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Abstract: Video surveillance-based intrusion detection has been widely used in modern railway
systems. Objects inside the alarm region, or the track area, can be detected by image processing
algorithms. With the increasing number of surveillance cameras, manual labeling of alarm regions
for each camera has become time-consuming and is sometimes not feasible at all, especially for
pan-tilt-zoom (PTZ) cameras which may change their monitoring area at any time. To automatically
label the track area for all cameras, video surveillance system requires an accurate track segmentation
algorithm with small memory footprint and short inference delay. In this paper, we propose
an adaptive segmentation algorithm to delineate the boundary of the track area with very light
computation burden. The proposed algorithm includes three steps. Firstly, the image is segmented
into fragmented regions. To reduce the redundant calculation in the evaluation of the boundary
weight for generating the fragmented regions, an optimal set of Gaussian kernels with adaptive
directions for each specific scene is calculated using Hough transformation. Secondly, the fragmented
regions are combined into local areas by using a new clustering rule, based on the region’s boundary
weight and size. Finally, a classification network is used to recognize the track area among all local
areas. To achieve a fast and accurate classification, a simplified CNN network is designed by using
pre-trained convolution kernels and a loss function that can enhance the diversity of the feature
maps. Experimental results show that the proposed method finds an effective balance between the
segmentation precision, calculation time, and hardware cost of the system.

Keywords: railway intrusion detection; scene segmentation; scene recognition; adaptive feature extractor;
convolutional neural networks

1. Introduction

With a continuous increase in the public’s expectation for railway safety, railway intrusion
detection systems require more effective technology to detect objects intruding into the track area and
to provide real-time alarm information for the command center [1]. Railway intrusion behavior is
defined as an object intruding into the track area and endangering the safe operation of trains. Typical
intruding objects include rocks falling from a hill beside railway line or a tunnel entrance, pedestrians,
vehiclesand their cargo staying in the railroad crossing area or falling from the bridge over the railway.

Depending on the detecting principle, railway intrusion detection systems can be divided into
two categories: the contact type and the non-contact type. A representative of the contact type is
the protective metal net installed along the line to block an object from intruding into the clearance,
and the system will send the alarm information when the physical deformation of the net is measured
by a dual-power sensor [2] or fiber grating sensor [3,4]. The systems based on the non-contact
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measurement technology use infrared sensor [5] or laser scanner [6,7] to get the size and location
of the intruding object [8]. Video surveillance is also widely used as another kind of non-contact
intrusion detection systems because of the large monitoring area, convenient installation, maintenance,
and good observable results [9]. As shown in Figure 1, we established an intrusion detection system
for the Shanghai–Hangzhou high-speed railway in China. The system contains data process servers,
communication networks, and 1550 cameras, including both of fixed and PTZ cameras.
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Figure 1. Structure of the railway intrusion detection system.

The threat level of an intrusion behavior will be evaluated by the category, location, and moving
trajectory of the object with respect to the track area. The information of the intruding object can
be extracted by image processing algorithms, e.g., density-based spatial clustering of applications
with noise (DBSCAN) [10], fast background subtraction (FBS) [11], Kalman filtering [12], principal
components analysis (PCA) [13]. DBSCAN uses extremum points of scan sequence as core objects
of clustering, and the movement and distribution characters are used to judge whether the cluster is
a train or other foreground object. FBS projects the scene image into one dimension (x or y dimension)
to locate position of the foreground object by the change of the peak value. KF classifies the objects
acquired via image background subtraction by support vector machine (SVM), and then using the
Kalman-filter tracking algorithm to analyze the behavior and moving trend of the objects. PCA projects
the statistic of the scene images and the successive images in a transformation space and calculates the
Euclidean distance, which is greater than a threshold, is considered like belonging to motion objects.
Most of the above-mentioned algorithms only focus on the foreground object, rather than the track area
in the background. Therefore, the position and boundary of track area are still delineated manually in
advance, as shown in Figure 2.
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railway slabs. (b) Labeling the different area of the railway scene with different colors by manual, 
including track area (red), sky (blue), catenary system (purple), green belt (green), and ancillary 
buildings (yellow). The precision depends on the patience of the manual operator. 
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Figure 2. Railway scene and the local areas, labeled manually. The image quality is susceptible to
external influences, such as the illumination, weather, and even the dust on the lens. (a) The red area is
the track area to be surveilled. The track area includes the rails, sleepers, subgrades, or high-speed
railway slabs. (b) Labeling the different area of the railway scene with different colors by manual,
including track area (red), sky (blue), catenary system (purple), green belt (green), and ancillary
buildings (yellow). The precision depends on the patience of the manual operator.

