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Abstract: Nanoparticle based chemical sensor arrays with four types of organo-functionalized gold
nanoparticles (AuNPs) were introduced to classify 35 different teas, including black teas, green teas,
and herbal teas. Integrated sensor arrays were made using microfabrication methods including
photolithography and lift-off processing. Different types of nanoparticle solutions were drop-cast on
separate active regions of each sensor chip. Sensor responses, expressed as the ratio of resistance
change to baseline resistance (∆R/R0), were used as input data to discriminate different aromas by
statistical analysis using multivariate techniques and machine learning algorithms. With five-fold
cross validation, linear discriminant analysis (LDA) gave 99% accuracy for classification of all 35 teas,
and 98% and 100% accuracy for separate datasets of herbal teas, and black and green teas, respectively.
We find that classification accuracy improves significantly by using multiple types of nanoparticles
compared to single type nanoparticle arrays. The results suggest a promising approach to monitor
the freshness and quality of tea products.

Keywords: tea aroma sensing; gold nanoparticles (AuNPs); chemiresistor array; linear discriminant
analysis (LDA); pattern recognition

1. Introduction

As one of the most popular beverages, tea is consumed by hundreds of millions of people
worldwide [1]. Known for its health benefits such as energizing, relieving stress, strengthening the
immune system, and alleviating digestive problems [2–4], tea has been intensively studied for its
effects related to human health [5–7]. Green tea and black tea are harvested directly from the leaves of
tea plants, Camellia sinensis, which contain many polyphenols that are natural antioxidants [1]. Herbal
teas, on the other hand, are mixtures of caffeine-free leaves, seeds, spices, and plant roots that give
a unique aroma and taste. Some of the most common ingredients include chamomile, cinnamon,
ginseng, ginger, hibiscus, peppermint, and rose hip [2]. Similar to green tea and black tea, herbal tea
also provides many medicinal properties, such as destressing and certain disease prevention [2,8,9].
One key property that distinguishes tea products is aroma, which is also a key factor for consumer
taste. Depending on the interactions between constituted ingredients and aroma compounds, each tea
product has a complex odor and smells differently [10]. Furthermore, aroma is also related to freshness
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and quality of food products. For example, a change in odor can be related to aging or staling of a
product. Historically, human experts are typically trained to evaluate the quality of tea products. They
taste and smell teas to assign quality grades. However, this can be subjective and expensive. It is
interesting to consider whether chemical sensors can provide cost-effective alternatives to recognize
and classify these complex odors with high accuracy.

Researchers have investigated different chemical and biological sensing systems based on
fluorescence [11], surface enhanced Raman scattering (SERS) [12], wavelet energy [13], and quartz
crystal microbalances (QCM) [14]. These various sensing strategies have shown promising applications
with good selectivity and specificity [11–14], especially under physiological conditions [15]. On the
other hand, to detect and differentiate many different analytes, a less specific and weakly selective
sensor is desired to record overall sensing patterns. In the past 10 years, chemiresistors have attracted
attention due to the capability to respond to a wide range of analytes. For example, chemiresistor sensor
arrays fabricated with metal oxides have been reported for sensing tea aromas [16,17]. Chemiresistors
are electrical devices that sorb vapor analytes into sensing materials, causing resistance changes that
transduce chemical events into electrical signals, which can be processed with machine learning
algorithms to recognize sensing patterns [18]. Therefore, to detect and classify many tea aromas, sensor
materials with weak selectivity and broad response profiles are useful.

