integrated into the textile structures and used the piezoresistive (resistance-strain)
behavior of the sensors for detecting human joint motion.

3.4. Inertial Measurement Unit (IMU) Sensors

An IMU is a combination of three sensors (accelerometer, gyroscope and magnetometer) and is
used to measure the three-dimensional acceleration, angular velocity and the magnetic field vector in
their own coordinate systems. As a unit, the three sensors are calibrated in such a way that each of
their individual coordinate system acts as an orthogonal base which typically remains well aligned
with the outer casing of the unit [62]. Moreover, there are some commercially available IMU sensors
with built-in algorithms to fix the sensors’ orientation with respect to a global fixed coordinate system
(e.g., [119]) which can be represented by a rotation matrix, a quaternion, or Euler angles. For developing
a wearable measurement system for human joint motion, IMUs are the most promising and compact
devices for both clinical assessment and research studies, because of their small size and capability
to measure joint motion with precision and accuracy [62–67,76]. To detect position and orientation,
three-dimensional angular velocities and linear accelerations are measured using the IMU sensors.
Most of the IMU-based joint monitoring systems use two calibrated IMUs placed below and above a
joint [62–67]. Relative data from those two IMUs are compared for tracking the joint angle and motion.

For accurately computing a joint angle, we need to compensate for joint alignment using the two
IMUs method described in [64]. These authors proposed a manual method using a set of predefined
postures of different leg movements to align two IMUs attached on the thigh and shank. A fusion
algorithm was then applied to measure the 3D knee joint angle. The measurement was then validated
against the Liberty magnetic motion capture and tracking device (Polhemus, Vermont, USA). Later
they added a functional calibration procedure which only relied on the IMUs data and made an
error assessment (Table 4) by comparing the results obtained from the combined method to the
reference system [68]. This method can be applied to monitor complex joints e.g., knee, ankle or
elbow. A similar system was developed in [63] where Bluetooth technology was added for wireless
communication. The system was evaluated by comparing it with an infrared motion capture system
having an average deviation range of 0.08◦ to 3.06◦ from each other. Figure 11 illustrates two IMU
sensors-based configuration for measuring the knee angle (α).
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Table 4. Listing of published inertial measurement unit (IMU)-based joint monitoring techniques, analysis and validation methods.

Ref. Year Sensor Units and
Module Sampling Frequency Wireless Analysis (Joint) Reference System and Validation

[64] 2008 2 (gyroscope +
accelerometer) 240 Hz No Knee angle (3D)

Magnetic motion capture system RMS
errors:

4◦ (flexion/extension)
5◦ (abduction/adduction)

10◦ (internal/external Rotation)

[68] 2009 2 (gyroscope +
accelerometer) 240 Hz No Knee angle (3D) Visual aligned IMU system

Accuracy: between 4.0◦ and 8.1◦

[63] 2011
2 (Gyroscope +

Accelerometer +
Magnetometer)

5 Hz Yes Knee angle Infrared motion capture system
Average deviation: 0.08◦ to 3.06◦

[69] 2013
4 (gyroscope +

accelerometer +
magnetometer)

120 Hz Yes
Knee angle for both
prosthesis and the
contralateral leg

Optical 3D motion capture system
RMS errors:

<0.6◦ (Prosthesis)
<4.0◦ (Contralateral leg)

[70] 2013
2 (gyroscope +

accelerometer +
magnetometer)

128 Hz Yes Elbow, forearm and
shoulder movement

Optical tracking system
RMS errors:

6.5◦ (Elbow flexion/extension)
5.5◦ (Forearm supination/pronation)

5.5◦ (Shoulder flexion/extension)
4.4◦ (Shoulder abduction/adduction)

[74] 2013
2 (gyroscope +

accelerometer +
magnetometer)

Not mentioned Yes

Knees, elbows, toes,
hip, shoulder, wrist,
ankle, neck, forearm

and thumb joints

Not mentioned

[62] 2014
4 (gyroscope +

accelerometer +
magnetometer)

120 Hz Yes
Knee angle for both
prosthesis and the
contralateral leg

Optical 3D motion capture system
RMS errors:

<1.0◦ (Prosthesis)
<3.0◦ (Contralateral leg)

[71] 2015
3 (gyroscope +

accelerometer +
magnetometer)

10–100 Hz Not
mentioned

Hip and knee joint
tracking

Optical tracking system
RMS error: <3.0◦

[67] 2016
4 (gyroscope +

accelerometer +
magnetometer)

50 Hz Not
mentioned

Gait analysis by
monitoring hip, knee

and ankle joints

A computer mathematical simulation,
a universal goniometer system

and a real gait test
max RMS error: 1.70◦
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Table 4. Cont.