The precision of the track area boundary directly affects the reliability of intrusion detection.
With an increasing number of surveillance cameras along the railway line, especially as some PTZ
cameras will change their focal lengths and angles temporarily for different applications, manual
labeling has become time-consuming and laborious. Thus, for the efficiency of the railway intrusion
detection system, a scene segmentation algorithm is needed to recognize the track area and delineate
the boundary automatically. The algorithm will be applied to initialize surveillance areas after the
installation of all cameras, and to relearn them when the operator adjusts PTZ cameras. Meanwhile,
the practical engineering application has many requirements: the relevant image parsing algorithm
should not only have good segmentation precision and classification accuracy, but also be able to
process temporarily changing scenes quickly. In addition, the algorithm should have small number
of parameters and can be easily applied into the data processing servers with different hardware
configurations and even into the embedded surveillance equipment in the field.

Currently, there are two ways to parse a scene. The traditional way will segment the scene
image into superpixels, ultrametric contour maps (UCM), or other fragmented segment regions [14,15],
and then combine them into candidates of objects or local areas based on Markov random fields (MRFs),
conditional random fields (CRFs), multiscale combinatorial grouping (MCG), or other rules [16–18].
These traditional methods will generate fragmented regions with precise boundaries and require
time-consuming iterative calculations to form a best candidate of an object or a local area. In addition,
category information of objects cannot be produced. The second way relies on deep neural networks,
e.g., fully convolutional networks (FCN) [19,20], to process the feature extraction, combination,
segmentation, and recognition at the same time. A FCN can achieve the segmentation and recognition
in a single process. One drawback of FCNs is that the boundary line generated is usually a smooth
curve, which will miss the corner of the track area. In addition, FCN has big memory footprint and
needs a GPU to accelerate its large amount of computation.

In this paper, we propose an adaptive segmentation algorithm that can take advantage of both
methods while avoiding their shortcomings. Like the existing traditional methods, we extract the
texture distribution of the image to generate the boundary point with different weight for segmenting
the image into small fragmented regions, and then the regions are combined into local areas with
precise boundaries; finally, we apply a specially designed convolutional neural network (CNN) for the
area’s classification without the need of GPU. Our main contributions include:
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• To accelerate the generation of small fragmented regions, we propose a method to find the optimal
set of Gaussian kernels with adaptive directions for each specific scene. By making full use of
the straight-line characters of the railway scene, a smaller number of adaptive directions are
calculated according to the maximum points in Hough transformation rather than being chosen
from a set of fixed angles in the traditional way. As a result, the calculation time for the boundary
extraction and fragmented region generation is cut in half;

• A new clustering rule based on the boundary weight and the size of the region is set up to
accelerate the combination of the regions into local areas. The number of regions is reduced in
the process of weak boundary point removal by filtration, and the smallest remaining region is
combined with its neighbor region, which shares the weakest boundary;

• We propose a specially designed CNN model to achieve the fast classification of local areas without
the need of GPU. The local areas are divided into two categories: the track area which is used to
judge the intrusion behavior and the rest area which is unrelated to the intrusion. The convolution
kernels are pre-trained, and a sparsity penalty term is added into the loss function to enhance the
diversity of the convolutional feature maps.

The rest of this paper is organized as follows. In Section 2, we review the related works on image
parsing algorithms. Section 3 explains the proposed fast image segmentation process. Section 4 explains
the proposed simplified CNN network structure and the optimization process. Section 5 presents the
experimental results and discusses them. The last section summarizes our conclusions.

2. Related Work

2.1. Image Parsing by Traditional Methods

To segment an image using the traditional methods, the first step is to calculate the correlation
between the adjacent pixels in the scene image, and then segment the image into fragmented regions
by a certain convergence criterion [21,22]. The superpixel algorithm, for example, converts the image
from the RGB color space to CIE-Lab color space to form a five-dimensional vector (brightness, color
A, color B, and position x, position y), and the vector distance between two pixels representing their
similarity, is used to generate the small segments patches [14,23]. A spatial pyramid descriptor fuses
the gray, colored and edge gradient into one feature vector for the SVM classifier to recognize a traffic
sign [24]. The image can also be converted into the YCbCr color space, and the local texture features in
different channels are matched with the artificially designed template to locate the position of the traffic
sign [25]. Therefore, converting the image from the RGB color space into another feature space can
obtain more dimensional information channels: brightness, texture, and other feature maps besides
RGB color.