Compared with traditional chemiresistive sensing elements such as metal oxides or catalytic
metals [18], monolayer protected nanoparticles show more versatile capabilities due to their
straightforward synthesis methods and tunable properties, including the sizes and shapes of the
metal cores, and the chemical structure of the self-assembled monolayer shells [16,18]. Consequently,
nanoparticle-based sensors enable array-based selectivity for pattern recognition of many types
of analytes [18,19] and have been applied in areas such as environmental testing [20], health
monitoring [21], and public safety [12]. The developments of nanoparticle-based chemical sensors date
back to 1998, when Wohltjen and Snow first introduced a core-shell sensing material using nanoparticles
with self-assembled monolayers for organic vapor detection [22]. Their study demonstrated fast
and reversible responses for toluene and tetrachloroethylene using 2-nm octanethiol-capped gold
nanoparticles (AuNPs) [22]. Since then, intensive studies have been carried out focusing on
sensor performance improvement. Functional layers such as amines [23–25], biomolecules [26,27],
and polymers [28,29] have been reported as capping agents in metal nanoparticle chemiresistors to
classify room temperature gases or organic vapors with good accuracy. Still, one challenge of metal
nanoparticle-based chemiresistors is to optimize the number of chemiresistors and monolayer types,
so that devices not only provide sufficient resolving power to differentiate complex odors, but also give
reliable performance over time. One possible solution is to assemble many different types of sensing
chemistries into a single sensor chip [30]. Each array provides a fingerprint (odor print) that can be
used to statistically characterize and separate analytes.

In this study, we present a nanoparticle-based electronic nose that distinguishes 35 different
teas from three different categories (black tea, green tea, and herbal tea). Sensor electrodes were
fabricated using microfabrication methods, and then assembled with four types of nanoparticles as the
sensing elements, including a pyridine derivative (DMAP, 4-dimethylaminopyridine), a long-chain
alkyl amine (ODA, octadecylamine), a bifunctional alkyl thiol (3-MPA, 3-mercaptopropionic acid),
and a bifunctional aromatic thiol (4-ATP, 4-aminothiophenol). These monolayer protected AuNPs were
chosen based on earlier success in organic vapor sensing [30].

During AuNP synthesis, organic molecules adsorb onto nanoparticle surfaces and form
self-assembled monolayers (SAMs) [31]. The nanoparticle solutions were drop-cast at each corner
of a sensor chip to assemble working chemiresistors. To evaluate the performance of the electronic
nose system, different statistical analysis methods were utilized, including linear discriminant analysis
(LDA), support vector machine (SVM), k-nearest neighbors (KNN), and random forest (RF). For each
tea aroma, individual sensor responses were input as variables in a data matrix. With five-fold
cross-validation, 100% and 97.7% classification accuracy was achieved for black and green teas,
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and herbal teas, respectively. The results also show that by incorporating multiple sensing chemistries,
the classification accuracy improves, compared with devices assembled with only one sensing material.
An additional five-day experiment was conducted to assess the short-term stability of the sensors,
which maintained above 90% accuracy. The results demonstrate that nanoparticle-based chemiresistor
arrays can be suitable candidates for tea aroma sensing and classification, which may be useful for
evaluation of the quality and freshness of tea products.

2. Materials and Methods

2.1. Chemicals and Tea Analytes

Gold chloride trihydrate (HAuCl4·3H2O), tetraoctylammonium bromide (TOAB), sodium
borohydride, sodium carbonate, 4-(dimethylamino)pyridine (DMAP), octadecylamine (ODA),
3-mercaptopropionic acid (MPA), 4-aminothiophenol (ATP), and (3-mercaptopropyl)triethoxysilane
(3-MPTES) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Ethanol, toluene, and sulfuric
acid were purchased from Fisher Scientific (Hampton, NH, USA). All chemicals were used as received
from the manufacturer. Milli-Q deionized water was used for aqueous nanoparticle solution preparation
(MilliporeSigma, Burlington, MA, USA). Oxidized silicon wafers with 300 nm SiO2 were purchased
from University Wafer (South Boston, MA, USA).

Sensing measurements were performed with 35 tea samples with different aromas, including
eight black teas, five green teas, and 22 herbal teas, purchased from Twinings (Andover, UK), Celestial
Seasonings (Boulder, CO, USA), and Solstice Tea Traders (Corbin, KY, USA). The detailed information
of the 35 tea samples are shown in Table 1. All tea samples were collected and used as received.