Ref. Year Sensor Units and
Module Sampling Frequency Wireless Analysis (Joint) Reference System and Validation

[82] 2016 4 (gyroscope +
accelerometer) 40 Hz Yes

Knee angle for
estimating human

movement

Goniometer-based system
highest angle deviation: 2.0◦

[72] 2016 1 (Gyroscope +
Accelerometer) 100 Hz Not

mentioned Hip and knee angles A stereophotogrammetrical system
RMS error: <3.2◦

[66] 2017
2 (gyroscope +

accelerometer +
magnetometer)

30 Hz No Knee angle for human
gait analysis

A vision-based motion capture system
high correlation between two measurements

(>0.947)

[65] 2017 2 (gyroscope +
accelerometer) 128 Hz Not

mentioned

Knee angle,
heel-strike and toe-off

events for gait
analysis

A commercial motion capture software
RMS error: 8.0◦

[73] 2017 2 (gyroscope +
accelerometer) 30 Hz Yes Validation of a knee

angle measurement

A DARwIn OP robot as ground truth system for
knee angle measurement

RMS error:
<6.0◦ (When robot was walking)
<5.0◦ (When robot kept the left

leg stretched and performed an angle of −30◦)
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In [69] two IMUs-based joint angle measurement methods were presented. There, they transformed
the measured data from both sensors into a joint coordinate system by aligning the IMUs’ local coordinate
axes with the joint axis. Their first approach included the magnetometer readings (magnetic field
vectors) to get a precise alignment. In the second technique, they relied only on the accelerometer and
gyroscope data. Indoor measurements can suffer from magnetic disturbances due to other magnetic
devices that may be present. Therefore, the authors excluded the magnetometer data for indoor
monitoring and achieved equally accurate results. Thus, they were able to increase the accuracy of
joint angle measurements by two IMUs having a precise calibration and alignment technique.

An IMU-based auto-calibration method was proposed in [71]. First, the limitations of an existing
position calibration method were identified by performing a theoretical analysis (evaluation of
observability by computing the Fisher information matrix). Based on that analysis, a new method to
continuously determine the IMUs’ relative position with the joints was introduced. Then, based on the
simulated and captured data, an experimental evaluation was performed to present the enhancement
of the calibration method. In [67], another IMU calibration and alignment protocol based on simulation
and experimental analysis was proposed. These authors simulated a computer-based lower body
anatomical frame with four IMU sensors to estimate the angles of hip and knee. In the simulation,
the sensors were placed on the pelvis, right thigh, right shank and right foot, and aligned with
the associated limbs’ coordinate system. They also made a joint model using two semi-spheres
interconnected by a universal goniometer and placed IMU sensors on each sphere. They used this
model to evaluate the accuracy and repeatability of the system while measuring angular movements.
Finally, they performed a real gait test involving five healthy volunteers and validated the method by
comparing the results from experiment and simulations.

The drift effect is another concern when using IMU sensors to calculate joint angles and estimate
orientations. A random bias drift which builds up over time, affects the sensors tracking accuracy [70].
A new kinematic model was proposed in [70] to minimize this drift error. There [70], they considered
natural physical constraints (age, gender and bone structure) while measuring the range of motion for
each joint with their system. They modeled the sensor’s random drift and used zero-velocity updates.
To avoid the complex linearization process, they implemented an improved version of extended
Kalman filter (EKF) which is called unscented Kalman filter (UKF). Instead of estimating nonlinearity,
it approximates the distribution of the measured data. They validated the algorithm by comparing
their inertial tracker’s result with a reference optical tracking system and a high-precision industrial
robot arm.