To achieve the final segmentation, the fragmented regions need to be combined. The internal
correlations among the adjacent regions are calculated according to different rules, and the regions are
combined into local areas according to their correlation values. For example, the K-means clustering
rules are used in different practical engineering applications, such as object detection for the synthetic
aperture radar (SAR) image and the sea scene [26–28]. The MCG algorithm is another grouping strategy
using random forests to combine the multiscale regions into highly accurate object candidates.

MCG can process one image (pixel size 90 × 150) in 7 s, and the mean Intersection over Union (IU)
is about 80% [18,29,30]. The clustering rules influence the combination precision, which is also directly
proportional to the calculation time; as a result, MCG is suitable for the initial or post processing of
a fixed scene, not for real-time processing of temporarily changing scenes. Therefore, to accelerate the
whole scene segmentation process, we choose to improve the traditional methods in both generation
and combination of the fragmented regions while maintaining the segmentation precision.
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2.2. Image Parsing by Deep Learning Methods

Deep learning methods have also been widely used in image parsing recently, e.g., various
convolutional networks, which have better robustness to image translation, rotation, scaling,
and distortion. Deep learning methods can be divided into three types: image classification [19], object
detection [31], and pixelwise prediction [20]; and the complexity of their network structures increases
from image-wise to pixel-wise.

For the pixelwise segmentation of a scene, the convolutional networks can be combined with
the superpixels, the random effect model and the texture segmentation to generate the pixelwise
labels [32], and also can be used as a classifier to classify the feature maps containing RGB and
depth information [33–35]. FCN can even process feature extraction, combination, segmentation,
and recognition at the same time, also achieving a pixelwise prediction [20].

Depending on the details of different FCN structures, the mean IU of FCN is about 80%, the accuracy
is about 90%, and the quantity of the parameter is about 57 M to 134 M. The massive number of
parameters and computation need a GPU with big memory to handle the operation, leading to a high
cost for practical applications. Therefore, we choose to use the traditional methods to get the precise
boundary of the local area first, and then use a simplified CNN only to classify the local areas without
the need of GPU. However, the reduction of the network size causes low accuracy in the classification,
so extra care has to be taken in optimizing the network structure and the training process.

3. Railway Scene Segmentation

As shown in Figure 2b, typical railway scene consists of different areas, including track area, sky,
catenary system, green belt, and ancillary buildings. The precision of the track area boundary directly
affects the reliability of the judgement about whether the intrusion occurs or not. The track area is
defined as the clearance area including rails, sleepers, subgrades or high-speed railway slabs, as shown
in Figure 2a. To avoid manual labeling, a fast and precise railway scene segmentation algorithm
is proposed.

Figure 3 illustrates the outline of the proposed algorithm. We first calculate the feature distribution
in a small image patch (pixel size 15× 15) representing the central pixel of the patch, then evaluate the
central pixel’s probability of being a boundary point, and finally use the boundary weights to segment
the image according to a fast combination rule. Unlike the traditional method, we use a smaller
set of adaptive Gaussian kernels to extract the pixel color (PC) distribution and pixel similarity (PS)
distribution of the image in different channels C and by different scales S. The Gaussian kernels are
rotated by a set of adaptive θs, calculated from Hough transformation. The detailed procedure of
boundary weight generation is described in the remainder of this section.
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3.1. Generation of Fragmented Regions

Firstly, we convert the image into the CIE lab color space, getting 3 channels: brightness, color A,
and color B. Images in different channels will be scaled by s = (0.5, 1, 2). In each channel, the image
is convoluted with Gaussian kernels to get the color value distribution; each kernel has a special
orientation angle θ. Define G(x, y,θ, c, s) as the convolution result at pixel P(x, y), with angle θ,
in channel c, by scale s. Then PC, the pixel’s color distribution, can be obtained by

PC(x, y,θ) =
∑

s

∑
c
αc,sG(x, y,θ, c, s) (1)

where αc,s is a weighting coefficient.
Secondly, define Similarity(i, j) as the maximum PC value of all pixels on the line li, j connecting two

pixels i and j in an small image patch by Equation (2), representing the similarity between pixel i and j.

Similarity(i, j) = exp(−Max
{
PC(x, y)

∣∣∣(x, y) ∈ li, j
}
) (2)

Calculate the similarity of each pixel ix,y in the patch and the central pixel jcenter, assign
Similarity(ix,y, jcenter) to each element MS(x, y) of the Matrix of Similarity MS, and assemble MS
representing the similarity matrix between each pixel in the image patch and the central pixel.