2.2. Synthesis of Nanoparticles

Four types of monolayer protected gold nanoparticles (AuNPs) were used for sensing experiments.
DMAP-AuNPs were synthesized following a method reported by Hubble and coworkers with an
average size of 5 nm [20]. Gold nanoparticles were first synthesized using the Brust method [32] and
followed by phase transfer into an aqueous phase [33]. ODA-AuNP, MPA-AuNP, and ATP-AuNP with
approximate size range 10–20 nm were prepared using an approach developed by Chen et al. [34]
with minor modifications. ODA (4 mmol) and HAuCl4·3H2O (0.05 mmol) were added into a 25-mL
three-neck flask with a magnetic stir bar. The system was degassed by nitrogen gas to remove dissolved
oxygen. The temperature was increased to 140 ◦C and kept for 20 min. Once the reaction was
complete, a mixture of ethanol and toluene was added to remove excess reactants and surfactants. The
nanoparticles were dissolved in ethanol for further use. For MPA-AuNP and ATP-AuNP synthesis,
an equimolar of MPA and ATP were added to the reaction mixture, respectively, to complete ligand
exchange reactions from ODA. Thiol-based chemistry is commonly used for monolayer formation on
AuNPs and provides good sensing performance with long-term stability [35,36]. Other possible linker
chemistries include diazonium compounds, which also provide robust core-shell structures [37–39].
Transmission electron microscopic imaging (Talos F200X TEM, Thermo Fisher Scientific, Waltham, MA,
USA) was performed to measure the morphology and sizes of as-synthesized gold nanoparticles.

2.3. Fabrication of Sensor Arrays

Chemiresistor devices with 5 µm wide electrodes and 2 µm electrode separations were fabricated
using standard photolithography and liftoff processes on 4 inch silicon wafer substrates, following a
previously reported method [30]. Each sensor chip had 48 individually addressable sensor elements
that were separated into four groups at each corner, consisting of a 4960 µm2 total active sensing
area. Photolithography was performed using a maskless aligner (Heidelberg Instruments, Heidelberg,
Germany) that defined the devices and their electrical contacts. Gold microelectrodes and electrical
contacts were obtained by electron-beam evaporation of 200 nm Au with a 10 nm Ti adhesion layer. The
electrodes were obtained after liftoff processing. Subsequently, wafers were diced into individual chips
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15.9 × 15.9 mm2 in size. Before nanoparticle deposition, sensor chips were immersed in a 3-MPTES
solution (2% v/v in toluene) overnight at room temperature for thiol-decoration on SiO2 surface areas.
The chip was then washed with toluene and dried by nitrogen, followed by a 2-hour bake at 110 ◦C to
improve the coupling capability of 3-MPTES [40].

Table 1. Detailed descriptions of the investigated teas in this study.

Category Flavor Main Ingredient

Black tea

English Breakfast a Black tea
Irish Breakfast a Black tea

Earl Grey a Black tea, bergamot flavor
Lady Grey a Black tea, orange peel, lemon peel

China Standard b Black tea
Formosa b Black tea

Keemun Congou b Black tea
Nilgiri b Black tea

Honey Lemon Ginseng c Green tea, white tea, eleuthero
Matcha c Green tea, organic matcha

Green tea China Sencha b Green tea
Gunpowder b Green tea

Young Hyson b Green tea

Herbal tea

Almond SunsetTM c Roasted carob, roasted barley, roasted chicory
Bengal Spice®c Cinnamon, roasted chicory, roasted carob

Black Cherry Berry c Hibiscus, rosehips, roasted chicory
Caramel Apple Dream®c Cinnamon, hibiscus, natural caramel and apple

Chamomile c Chamomile
Cinnamon Apple Spice c Cinnamon, hibiscus, chamomile
Country Peach Passion®c Orange peel, rosehips, hawthorn

Honey Vanilla Chamomile c Chamomile, orange peel, natural honey flavor
Jammin’ Lemon Ginger c Ginger, lemon verbena, lemongrass