Instead of conventional two IMUs-based joint monitoring system, a single IMU-based system
was developed in [72] to monitor hip and knee joint angles. The single IMU was placed on the
shank and the collected data was utilized to estimate 3D lower-limb (pelvis, thigh and shank) joint
kinematic quantities during five different lower limb motions with the help of the least-squares
identification algorithm. It achieved an average accuracy of 3.2◦ and a correlation coefficient above
0.85 by comparing with reference data from a stereophotogrammetric system. One limitation of this
method was the degradation of joint angle estimation due to the IMU’s motion artifact. Moreover, no
pelvic motion was assumed in this approach. Thus, the quality of the result might be reduced with
large pelvis movements.

By using an IMU-based system, we can measure not only joint angles, but also other important gait
parameters e.g., cadence, step length, step variability, lateral and vertical excursion of the center of mass,
etc. [66] for gait analysis. IMU sensors are very convenient to develop such a system because of their
miniature size, low-cost and flexibility to use without space restrictions compared to traditional gait
analysis methods such as semi-subjective techniques, imaging or floor sensors [120]. Moreover, most
modern commercial IMUs have an integrated wireless module which makes it more appropriate to
develop a wearable system for continuous joint monitoring and gait analysis [65,66,73,77–79,121–123].
A fundamental process flow of measuring joint angles using IMU devices (adapted from [65]) is
described below in Figure 12.
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A list of IMU sensor-based joint monitoring techniques, analysis and validation methods are
summarized below in Table 4.

In [60], the authors used only gyroscope sensors to measure human joint angles. Gyroscopes in
modern IMUs can measure three-axes angular rate with movements. For measuring the joint angle,
two gyroscopes were placed above and below the joint location and calibrated before joint motion.
Movement angles of each gyroscope were calculated by integrating the angular rate. Then, the joint
angles were extracted by comparing the changes in angle between two gyroscopes using trigonometric
functions. Two optimization filters: Median filter [60] (a non-linear digital filtering technique to remove
noise from the sensor signal) and Kalman filter [60] (an algorithm that uses a series of measurements
gathered over time, having statistical noise and other inaccuracies, and produces estimates of unknown
variables that tend to be more accurate than those based on a single measurement alone, by estimating
a combined probability distribution over the variables for each timeframe) were used to mitigate the
noise and drift in the sensors to yield optimized output [60,124].

Some other research groups have proposed using only a magnetometer-based sensing system
using magnetic fields to determine movement. A wearable field generator design was introduced
in [125] to build a fingertip glove equipped with magnetic tracking sensors. Another magnetic
sensor-based hand glove in [126] was designed with 20 Hall-effect sensors embedded. This glove
was used to assess hand orthopedic disorders by detecting the relative and absolute orientation of
the fingers. In [61], a magnetometer-based nonobtrusive system for monitoring the wrist and hand
movement was proposed. A magnetic (neodymium) ring worn on the index finger and two triaxial
magnetometers mounted in a watch-like unit to measure the magnetic field produced by the magnetic
ring and sent the data to a wireless device were used. The movement of the finger was then calculated
from the reading of the magnetic field which was correlated to the finger motion. The accuracy
of the proposed system was analyzed by comparing it with a traditional goniometer-based system.
An average accuracy of 92%–98% with a 19%–28% standard deviation was obtained.

3.5. Sensor Fusion

Recently, some researchers have used sensor fusion methods (combination of multiple types of
sensors) to develop more precise and reliable joint monitoring systems. Sensor fusion is the process of
combining multiple sensor data in such a way that the combined output shows better performance
than individual sensor results [127]. Thus, sensor fusion allows multiple viewpoints with improved
resolution, greater spatial and temporal coverage, reduction in ambiguity, and greater precision in
measurements. A simplified block diagram of sensor fusion (adapted from [127]) is shown in Figure 13.
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In [75], a sensor fusion method combining both flex and gyroscopic sensors was proposed.
Multiple flex sensors and a MEMS gyroscope were mounted on a supportive fabric worn by the
subjects. To fuse the measurement by multiple sensors and estimate accurate joint angles, Kalman
filtering was used. The authors built a behavioral model of joint movement over time and updated the
system data using the model in Kalman filtering. The main purpose of using multiple sensors was to
minimize sensor errors and reduce measurement noise.