Calculate the top t eigenvalues and eigenvectors of MS. Assign the eigenvector to the central pixel
P(x, y) marked as e(x, y, t), forming a feature map E of the image, representing the similarity of the
adjacent points. Again, in each dimension of the feature map, convolute E(t) with Gaussian kernel
of orientation θ to get the similarity distribution. Define g(x, y,θ, t, S) as the convolutional result at
location E(x, y), with angle θ, in dimension t, by scale s. Then, the pixel’s similarity value distribution
can be obtained as

PS(x, y,θ) =
∑

s

∑
t

βc,sg(x, y,θ, t, s) (3)

where βc,s is a weighting coefficient.
Finally, B(x, y), the possibility of the pixel P(x, y) being a boundary point, can be estimated by

B(x, y) =
∑
θ

PC(x, y,θ) +
∑
θ

PS(x, y,θ) (4)

3.2. Finding the Optimal Set of Gaussian Kernels

It can be found that, in the process of estimating B(x, y), convolution operations (Equations (1) and
(3)) using Gaussian kernels with different orientation angles θ cost most of the computation, which can be
reduced if a smaller set of Gaussian kernels are used. The traditional UCM algorithms choose fixed size
of θ = (θ1,θ2,θ3...) with 8 or 16 values uniformly distributed from 0 to π. Here we propose to utilize the
characteristics of the railway scene to find a much smaller set of useful orientation angles and thus a smaller
set of Gaussian kernels. Usually, in railway scene, there is a clear vanishing point (VP), and the boundaries of
many local areas are lines passing through the VP. Therefore, if we can automatically adjust the candidate θ for
each specific scene to enhance the weights of the line boundary points of the relevant areas, then we will be
able to use a smaller set of θ to accelerate the process.

We propose to find the candidate θ by filtering the original image with a Canny kernel [36],
and then convert the obtained texture feature into the Hough coordinate system using

ρ = x cosθ′ + y sinθ′,−
π
2
< θ′ <

π
2

(5)

As shown in Figure 4a, each curve in the Hough coordinate system stands for one point in the
Cartesian coordinate system. If the curves (colorful curve lines in Figure 4a) have one intersection
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point in the Hough coordinate system, then the corresponding points (blue point in Figure 4a) in the
Cartesian coordinate system are collinear.
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Figure 4. Using Hough transformation to detect the most significant lines in the Hough coordinate
system. (a) The intersection point of a group of curves in the Hough coordinate system means there are
a group of collinear points in the Cartesian coordinate system. (b) The more the curves intersect in the
Hough coordinate system, the lighter the intersection point is, meaning that there are more collinear
points along this line in the Cartesian coordinate system. (c) The texture feature maps filtered by canny
filter. (d) The top four significant lines.

Let H(θ′,ρ) be the number of curves intersecting at point (θ′,ρ) and find the point with maximum
H(θ′,ρ), where there are the largest number of points which are collinear on the corresponding line in
the Cartesian coordinate system. The line can be expressed as

y = −
1

tanθ′
x +

ρ

sinθ′
= kx + b (6)

To find a small set of four orientation angles, one can take the top four maximum θ in H(θ′,ρ),
e.g., the points with highest ‘lightness’ in Figure 4b: θ′ = 68◦, 52◦, 0◦ and −88◦. Here we change the
θ = 90◦ − θ′ = 22◦, 38◦, 90◦, and 178◦ in order to obtain a range of values from 0◦ to 180◦ (0–π). Based
on the selected set of orientation angles, the Gaussian kernels can be constructed correspondingly by
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rotating the Gaussian. As shown in Figure 5, in the Cartesian coordinate system X-O-Y, point P(x, y)
rotates around the point o(W

2 , W
2 ) an angle θ to P′(x′, y′), which can be formulated as

[
x y 1

]
=

[
x′ y′ 1

]
1 0 0
0 −1 0

−0.5W 0.5W 1




cosθ − sinθ 0
sinθ cosθ 0

0 0 1




1 0 0
0 −1 0

0.5W 0.5W 1


=

[
x′ y′ 1

]
cosθ sinθ 0
− sinθ cosθ 0

−0.5W(cosθ− sinθ− 1) −0.5W(sinθ+ cosθ− 1) 1


(7)
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Figure 5. Calculating the rotation matrix of the Gaussian kernel. The rotation center is on the kernel 
center. 

Figure 6 shows several Gaussian kernels rotated by the optimal set of   22°, 38°, 90°, and 178° 
obtained above and    112.5°, one of the eight uniformly-distributed values commonly used in 
traditional UCM algorithms, respectively. The results show that the features of the horizontal 
catenary bracket, the vertical catenary column and the declining track are strengthened obviously in 
the first four filters, contrasting with the feature extraction equality in the fifth filter. The universality 
of using 8 or 16 uniform values in different angle   causes a redundant calculation when applied 
to the railway scene. Therefore, adjusting a smaller number of   adaptively to filter the feature map 
can accelerate the boundary weighting to generate the fragmented regions. 

