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Abstract: This paper presents a new analytical geometry optimization model to depict the optimal
current sensitivity and signal-to-noise ratio (SNR) for the current-mode Hall devices. The conformal
mapping calculation is performed to study the influence of device geometry on the current sensitivity
and SNR of the current-mode cross-like Hall plates. The analytical model indicates that a current-mode
cross-like Hall plate can achieve optimal current sensitivity and SNR in the device length-to-width
ratio (L/W) range of 0.4–0.5 when the thermal noise is taken into account. Three-dimensional (3D)
technology computer aided design (TCAD) simulation validates the accuracy of the analytical model.
The proposed analytical model provides a geometry design rule to achieve optimal sensitivity and
SNR at the same time for the current-mode cross-like Hall plates.

Keywords: current-mode Hall device; length-to-width ratio (L/W); current sensitivity; signal-to-noise
ratio (SNR)

1. Introduction

Silicon-based Hall sensors have been widely applied in many fields such as control systems,
consumer electronics, and automobiles due to its low cost, high integration and high reliability [1–3].
Generally, the Hall devices are biased by a constant voltage source or a current source and sensed by
the Hall voltage signal. However, this traditional output-voltage working mode suffers low magnetic
sensitivity and high noise [4]. A Hall device under current mode that can achieve a twice-higher
magnetic sensitivity than that working in voltage mode has been introduced to obtain a better
signal-to-noise ratio (SNR) [5–7]. In order to further enhance the performance of the current-mode
Hall devices, it is essential to study the influence of device geometric parameters, including the length
and width of the active area and the bias electrodes on the sensitivity and noise of the Hall devices.

Recently, a great deal of research work was carried out to optimize the geometry of the voltage-mode
Hall device for better performance in magnetic field detection. Lyu et al. analyzed the magnetic
sensitivity and offset characteristics dependence of different covering layers for cross-like Hall plates [8].
Crescentini et al. focused on the effects of the contact positions of the square Hall plate on the sensitivity,
power consumption, and bandwidth [9]. Zhang et al. proposed a geometry optimization method to
improve the sensitivity of the planar Hall devices by means of the conformal mapping technique [10].
However, although all of them have taken into account the effect of different structures on sensitivity,
the device geometry optimization for the maximum SNR was not studied. It is worth noting that
the signal processing circuits in Hall sensors are highly limited by offset and noise but not by small
Hall signals, therefore the maximum SNR should be achieved through device geometry optimization
design. To this end, Zhang et al. investigated the low-frequency 1/f noise regarding the different device
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dimensions and doping levels for the cross-like Hall plates. It is found that a larger active area with an
optimal cross length-to-width ratio (L/W) is beneficial for a higher SNR [11]. In fact, the 1/f noise can
be chopped out by the spinning current scheme in the switched Hall sensors, therefore, the thermal
noise of a cross-like Hall plate should be considered first. Aiming at the thermal noise of Hall devices,
Ausserlechner derived an expression for the optimal SNR, which allows for an analytical optimization
of device geometry. It is suggested that the Hall plates with maximum SNR should have symmetrical
characteristics with equal input and output resistances [12]. However, the above-mentioned sensitivity
and SNR optimization methods are all proposed for the voltage-mode Hall devices, and the geometry
optimization strategy for current-mode devices has not been reported yet.

In this paper, an analytical geometry optimization model is established to predict the optimal
performance for the current-mode cross-like Hall plates by using the conformal mapping method.
The geometry optimization of the cross-like Hall plate operating at current mode is proposed to attain
the optimal sensitivity and SNR at the same time. The manuscript is organized as follows: Section 2
introduces the basic theory of the current-mode Hall plate. In Section 3, the geometry optimization
model is presented based on the conformal mapping technique. In Section 4, the proposed model was
verified by three-dimensional (3D) technology computer aided design (TCAD) simulation. Section 5
summarizes all of the work.

2. Basic Theory of Current-Mode Hall Plate

In the current-mode operation, the two biasing terminals of Hall devices are input by a current
source and a current sink with the same value, respectively, which maintains the equal potential at the
two sensing terminals. As a result, a differential Hall current appears on the two sensing terminals
when an external magnetic field is applied. The applied magnetic field changes the current flow in
the Hall devices, leading to a variation of the sheet resistances by ∆RI. Similarly, in the voltage-mode
Hall devices, the applied magnetic field alters the value of sheet resistances by ∆RV. A four-resistance
Wheatstone bridge model is used to describe the DC electrical relationship between the biasing and
sensing terminals, as shown in Figure 1.
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Figure 1. Wheatstone bridge model of the cross-like Hall plate. (a) voltage-mode; (b) current-mode. 
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Figure 1. Wheatstone bridge model of the cross-like Hall plate. (a) voltage-mode; (b) current-mode.