Another method proposed in [16] was a fusion of textile electro-goniometer and accelerometer based
on the Kalman filter. The purpose of this approach was to avoid pre-estimation of the accelerometer
position and alignment. The focus was to measure knee angle during various motion activities and
the system was standardized by comparing it with a commercial IMU-based system. Their technique
used the data from the accelerometer to continuously adjust the goniometer reading and did periodic
calibration. Thus, the fusion system showed more accurate angular measurement (RMSE: mean, µ = 1.96◦

and standard deviation, σ = 0.96◦) compared to the individual derived estimation by the accelerometer
(RMSE: µ = 6.55◦ and σ = 2.87◦) or textile electro-goniometer (RMSE: µ = 5.15◦ and σ = 0.47◦).

A study on data fusion from wearable IMUs and surface EMG sensors to monitor and assess
human motor function, was presented in [128]. To estimate a motor function abnormality, a group of
machine learning algorithms was used on the fusion data. To validate the algorithms’ effectiveness,
two parameters: normal data variation rate (NDVR) and the determination coefficient (DC) were
derived. A lower NDVR value represents better validity and a larger DC value represents a higher
consistency and reliability of the system. Through experiments, these authors proved that the
fusion result was superior to the sensors’ separate data: a reduced NDVR and a better DC from a
regression analysis performed between the derived indicator and the routine clinical assessment score
were obtained.

A fusion of data from optical sensors and inertial measurement units (IMU) to analyze human
movement and design human kinetic energy harvesting systems was presented in [129]. High-speed
cameras were used as optical sensors to determine the positions and angles of the joints. IMUs were
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used for acceleration, angular rate and magnetic field vector measurements. The fusion data was
used to compute actual orientation and linear acceleration. The authors used this result to estimate
the kinetic energy generated in different joints during several body motions. The purpose of this
analysis was to design an energy harvesting system by converting human kinetic energy to electrical
energy and then find the recommended joints (knees and ankles while walking) to place the energy
harvesting module.

From the discussions above, the main purpose of fusing data from multiple sensors in a joint
monitoring system is to overcome physical limitations of the sensing system and improve measurement
accuracy as well as reliability. This is done by minimizing the error rate and enhancing the signal
to noise ratio (SNR) while maintaining practical usability. In addition, sensor fusion offers several
other advantages such as improved resolution, increased confidence in results, robustness against
interference, and reduced ambiguity and uncertainty. Although it is in the early stages of development,
current research results suggest that fusion systems are superior to other means of measuring and
monitoring joint movement using one or a few sensors.

3.6. Other Sensors and Techniques

Some researchers have proposed acoustic emission (AE) sensor-based joint monitoring systems
where they used piezoelectric-films or MEMS-based microphones to record the sound produced by
a moving joint [55–59]. This acoustic emission from joints also known as vibroarthographic signals
(VAG) are considered as clinically relevant biomarkers for joint health [58]. The researchers utilized the
recorded signal to quantify the consistency of acoustic emissions from joints with respect to joint angle
and position [57]. The emitted acoustic signal from an over-exercised joint during motion produces
higher amplitude and shows a different pattern in the frequency domain compared to the healthy
joints [55]. However, one of the major challenges is the background and interface noise that need to be
removed to improve the signal to noise ratio (SNR) of the emitted signal [58].

A few research groups [49–53] have used different inbuilt smartphone sensors and cameras to
measure joint angle and motion. Several applications (apps) were used to access and analyze the
sensor data. These apps are mostly based on inbuilt smartphone sensors such as accelerometer [49,51],
gyroscope [51,52], magnetometer [53] or camera [50]. In all cases, the results from the apps have
shown adequate validity when compared against universal goniometer or inclinometer. In addition,
a comparison study between two smartphone-based apps (inclinometer and camera) was published
in [50]. In this study, the camera-based app provided higher precision and accurate measurement
(a mean difference of <1◦ and 1/50 difference >3◦) compared to the inclinometer-based app (a mean
difference of <7◦ and 16/50 difference >10◦). These researches suggest that the newly developed
smartphone-based apps show potential as a useful tool for joint health monitoring [54].