Figure 5. Calculating the rotation matrix of the Gaussian kernel. The rotation center is on the kernel center.

Figure 6 shows several Gaussian kernels rotated by the optimal set of θ =22◦, 38◦, 90◦, and 178◦

obtained above and θ = 112.5◦, one of the eight uniformly-distributed values commonly used in
traditional UCM algorithms, respectively. The results show that the features of the horizontal catenary
bracket, the vertical catenary column and the declining track are strengthened obviously in the first
four filters, contrasting with the feature extraction equality in the fifth filter. The universality of using
8 or 16 uniform values in different angle θ causes a redundant calculation when applied to the railway
scene. Therefore, adjusting a smaller number of θ adaptively to filter the feature map can accelerate
the boundary weighting to generate the fragmented regions.
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3.3. Combination Rule

The fragmented regions generated by the adaptive boundary detection are shown in Figure 7a.
The higher the boundary weight is, the brighter the point is shown in the gray feature map, indicating
that the point is more likely to become a boundary point.

A clustering rule based on both of the boundary weight and the region size is proposed to combine
the fragmented regions into local areas. The number of the regions will be reduced in the process of
weak boundary point removal by filtration. The smallest remaining region will be combined with its
neighbor region, with which it shares the weakest boundary. Repeat this iteration until the statistical
parameters meet the requirements. The process is as follows:
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1. Let B(m) be the normalized value of the boundary point’s weight B(xm, ym), where m = 1, 2, 3...M,
and Mis the total number of boundary points:

B(m) = sigmoid(B(xm, ym)) =
1

1 + e−B(xm,ym)
(8)

2. The statistical distribution of the boundary point weight B(i) is shown in Figure 7b. There are
many levels of boundary point weights. Choose the minimum level B as the threshold to delete
the weak boundary points B(m) ≤ B;

3. The fragmented regions will be reduced by reconnecting the breakpoints of the boundary line
using expansion and corrosion operations, as shown in Figure 7c. The new regions are shown
in Figure 7d;

4. The statistical distribution of region size f (n) is shown in Figure 7e, where n = 1, 2, 3...N, and N
is the serial number of the regions. Choose the smallest region along its boundary line and find
the neighbor region which shares the weakest boundary with it. Then combine them into a new
region. As shown in Figure 7d, regions in number 1, 2, 3, and 4 are combined as one new region
in Figure 7f;

5. Repeat Step 4 to reduce N until the area of the smallest region is larger than a threshold S, which is
used to limit the minimum area of the remained regions;

6. Compare the final N with another threshold Q to limit the minimum quantity of the remained
regions. If N > Q, select the second minimum level weight B and go back to Step 2;

Figure 7g is the original railway scene image, and the Figure 7h is the result of our segmentation
algorithm. The railway scene only contains five categories of areas, and the shape of the area is usually
in a large and radial pattern. Therefore, we set the minimum area threshold S to 10% of the whole
image and the maximum quantity threshold Q to 10, which will prevent the remained regions from
being too fragmented. The remained regions will be adjusted into a standard size of 64 × 64 and RGB 3
channels, after being classified by the CNN in Section 4, the remaining regions with the same labels
will be combined as one local area.
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To sample the dataset, five solid line rectangles are manually defined to cover the five different areas. 
We program a simple extraction code to take the image patches using the dotted-line box as samples 
with the same category of the outer rectangle. We set up a group of constraint parameters to control 
the dotted box to extract the patches at a random position, by a random scale, maintaining inside of 
each rectangle. The image patches are adjusted into a pixel size of 64 × 64 and RGB 3 channels to 
assemble our five-category datasets of railway local area. However, for the specific application of this 
paper, our target is focused on the track area for judging intrusion behavior, so besides the ‘track’ 
label, we merge the other four elements into one category labeled as ‘others’. There are 9000 image 
patches in total, in which 5000 images are used for training our net, 2000 images are used for cross-
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Figure 7. The procedures of combining the fragmented regions into local areas. According to the adjustment
and experiments, for the railway scene, the scene image is set to a pixel size of 90 × 150, the number of
adaptive θ is reduced to 4, the number of reserved areas Q is set to 10, and the smallest fragmented area S is
set to 10% of the total size of the image. (a) Boundary with weight. (b) Distribution of boundary weight and
quantity. (c) Delete the weak boundary. (d) Fragmented regions. (e) Distribution of the region size and serial
number. (f) Local areas after the fragmented regions are combined. (g) The original railway scene image,
(h) is the result.