Lemon Lavender LaneTM c Lemongrass, lemon verbena, lavender
Lemon Zinger®c Hibiscus, rosehips, roasted chicory

Peppermint c Peppermint
Raspberry Zinger®c Hibiscus, rosehips, roasted chicory

Roastaroma®c Roasted barley, roasted chicory, roasted carob
Sangria Zinger®c Hibiscus, rosehips, orange peel

Sleepytime®c Chamomile, spearmint, lemongrass
Tangerine Orange Zinger®c Hibiscus, rosehips, blackberry leaves

Tension Tamer®c Eleuthero, peppermint, cinnamon
True Blueberry®c Hibiscus, rosehips, orange peel

Vermont Maple GingerTM c Ginger, cinnamon, natural maple flavor
Watermelon Lime Zinger®c Hibiscus, rosehips, orange peel

Wild Berry Zinger®c Hibiscus, rosehips, roasted chicory
a Purchased from Twinnings; b purchased from Solstice Tea Traders; c purchased from Celestial Seasonings.

2.4. Aroma Sensing Experiments

Gold nanoparticle solutions were deposited onto the microelectrode regions of a sensor chip with
direct drop-casting. A 2 µL droplet of each type of AuNP was placed at a corner of a sensor chip using
a micropipette. The droplets covered the entire active sensing region of the devices. Once the solvent
evaporated, the surface of the chip was cleaned by a stream of dry nitrogen gas (99.999% purity).
Scanning electron microscope analysis (Verios 460L SEM, Thermo Fisher Scientific, Waltham, MA,
USA) was conducted to verify nanoparticle assembly at the microelectrodes.

Room temperature sensing experiments were performed using a probe station (Rucker & Kolls,
Mountain View, CA, USA) with a custom-designed probe card (Wentworth Laboratories, Brookfield, CT,
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USA) for electrical contacts. Figure 1 shows a schematic illustration of the electronic nose system. High
speed data acquisition was made using a switch matrix/multimeter system (Keithley, Cleveland, OH,
USA) that was connected to the probe card. Dry tea leaves and powders (average 0.40 ± 0.01 g) were
extracted from their original packages and transferred into 20-mL syringes (BD, Franklin Lakes, NJ,
USA). The tea samples were stored in syringes overnight to allow tea aromas to equilibrate. Tea aroma
samples in air were delivered to a custom-made Teflon gas mixer by a syringe pump (Cole-Parmer,
Vernon Hills, IL, USA). A dry nitrogen stream was used as a mixing/purge gas to combine with the
aromas inside the gas mixer and to clear the sensor after each syringe pulse.
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Figure 1. (A) Sensing experimental setup with the electronic nose sensor chip; (B) schematic illustration
of the sensor chip, microelectrode features, and gold nanoparticle core-shell structure.

Real-time resistance data were obtained from the switch matrix/multimeter system, using a
constant-current sourcing method for R0 ≤ 1 MΩ or a ratiometric method for R0 > 1 MΩ. To extract
sensing data, a custom MATLAB program was used to process raw data and calculate sensor responses
as ∆R/R0, where R0 is the baseline resistance and ∆R is the deviation from baseline resistance due to
tea aroma interactions with sensor elements.

2.5. Data Analysis

For each tea aroma sample, a total of eight replicate measurements (pulses of vapor) were
performed on all 48 devices simultaneously. The sensor responses were extracted into a 280 × 48 data
matrix that was used for statistical analysis. The rows represent individual measurements, and the
columns represent the sensor element responses (∆R/R0). Principal component analysis (PCA) was
conducted to visualize grouping within each aroma and separation between aromas. To evaluate
the discrimination performance of the electronic nose array, cross-validation was conducted along
with linear discrimination analysis (LDA), support vector machine (SVM), k-nearest neighbors (KNN),
and random forest (RF) in order to calculate the classification accuracy. Data analysis and pattern
recognition were done using the MATLAB Classification Learner Toolbox for LDA, SVM, and KNN,
and coding with the programming language Julia for RF.