Along with angle and motion, there are some other physiological parameters related to joints
which can provide important information about joint health status. For example, changes in local
skin temperature around the joint can be an indication of pathology. Local temperature change occurs
due to the changes of blood flow in that region. Generally, the skin temperature of an inflamed
joint is higher (1.1–2.8 ◦C) than a normal joint [130]. Including a temperature sensor with a joint
monitoring device can be an effective add-on to the system. Measuring muscle pressure/force around
a joint during several activities using flexible pressure sensors can also provide a correlation to the
corresponding musculoskeletal health. Muscle pressure changes around a joint with every movement
(flexion, extension, etc.) and the values are different for different activities. Muscle pressure plays
a crucial role in determining the force balance, contact force and pressure distribution of the joint [131].
Any imbalance in muscle forces can result in joint pain and stresses. Flexible pressure sensors can
be easily integrated with a joint monitoring system to measure the muscle forces around the joints.
To estimate the muscle forces, electromyography (EMG) sensors can be used [132,133].

For joint monitoring, another important parameter is the sweat rate of the joint skin. It can provide
necessary estimation about the thermal status and other physiological conditions of joints. Stress and
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perspiration in the joint are related to the local blood flow and the activities of sweat gland which can be
interpreted by measuring the sweat rate. The galvanic skin response (GSR) sensor is one of the common
types of sweat rate sensors. This sensor is used to measure skin conductance which varies with the
change of skin moisture caused by sweating. A GSR sensor system has two components: the conductive
electrodes to make contact with the skin and the electronic board to measure the skin conductance
between two electrodes [134]. Another sweat rate sensor design concept proposed in [135] had two
parts: the humidity chamber and the humidity sensors. Sweat-induced skin humidity is collected in
the chamber and the humidity sensors are used to measure the humidity. Therefore, implementation
of a monitoring device combined with these other relevant sensors would represent the first of its kind
for joint monitoring, early diagnoses of joint related problems and quantitative information for joint
health improvement.

4. Data Processing, Interpretation and Analysis

The purpose of a health monitoring system is well-served when the sensor data is securely stored
and analyzed to retrieve necessary information for detection, prediction and diagnostic decision
making [136,137]. For this reason, data processing techniques are a vital phase of health monitoring
research. There are three major steps involved in building a complete joint monitoring system: (1) data
acquisition from the sensors and data preprocessing; (2) feature extraction and selection; (3) modelling
data by learning the extracted features (including expert knowledge and metadata) to perform the tasks
such as detection, prediction and decision making [136]. A generic flow diagram of a joint monitoring
system (adapted from [119]) is given in Figure 14.
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Usually, the raw sensor data from a joint monitoring system is preprocessed to mitigate noise,
motion artifacts and sensor errors. To remove motion artifacts and high-frequency noise, the data
is passed through various types of filters [138,139]. Power spectral density (PSD) analysis and fast
Fourier transforms (FFT) are the most common frequency domain analysis methods to detect the
periodic fluctuations in sensor signals. Different filtering tools are then used to remove the noise. If it
is a multi-sensor-based system, then the data gathered from different sensors need to be normalized
and synchronized. Therefore, preprocessing also includes data formatting, data normalization and
data synchronization, which are needed to handle the complex and large amounts of data from the
sensors [140].

Feature extraction is the process of discovering the main features of a data set which represents the
characteristics of the original data [141]. The extracted features are used to formulate the relationship
between the key parameters discovered from the raw data and reference knowledge to prepare
the model for prediction and decision making [142]. Features are extracted from analyzing signals
in two different aspects: time domain and frequency domain [143]. In time domain extraction,
basic waveform characters and statistical parameters related to the visible attributes in the data are the
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most common features such as maximum, minimum and mean value, median, standard deviation,
slope, rise time and fall time, zero crossings count, peak value and duration of the sensor data [144,145].
In joint monitoring, these time domain features related to joint parameters are important because the
conventional decision-making frameworks are based on the observable trends in the signal [146]. On the
other hand, to get extra information about the periodic behavior of the sensor signal, more features such
as power spectral density, mean frequency, peak frequency, spectral energy and wavelet coefficients of
the signal are acquired from frequency domain analysis [140,147]. After extracting the features from
the raw data, feature selection techniques are applied to select more discriminative features and reduce
the dimensions of input data.