4. Local Area Recognition in Railway Scene

To automatically label the local areas in real time without the help a GPU, we design a simplified
CNN with less layers and kernels. To compensate the reduced accuracy, the convolution kernels are
pre-trained, and a sparsity penalty term is added into the loss function to enhance the diversity of the
feature maps.

4.1. Structure of Simplified CNN

Before designing and applying a simplified CNN, we first construct a dataset of local area images
for training it. As shown in Figure 8, there are mainly five basic categories of elements in a typical
railway scene, including track area, sky, catenary system, green belt, and ancillary buildings. To sample
the dataset, five solid line rectangles are manually defined to cover the five different areas. We program
a simple extraction code to take the image patches using the dotted-line box as samples with the
same category of the outer rectangle. We set up a group of constraint parameters to control the
dotted box to extract the patches at a random position, by a random scale, maintaining inside of each
rectangle. The image patches are adjusted into a pixel size of 64 × 64 and RGB 3 channels to assemble
our five-category datasets of railway local area. However, for the specific application of this paper,
our target is focused on the track area for judging intrusion behavior, so besides the ‘track’ label,
we merge the other four elements into one category labeled as ‘others’. There are 9000 image patches
in total, in which 5000 images are used for training our net, 2000 images are used for cross-validation,
and 2000 images are used for testing.
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Figure 8. Collecting samples of local areas for CNN training. (a) Solid-line rectangles are delineated
by manual with labels, including the track area (red), sky (blue), catenary system (purple), green belt
(green), ancillary buildings (yellow). The dotted-line boxes are extractor windows. (b) The dataset
containing two categories for training the CNN.

A simplified CNN structure is designed for fast recognition, which consists of an input layer, two
convolution layers C1 and C2, two mean pooling layers S1 and S2, and a logistic classification layer,
as shown in Figure 9.
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RGB 3 channels. The output is one of the two category labels.

As shown in Table 1, we conducted five experiments with different kernel quantities and sizes.
It can be seen that increasing the kernel size and quantity may increase the accuracy, but the accuracy
is still less than 80%. Although the railway scene is very simple, only containing several typical area
categories, the shapes, color, and texture features of the area belonging to the same category are still
very complex and different. Therefore, the training process must be optimized to increase the accuracy.

Table 1. Experimental results of different CNN network structures.

Kernel Size
Kernel Quantity Calculation

Time (s)
Accuracy

C1 C2

3 × 3
50 10 0.00372 72.25%
70 10 0.00495 73%
100 10 0.00689 75%

5 × 5 100 10 0.0125 76%

7 × 7 100 10 0.0217 76.5%

4.2. Optimization of the Simplified CNN

To increase the accuracy, kernels are pre-trained to extract better low-level features. The pre-training
strategy is based on autoencoder-decoder network; and the W1

i,3×3×3 after training in first layer is
applied as the convolution kernel in the first convolution layer C1, as shown in Figure 10 for the case
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with kernel size of 3× 3 and in RGB 3 channels. During the training, 3× 3patches in RGB 3 channels
are randomly selected from random railway scene images, as shown in Figure 11a. The result of the
pre-trained kernels is shown in Figure 11b, where the patches and the kernels are all in RGB 3 channels.
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Figure 10. Structure of the autoencoder-decoder network. The hidden layer contains 70 hidden neurons;
W denotes the weight associated with the connection between neurons; and the network is trained to
produce output the same as its input.
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Figure 11. Pre-trained convolution kernels using the autoencoder-decoder algorithm. (a) The image
patches are extracted from the left railway scene image for the kernel training. (b) The pre-trained
kernels used in convolution layer C1.

After pre-training, the input weights of each neuron in the hidden layer are used as the initial
weights of kernels in the first convolution layer C1 in Figure 9. The rest of CNN in Figure 9 are
randomly initialized and then trained by using a backpropagation algorithm (stochastic gradient
descent, SGD). To enhance the diversity of the feature maps, a sparsity penalty term is added into the
loss function J as

J =

 1
P

P∑
p=1

1
2

[
h
(
ep

)
− lp

]2

+ τ
10∑

f=1

χlg
χ
η f

+ (1− χ)lg
1− χ
1− η f

 (9)
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where

η f =
1
P

P∑
p=1

29∑
u=1

29∑
v=1

O(2)
f ,ep

(u, v) (10)

ep is the p-th input image, lp is the ground truth label, there are totally P images in the dataset, h(ep) is
the output label, τ is the weight of the sparsity penalty term, χ is the sparsity parameter (a smaller
value close to 0, e.g., 0.05), η f is the average output of the f -th feature map in convolution layer C2

(averaged over the training dataset), and O(2)
f ,ep

(u, v) is the value at position (u, v) in the f -th feature
map of the input ep in the second convolutional layer C2, the size of the feature map is 29 × 29 pixels.