3. Results

3.1. Sensor Response Profiles

Figure 2 shows scanning electron microscope images of micro-junctions assembled with
MPA-functionalized gold nanoparticles. The average baseline resistance for MPA-AuNP (15-nm
average size) chemiresistors was 41.0 ± 21.8 MΩ. By using direct drop-casting, clusters of AuNP
sensing elements covered adjacent electrodes to form a closed electrical circuit. The cluster formation
ensured that electron transport occurs between nanoparticles. The low coverage of the electrodes in the
figure was typical of the experiments, and the curvature of the microelectrodes is due to the resolution
limit of the maskless writer.
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Figure 2. SEM images after drop-casting deposition of 3-mercaptopropionic acid functionalized gold
nanoparticles (MPA-AuNP).

Before conducting sensing experiments, the baseline resistance of each of the 48 individual devices
was examined. For devices with baseline resistance R0 < 103 Ω, it is likely that large agglomerations
of nanoparticles formed and covered the electrode junctions, or that layers contain partially sintered
particles [20,30,41]. These devices usually have less than 0.01% change of resistance for interactions
with vapor analytes and are not useful sensor elements. On the other hand, devices with high baseline
resistance (R0 > 108 Ω) are also removed from the analysis. These high resistance chemiresistors
may have incomplete nanoparticle films, and sensing responses are typically noisy (low S/N ratio).
Therefore, only devices with baseline resistance in the range of 103 Ω ≤ R0 ≤ 108 Ω were included in
sensor performance evaluation.

The sensor chip was first measured under 0.5 SCFH (236 SCCM) of purge gas flow to reach a
stable baseline resistance and then exposed to eight sequential 2.5 s pulses (3.3 mL per pulse) of a
tea aroma. The total experimental duration was 170 s for each tea analyte. Each peak represents
a sampling period that includes a pulse phase and a purge/recovery phase. The ratio between the
maximum change of resistance (∆R) and the baseline resistance (R0), after baseline correction with a
Savitzky-Golay filter, was processed as the output. Figure 3 shows sample data of a DMAP-AuNP
chemiresistor responding to three different tea aromas, as well as baseline resistance variation among
the four investigated monolayer protected nanoparticles.
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Figure 3. (A) Real-time sensor response profiles for Earl Grey (black tea), Matcha (green tea), and
Bengal Spice® (herbal tea) for one sensor element with DMAP-AuNP; (B) Baseline resistance and
sensor response variation among four types of organo-capped gold nanoparticles toward Black Cherry
Berry (herbal tea).

As shown in Figure 3A for a selected sensor element assembled with DMAP-AuNP, the sensor
responses are strongest toward Earl Grey (2.57 ± 0.07%), followed by Bengal Spice® (1.75 ± 0.08%)
and Matcha (0.83 ± 0.05%). Fast and reversible detection was demonstrated with a sampling rate
of 20 ms between data points. A feature of nanoparticle-based chemiresistor arrays is the capability
of the system to respond to a variety of analytes with different signal strengths. This is achieved by
variations in the chemistry of the monolayer protected nanoparticles as well as nanoparticle assembly
morphology [20,30,42]. From a microscopic view, tea aromas full of many chemical ingredients interact
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at the molecular scale with the monolayer protected nanoparticle organic shells, which induces a change
in interparticle separation that affects electron transport through the nanoparticle films [18,30,31].
Figure 3B illustrates baseline resistances and sensor responses to Black Cherry Berry for four different
monolayer protected nanoparticles on a single chip. After eliminating devices with out-of-criterion
baseline resistance, 38 of 48 devices remained valid for analysis. For each monolayer protected
nanoparticle, sensor response measurements were carried out with at least eight individual sensing
elements. Error bars reflect the spread of R0 and ∆R/R0 for each grouping of monolayer protected
nanoparticles. Sensor elements assembled with aqueous-phase DMAP-AuNPs possess the lowest
baseline resistance (6.8 ± 4.8 × 105 Ω), followed by ODA-AuNPs (4.1 ± 2.4 × 106 Ω), MPA-AuNPs
(4.1 ± 2.2 ×107 Ω), and ATP-AuNPs (4.9 ± 2.2 × 107 Ω). Sensor responses follow the same trend as
baseline resistance up to 106 Ω range, after which responses stabilize around ∆R/R0 = 5%.