Feature selection methods can be classified into three types [141]: (1) wrappers, which use
classifiers to score a given subset of features; (2) embedded methods, which inject the feature selection
process into the learning of the classifier; and (3) filter methods, which analyze intrinsic properties of
data, ignoring the classifier to rank the features and create feature subsets. Every feature selection
technique can be also categorized as supervised or unsupervised learning [148]. In supervised learning,
class labels are given beforehand, and the algorithms maximize some functions to select the relevant
features which are highly correlated with the class. On the other hand, class labels are not specified in
unsupervised learning. Therefore, it becomes more difficult when relevant features are needed to be
found simultaneously.

Some commonly used feature selection methods are, the Fisher method [149], infinite latent feature
selection (ILFS) [150], feature selection via eigenvector centrality (EC-FS) [151], dependence guided
unsupervised feature selection (DGUFS) [152], feature selection with adaptive structure learning
(FSASL) [153], unsupervised feature selection with ordinal locality (UFSOL) [154], least absolute
shrinkage and selection operator (LASSO) [155] and feature selection via concave minimization
(FSV) [156]. There are some other well-known feature selection methods such as principal component
analysis (PCA), independent component analysis (ICA) and linear discriminant analysis (LDA) [157]
which are used in health monitoring to reduce the dimensions of large physiological data sets. By using
those feature selection tools, the subset of the most significant features is separated for modeling and
learning methods. A category of different feature selection methods, their advantages and limitations
are given below in Table 5 [158].

After completing preprocessing, feature extraction and selection steps, it is necessary to apply the
proper analysis method to make sense of the data and retrieve meaningful information. Examples of
such meaningful information include anomaly, outliers and alarms detection which are used for further
prediction, diagnostic decision making and feedback applications [138]. There are several developed
machine learning algorithms which are used to analyze the physiological data from different sensors
based on their usability and efficiency. These methods can be classified into two types [159]:

(1) Supervised learning in which a predictive model based on both input and output data is
developed; and

(2) Unsupervised learning which discovers an internal representation from input data only.

The algorithms related to classification (output is a choice between classes) and regression (output
is a real number) are categorized as supervised learning. Popular examples of classification methods
include support vector machines, discriminant analysis, naive bayes, nearest neighbor, rule-based
methods and association rule mining. besides, linear regression generalized linear model, support
vector regression (SVR), gaussian process regression (GPR), logistic regression models, ensemble
methods, decision trees, artificial neural networks are examples of regression techniques. On the other
side, all of the clustering algorithms (no output—find natural groups and patterns from input data
only) are used as unsupervised learning. Some of the most common clustering algorithms are k-Means,
k-Medoids, fuzzy c-Means, hidden Markov models, Gaussian mixture models, hierarchical clustering,
etc. [136,160]. A comparison among the most common algorithms is summarized below in Table 6.
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Table 5. A category of different feature selection methods, their advantages and limitations.

Methods Advantages Limitations Example

Wrapper methods

Deterministic

- Simple
- Dependence to feature
- Interplay with classifier
- Slower than Randomize

- High risk to over-fitting
- More entrapment to local optimum

than Randomize
- Classifier dependent selection

- Sequential forward selection (SFS)
- Sequential backward elimination

(SBE)
- Beam search

Randomize
- Dependence to feature
- Less entrapment to local optimum
- Interplay with classifier

- Classifier dependent selection
- More risk of over-fitting

than deterministic

- Simulated Annealing
- Randomized hill climbing
- Genetic algorithms
- Estimation of

distribution algorithms

Filter methods

Univariate
- Quick
- Gradable
- No dependence to the classifier

- Relinquish dependence to feature
- Relinquish interplay with

the classifier

- Information Gain (IG)
- x2

− CHI
- t-test

Multivariate

- Dependence to feature
- No dependence to the classifier
- Better time complexity

than wrapper

- Slower than univariate methods
- Less gradable than

univariate methods
- Relinquish interplay with

the classifier

- Correlation-based feature selection
(CFS)

- Markov blanket filter (MBF)
- Fast correlation-based feature

selection (FCBF)

Embedded methods

- Dependence to feature
- Interplay with classifier
- Better time complexity

than wrapper

- Classifier dependent selection

- Decision trees
- Weighted naive Bayes
- Feature selection using the weight

vector of SVM
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Table 6. Advantages and limitations of different classification models.