In the process of backpropagation, the sparsity penalty item will suppress the average output of
all feature maps in the second convolutional layer C2, but enforce the output of one feature map at the
same time, so as to enhance the diversity of the feature maps and improve the accuracy. The learning
rate is set to 0.1, and the decay of the learning rate is 0.001 after each iteration, the final value of J
should be less than 0.05.

4.3. Performance of the Simplified CNN

As shown in Table 2, the accuracies of the simplified CNNs with different structures are all
increased by using the proposed optimization method, compared with the results of traditional training
method shown in Table 1, e.g., the simplified CNN with 70 kernels (3 × 3, 3 channels) in C1 and
10 kernels (3× 3, 70 channels) in C2 is used for the proposed segmentation algorithm. The quantity
of the network parameters is only 0.02912M. After the railway scene is segmented and classified,
the regions with track labels can be combined together as the final track areas.

Table 2. Experiment results of different CNN network structures after the optimization.

Kernel Size
Kernel Quantity

Accuracy
C1 C2

3 × 3
50 10 98%
70 10 98.5
100 10 98.5%

5 × 5 100 10 98.75%

7 × 7 100 10 99.25%

5. Experiments and Results

5.1. Railway Scene Dataset

We collect images from 16 PTZ cameras at straight lines, curves and bridges in the high-speed
railway from Shanghai to Hangzhou, China. For each camera, images are collected from 10 different
shooting angles, lenses, and under different illumination conditions from 8:00 a.m. to 5:00 p.m.
Examples are shown in Figure 12a. There are totally 1760 scene images in the dataset, in which
1000 images are used in the training dataset, 400 images are used in the cross-validation dataset and
360 images are used in the test dataset. These datasets are used to generate the datasets for our
simplified CNN (Section 4.1) and the dataset for training the FCN for the comparison experiments.
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5.2. Modification of the Workflow for the Case of Small Track Portion

For cameras on line sections, track area only takes up a small portion of the scene image, while for
the ones at tunnel entrances and bridges over railway line, track area usually takes up most of the
scene. As shown in Figure 12b, the red track area takes about 25–70% of the whole scene image for
different cameras. That means, the complete-processing workflow (Sections 3 and 4) would waste
a lot of time calculating the boundaries between the ‘others’ areas (Figure 13b) rather than focusing
on the potential track area as the red dotted line rectangle shown in Figure 13a. In order to find the
potential track area and reduce the segmentation calculation furthermore, we design a partial-scanning
workflow to locate the potential position of the track area before the segmentation and classification by
scanning over the railway scene roughly using the proposed CNN. As shown in Figure 13c, we firstly
divide the railway scene image into 6 × 10 cells (yellow cell); each cell and its peripheral zone (red
dotted line rectangle) are resized to 64× 64 pixels, define their classified labels as the representation
of its central cell (red area in Figure 13c); the proposed CNN is used to classify these cells and the
output labels are used to identify the potential track area roughly as the red area shown in Figure 13d;
A minimum enclosing dotted line rectangle is used to adjust the potential track area into a regular
shape as shown in Figure 13d.

The strategy of the partial-scanning workflow reduces the segmentation area, but spends extra
scanning time. Thus, the overall processing time depends on the proportion of the track area to the
railway scene, as shown in Table 3, the numbers on the left are the scene images in Figure 12, from the
left to the right. If the track area takes over more than 88.1% of the railway scene, the performance of
the partial-scanning workflow would be worse than the complete-processing workflow. These two
workflows can be chosen for different cameras: for those with short focus lens and focus on the near
scene full of track area, the complete-processing workflow should be used; for the ones with long focus
lens and track area only take a small part of the scene, the partial-scanning workflow should be used.
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Figure 13. Rough scanning over the scene to find the potential track area. (a) Segmentation result of
the whole railway scene images. (b) Different local areas. (c) Scanning the railway scene image roughly
using proposed CNN. (d) Area in red dotted rectangle is the potential track area, which will reduce
segmentation calculation by three-quarters.

Table 3. Calculation time of the comparison experiments with different workflow to segment the
railway scene.