The variations of baseline resistance and sensor response levels are essential for pattern recognition
using machine learning algorithms. Depending on the effective chemical interactions between analytes
and monolayer protected core-shell nanostructures, the AuNP layers swell at different magnitudes [43],
which results in variations of sensor responses. The sorption of vapors into the sensing materials can
be qualitatively understood in terms of non-covalent van der Waals interactions that vary with each
analyte and sensor material [18,44,45].

3.2. Sensor Performance and Classification Accuracy

Sensor element responses (∆R/R0) to the 35 different tea aromas were collected and processed as
inputs for statistical analysis. Principal component analysis (PCA) was performed as an unsupervised
method to examine the natural grouping and separations between the different teas. The analytes were
analyzed in two separate groups. The first group consisted of the eight black teas and five green teas,
and the second group comprised all 22 herbal teas. Figure 4 shows PCA plots of both groups to reveal
successful separation and clustering of the data. In Figure 4A it is apparent that the green tea analytes
(Honey Lemon Ginseng, Matcha, China Sencha, Young Hyson, and Gunpowder) all have PC1 scores
<0, while most of the black teas have PC1 scores >0, with the exception of Formosa, Keemun congou,
and Nilgiri. The latter, in particular, is located closer to some of the green teas. This can be partly
explained by the texture of tea leaves, as the Nilgiri tea sample consists of fine powders, which was
similar to both Honey Lemon Ginseng and Matcha. Overall, the PC1 separation suggests intrinsic
differences between most of the green and black teas. Figure 4B shows more overlap of the herbal teas,
which may be due to the similarity of ingredients. For instance, both Watermelon Lime Zinger® and
Wild Berry Zinger® have hibiscus and rosehips listed as the top two ingredients, which can explain the
overlap in PCA scores. The separation of clusters is limited by the 2D plot that only captures 63% of
the variance in PCs 1 & 2.
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As PCA only captures a qualitative account of aroma classification, supervised multivariate and
machine learning models were used to provide a quantitative analysis [46,47]. One of the most robust
classification techniques is linear discriminant analysis (LDA), which characterizes the input data based
on linear combinations of sensor responses, and maximizes the distance between different classes [48].
Five-fold cross-validation was applied to all classification analyses. Specifically, the data entries were
randomly divided into five groups. Among the five groups, four were used in the training set, and the
remaining group was tested. The process rotated five times so that every data entry had been used in
the testing set. For the first group of analytes (black teas and green teas), out of 104 measurements,
the training size was 83 and the testing size was 21 for each rotation. For the second group (herbal
teas), out of 176 measurements, the training size was 141 and the testing size was 35 for each rotation.
Figure 5 shows an LDA plot and confusion matrix for both groups of analytes.
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Figure 5. LDA plots of (A) eight black tea analytes and five green tea analytes and (B) 22 herbal tea
analytes on the same chip assembled with four types of functionalized gold nanoparticles (38 devices).
Confusion matrix shows (C) 100% classification accuracy for black teas and green teas, and 97.7% for
(D) herbal teas.

As shown in Figure 5, 100% classification accuracy was achieved for green and black teas, and 97.7%
accuracy was achieved for herbal teas, where confusion occurs three times. For example, one of the
misclassifications is treating Raspberry Zinger® as Lemon Levander LaneTM. This can be rationalized
from the PCA plot where close clustering is observed for these two classes. If the teas are analyzed as a
single group of 35, the LDA classification accuracy is 98.6%.