Methods Advantages Limitations

k-Nearest Neighbor

- Easy to understand and easy to implement
- Training is very fast
- Robust to noisy training data
- It is particularly well suited for multimodal classes

- It is sensitive to the local structure of the data
- Memory limitation
- Being supervised learning lazy Algorithm e.g., runs slowly

Neural Network

- Efficiently handles noisy inputs
- Computational rate is high
- When an element of the neural network fails, it can

continue without any problem with their parallel nature

- It is semantically poor
- Difficult in choosing the type of network architecture
- Requires high processing time for large neural networks

Gaussian Mixture Model - Training is very fast
- Performs well on the data of different size and densities

- The result is not stable
- Sensitive to violations and distributional assumptions

Hidden Markov Model - Convenient for modeling sequential data
- Learning can take place directly from raw data

- Often has a large number of unstructured parameters
- Unable to capture higher order correlation

Decision Tree

- Requires little data preparation
- Nonlinear relationships between parameters do not affect

tree performance
- Easy to interpret and explain
- Performs well with large data in a short time

- Complexity
- Possibility of duplication with the same sub-tree on

different paths

Support Vector Machine

- Produces very accurate classifiers
- Less over-fitting, robust to noise
- Especially popular in text classification problems where

very high-dimensional spaces are the norm
- Memory-intensive

- Requires both positive and negative examples
- Needs to select a good kernel function
- SVM is a binary classifier. To do a multi-class classification,

pair-wise classifications can be used (one class against all others,
for all classes)

- There are some numerical stability problems in solving the
constraint, QP (Quadratic programming)

- Computationally expensive, thus runs slow

Self-Organizing Map

- Simple and easy-to-understand
- A topological clustering unsupervised algorithm that

works with a nonlinear data set
- The excellent capability to visualize high- dimensional data

onto 1 or 2-dimensional space makes it unique especially
for dimensionality reduction

- Time consuming algorithm
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Table 6. Cont.

Methods Advantages Limitations

k-Means - Low complexity
- Necessity of specifying k
- Sensitive to noise and outlier data points
- Clusters are sensitive to the initial assignment of centroids

Fuzzy Measure

- Efficiently handles uncertainty
- Properties are described by identifying various

stochastic relationships
- Allows a data point to be in multiple clusters

- Without prior knowledge, the output is not good
- Precise solutions depend upon the direction of decision

Expectation-Maximization
Meta

- Can easily change the model to adapt to a different
distribution of data sets

- Parameters number does not increase with the training
data increasing

- Slow convergence in some cases

Bayesian Classifier

- Improves the classification performance by removing the
irrelevant features

- Good performance
- Short computational time

- Information theoretically infeasible
- Computationally infeasible
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5. Conclusions and Future Challenges

The aim of this study was to present a state-of-the-art survey on different monitoring methods of
human body joints which includes the key joint parameters, sensor technologies and the developed
systems and their performance analyses. A comfortable, wearable and easy-to-use sensor-based joint
monitoring device is a promising solution to the mobility and other musculoskeletal issues. In this paper,
we provided some background on existing systems and the current trend of sensing technologies for
joint monitoring. We then reviewed the key parameters and different sensors technologies published
or commercially available for joint and activity monitoring which included optical fiber sensors,
optical-based goniometer, imaging and video-based tracking system, textile-based sensors, gyroscope,
magnetometer and inertial motion sensors. We discussed and analyzed their working principles,
measuring techniques, validation process and performance compared to others. We also explored
some sensor fusion methods which were introduced to make the system more precise and accurate.
We also reviewed the existing post-processing techniques of sensor data which has a significant role to
make a convenient joint monitoring system.

After evaluating all these technologies and methods, it seems that the development of a viable joint
monitoring system can turn joint-related study (clinical and non-clinical) in a new direction. Wearable
light-weight devices with miniature sensors and wireless connectivity appear to have the greatest
potential in terms of ease of use, cost and the measurement of accurate and clinically relevant information.
Researchers are now also focusing on noise reduction of the sensors, error minimization, and the
handling of a large amount of data to build a secured and reliable device. Furthermore, the evolution
of data science technologies has opened the door of possibility to develop and integrate an efficient
prediction and feedback model with the system for more effectively taking care of the human joint
health. Despite the enormous technological advances in the past few decades, their application in the
real world is hindered by challenges that are present in those systems. That is why further research
work and development are required to overcome those challenges by focusing on some key factors
that include the following.