Partial-Scanning Workflow Complete-Processing
Workflow

Scan Time
(s)

Proportion
of Track Area

Segmentation and
Classification Time

(s)

Total
(s)

Time
(s)

1 0.297 41.7% 1.042 1.339 2.5
2 0.297 25% 0.625 0.922 2.5
3 0.297 75% 1.875 2.172 2.5
4 0.297 40% 1 1.927 2.5
5 0.297 30% 0.75 1.047 2.5

5.3. Metrics

To evaluate the segmentation performance, three criteria are used. The first one is the intersection
over union (IU) generally defined as Equation (11), where L represents for the ground truth, R represents
the segmentation result; the second one is the pixel accuracy (PA) defined in Equation (12) to evaluate
the portion of the area which need to be surveilled are segmented; and the extra pixel (EP) as Equation
(13) is used to evaluate the portion of segmented areas which do not need to be surveilled. PA would
influence the missing part of the track area which would cause a missing alarm, and the EP would
influence the extra part of the track area which would cause a false alarm.

IU =
L∩R
L∪R

(11)

PA =
L∩R

L
(12)

EP =
R− L∩R

L
(13)

5.4. Performance of the Proposed Segmentation Algorithm

The proposed algorithm is compared with MCG and FCN using images from railway dataset and
some examples are shown in Figure 14. In the experiment, the computation platform is equipped with
an Intel i5-6500 CPU, 8 GB DDR3 memory, without GPU and MATLAB 2012, and images in the dataset
are resized to 90× 150. The MCG method is the pre-trained demo from [17]. The FCN network uses



Sensors 2019, 19, 2594 18 of 21

a standard VGG16 structure trained by VOC2012 dataset for the feature extracting, and upsampled the
outputs of the third, fourth, and seventh convolution layers.
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our algorithm.

The missing part and the extra part of the segmented track area are shown in Figure 15. For the
MCG algorithm, it used the CRFs to combine the fragmented regions into one unified area based
on the texture which caused the missing part (as shown in Figure 15e) because of the difference
texture between the nearby track and the distant track. The performances of the FCN algorithms were
improved slightly from their original results in [19] because of the monotonous railway scene and the
small amount of categories; but not too significantly because the shape and color textures of the scene
images sampled with different illuminations, weather, and in different seasons were still complex.
As shown in Figure 15f,i, the smooth boundary line of the FCN algorithm was not suitable for our
railway scene parsing because of the concave and convex shapes at the straight and sharp edge of
the region, especially near the area with an acute angle and straight line. Concave and convex shapes
caused both a missing part and an extra part of the track area when compared with the ground truth,
which would release both the missing alarms and false alarms. For the engineering application, our
system would rather release a false alarm than miss a true alarm.
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Figure 15. Missing and extra areas of different methods comparing with the ground truth. (a) Manual
label of track areas. (b) Results of the MCG. (c) Results of the FCN. (d) Results of our method. (e) Missing
part of MCG. (f) Missing part of FCN. (g) Missing part of our method. (h) Extra part of MCG. (i) Extra
part of FCN. (j) Extra part of our method.
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The performances of the three algorithms are shown in Table 4. It can be found that the proposed
algorithm with four optimal Gaussian kernels achieves the highest score in PA, which means that the
greatest portion of the surveillance area is found out and thus is preferred for applications.

Table 4. Experimental results of different algorithms.

Algorithm Mean
IU

Mean
PA

Mean
EP

Time
(s)

MCG 72.05% 79.94% 10.63% 7

FCN 89.83% 91.26% 16.20% 41

Our
Algorithm

Four optimal Gaussian kernels 81.94% 95.90% 18.17% 0.9–2.8

Eight regular Gaussian kernels 85.23% 93.85% 17.56% 1.1–4.4

6. Conclusions

The proposed algorithm uses an adaptive feature distribution extractor for railway track
segmentation by making full use of the strong linear characteristics of railway scenes and the
typical categories of the local areas. A good balance between segmentation precision, recognition
accuracy, calculation time, and complexity of manual operation can be achieved. By using the
proposed algorithm, the railway intrusion detection system can automatically and accurately delimit
the boundaries of a surveillance scene in real time and greatly improve the efficiency of the system
operation. Considering the fact that, in China, there are over 29,000 km of high-speed railways and
the average density of cameras on high-speed railway lines is about 2.92 cameras/km, the proposed
algorithm is of great significance to improve the efficiency.

The proposed algorithm can be applied into the surveillance system of public places such as
airport aprons, highway pavement, and squares. These places share some common characteristics:
simple structure full of straight lines—such as airplane runways and different functional areas, vehicles
and different lanes, pedestrians and sidewalk lines. Before applying this method, however, the training
dataset of the simplified CNN has to include new categories in such scenes, then the proposed algorithm
can segment the scene and label each local area.
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