Table 2 summarizes the LDA classification accuracy for a full sensor chip, as well as a comparison
of classification accuracy of the four separate monolayer protected nanoparticles used in this study.
The full sensor chip with all 38 sensing elements is obviously better than any of the separate chemistries
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alone, although the DMAP chemistry does very well with the green and black teas (97.1%). For a more
even comparison, two devices from each sensing material were randomly selected to make a group
of eight sensing elements for comparison with single particle data on an equal number basis (eight
multi-particle vs. eight single particle). The result showed a 91.4 ± 3.3% accuracy for black and green
teas, and 88.6 ± 3.7% for herbal teas. The combination of the four monolayer protected nanoparticles
clearly performs better overall than any single type of nanoparticle, which supports a broader
hypothesis that more chemical diversity can enhance sensor performance. We speculate that adding
more of each type of monolayer protected nanoparticle will also improve overall sensor performance.

Table 2. Classification accuracy (LDA) comparison among different AuNP sensing elements.

AuNP Number of Working Devices
Accuracy (%)

Black and Green Tea Herbal Tea

DMAP 10 97.1 75.0
ODA 11 77.9 77.8
MPA 8 52.9 52.8
ATP 9 53.8 43.8

Overall 38 100 97.7

3.3. Sensor Stability

To evaluate sensor stability, a five-day experiment was performed for the classification of black
and green tea aromas. Firstly, the baseline resistance of each working device was monitored over
time. Figure 6A shows a gradual decrease of baseline resistance, which was larger during Days
1–3 and flattened after Day 4. All sensing materials underwent a decrease in baseline resistance.
Sensing profiles on Figure 6B show that for DMAP-AuNP and ODA-AuNP, there was a trend of
decreasing sensitivity, but not for MPA-AuNP or ATP-AuNP. This is likely due to the difference in
particle morphology changes during the reversible sensing process.
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Breakfast Tea.

Besides linear discriminant analysis (LDA), two other types of classification algorithms were
examined using MATLAB Classification Learner Toolbox, including support vector machine (SVM)
and k-nearest neighbors (KNN). Again, five-fold cross-validation was applied for all methods. Table 3
shows the classification accuracy of black and green teas over five days for 38 sensing elements on a
sensor chip. For all four methods, the classification accuracy declined at Day 3, however, it mostly
recovered by Day 5. This may be related to changes of baseline resistance for Days 1–3. The baseline
resistance stabilized at Day 5, which resulted in an improved classification accuracy. The Random
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Forest (RF) method is a relatively newer machine learning approach that has been successful in many
other studies, therefore, we also tested it on our data set. The RF method performed very well for all
days with >98% accuracy, but it also shows a small dip at Days 3 & 4.

Table 3. Sensor stability analysis for eight black teas and five green teas.

Day LDA (%) SVM (%) KNN (%) RF (%)

1 100 97.1 93.3 99.7
2 96.2 97.1 98.1 99.7
3 90.4 88.5 87.5 98.6
4 86.5 91.3 88.5 98.9
5 97.1 98.1 97.1 99.8

4. Conclusions

In this project, we demonstrated gold nanoparticle based chemiresistor arrays in order to classify
35 types of tea beverages, including eight black teas, five green teas, and 22 herbal teas. Sensor
performance was evaluated based on classification accuracy using linear discriminant analysis (LDA)
and several machine learning algorithms. A classification accuracy higher than 97% was achieved for
both green and black teas (group 1), and herbal teas (group 2). The results demonstrate more robust
performance for sensor arrays assembled with multiple types of monolayer protected nanoparticles
compared to arrays of a single type, which supports a broader hypothesis that more diverse chemistry
can enhance sensor performance for resolving complex odors, including teas. Short term sensor
stability was assessed by performing a five-day experiment using teas from group 1. During the
five-day experiment, a classification accuracy higher than 90% was obtained and sensor performance
recovered to initial performance after the fifth day. The findings suggest that nanoparticle sensor
arrays can be useful for detection and discrimination of complex odors, including tea aromas.
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