• Most of the joint monitoring researches are focused on developing the sensing system using
different technologies and sensing combinations. There is much less research emphasizing the
data post-processing techniques and building predictive models. More work is needed to define
an efficient prediction and feedback model depending on the properties of the data set and the
experimental settings.

• The majority of the published studies employed different methods to assess validity and reliability
which makes it difficult to compare the monitoring devices. In addition, clinical acceptance is
questionable due to the lack of enough involvement of medical professionals during the design
and evaluation process. Therefore, standard validation criteria and protocols (including clinical
protocols) should be developed by the major regulatory bodies and clinical researchers to evaluate
the accuracy and reliability of a monitoring device. These standards would provide guidelines to
be used in the development and use of high-quality devices by both researchers and consumers.

• One of the main challenges is to extract and select features in real-time systems since the modeling
techniques can handle the raw extracted features. This causes unnecessary redundancies which
reduce the accuracy and efficiency of the system. This can be resolved by integrating cloud server
communication with the system for real-time data mining. Therefore, the cloud server can handle
all sets of data by using proper algorithms.

• The accuracy of joint health assessment using a monitoring device is heavily affected by the
amount and variety of training data. It is preferable if the training data set contains data from as
many subjects as possible. However, it is challenging to coordinate human subjects of different
ages and musculoskeletal conditions to collect a large amount of joint monitoring data sets. This is
a major barrier to evaluate the effectiveness of the monitoring devices, especially in expensive
clinical trials settings.
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• Although the sensor fusion technique is an advanced approach, very few research studies are
conducted in the field of joint monitoring. The major challenges of using multiple sensors
in one system are data acquisition and processing, simultaneous wireless communication and
synchronization. To solve the communication problem, we need to install a wireless communication
module which supports multiple connections for different sensors. We also need to calibrate all
the sensors efficiently and use data standardization method to overcome the difficulties related
to data processing and management. Moreover, the selection of proper sensor combination in a
multi-sensor system is crucial to enhance the performance of a joint monitoring system.

• The hardware and computational resources for a monitoring system can be a crucial factor for
long term communication and data acquisition. Therefore, high configuration hardware support
is needed with an efficient algorithm which can deal with large data set resourcefully. On the
contrary, more resource will consume more power which is one of the most critical factors to be
considered while building a system. To develop a balanced system, the power requirement of the
system should be minimized by selecting power-efficient components and more efficient power
supply. Energy harvesting can also be an option to solve this problem.

• As the system requires processing and transmitting health information of users, information
security is a key aspect to consider. It includes data privacy, security as well as ethical requirements
recommenced by responsible regulation bodies. The scope of security and ethical requirements
need to be clearly defined and specified. Besides, more efficient and secured algorithms are needed
in order to ensure highly secured communication channels in existing low power, short range
wireless platforms.

• Also, to obtain widespread acceptance among users, the systems need to be simple, wearable,
easy-to-use, cost-effective, non-invasive, unobtrusive and inter-operable among various operating
platforms. Therefore, more research and development efforts are needed to enhance the systems’
acceptance from both medical, user and business perspectives.

• Overall, a smart wearable joint monitoring and assistive device is expected to help the people at high
levels of musculoskeletal health risk by tracking and assessing the joint function in a comfortable
and non-intrusive manner. By integrating efficient prediction and feedback models, the system
can be exploited for applications such as fall detection and prevention, athletes’ performance
evaluation and rehabilitation progress. In rehabilitation from a joint injury, biofeedback is especially
important since errors or mistakes in joint exercises can be corrected immediately, thus promoting
faster and better recovery. Furthermore, the internet of things (IoT) is already unlocking the
benefits of the advanced computing and communication technologies in the healthcare industry
by connecting a variety of wearable healthcare systems. Hence, the development of a smart
joint monitoring system coupled with IoT can facilitate remote long-term health monitoring and
provide important joint-related information to medical professionals. This may result in early and
accurate diagnosis of joint and joint-related problems and more efficient and effective medical
intervention when needed.
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