In the voltage-mode operation shown in Figure 1a, if the Hall plate is biased with a voltage source
Vbias under an external vertical magnetic field B, the output voltage at two sensing terminals can be
calculated respectively by

Vo1 =
Vbias
2R

(R− ∆RV) (1)

Vo2 =
Vbias
2R

(R + ∆RV) (2)



Sensors 2019, 19, 2490 3 of 11

Then, the differential Hall voltage is given by

VH = Vo1 −Vo2 = Vbias
∆RV

R
(3)

Hence, the voltage-mode sensitivity at magnetic flux density B = 1 T can be expressed by

SV,V =
VH

B·Vbias
=

∆RV

R
·T−1 (4)

As for the current-mode operation illustrated in Figure 1b, a bias current source Ibias is input into
node C1, and a bias current sink Ibias with the same value is drawn from node C3. Nodes C2 and C4

have the same ground-to-ground common-mode voltage. Accordingly, the differential output currents
are respectively given by

Io1 =
∆RI

R
·Ibias (5)

Io2 = −
∆RI

R
·Ibias (6)

Then, the Hall current is equal to

IH= Io1 − Io2= 2Ibias
∆RI

R
(7)

If we suppose the same resistance change ∆RV = ∆RI for simple approximation, the sensitivity in
the current mode is twice larger than that in the voltage mode. Finally, the current-mode sensitivity
can be approximately expressed as

SI,I =
IH

B·Ibias
� 2SV,V (8)

On the other hand, the voltage-mode sensitivity is given by [13]

SV,V = µH
G

Nsquare
(9)

Here, µH is the Hall mobility and G is the geometrical correction factor of the Hall plate and Nsquare

is the number of squares of sheet resistivity. The sheet resistivity, also called square resistance, is equal
to Rsquare =

1
qµNt , with µ the carrier mobility and N the doping level and t the thickness of Hall plate.

Therefore, the current-mode sensitivity can be written by

SI,I = 2µH
G

Nsquare
(10)

3. Geometry Optimization Model

3.1. Conformal Mapping Calculation of Geometrical Correction Factor

The conformal mapping method was used to derive the analytical expression of the geometrical
correction factor G. Figure 2 illustrates the schematic of the calculation procedure of G. First, we
mapped the cross-like device structure in the s-plane onto the unit disk in the z-plane. For a given
device geometry with vertices S1, . . . , S8 the transformation between the s-plane and the z-plane is
performed by [14]

s = g(z) = C
∫ z

0
(1 + ε4)

1/2[
ε8
− 2ε4 cos(4θ) + 1

]−1/2

dε (11)

where the angle θ represents half of the unit disk contact, as shown in Figure 2. Parameter C is a
function of θ, which can be calculated numerically. The boundary points Z1, . . . , Z8 of the unit disk
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correspond to the vertices S1, . . . , S8 of the cross-like shape. Furthermore, the relationship between the
two geometries satisfies the following equation [15]

θ = 2
√

2 exp
[
−π(

1
4
+

L
W

)
]

(12)

Secondly, the unit disk of the z-plane is mapped to the polygon area of the w-plane by
Schwarz–Christoffel transformation (SCT):

W = f (Z) = C1

∫ Z

0

8∏
i=1

(1−
ξ
Zi

)

αi
π −1
·(1−

ξ
M1

)·(1−
ξ

M2
)dξ+ C2 (13)

where the parameters C1 and C2 denote the expansion coefficient and transformation center, respectively.
The boundary points Z1, . . . , Z8 of the unit disk correspond to the vertices W1, . . . , W8 of the rhombus.
The parameters of α1π, . . . , α8π are the interior angles of the polygon. M1 and M2 represent the points
at which the current flows in and out, respectively. If we label Wk = f (Zk) and Mk’ = f (Mk), the edge
length of the polygon WkWk+1 can be calculated by∣∣∣Wk −Wk+1

∣∣∣ = ∣∣∣ f (Zk) − f (Zk+1)
∣∣∣ (14)

in which, Zk = eiϕk, αk and ϕk are summarized in Table 1.
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Figure 2. Schematic of the calculation procedure of G.

Table 1. Mapping parameters from the unit disk to rhomboidal region.

k αk ϕk k αk ϕk

1 1/2 + β/π θ 5 1/2 + β/π π + θ

2 1/2 − β/π π/2 − θ 6 1/2 − β/π 3π/2 − θ

3 1/2 + β/π π/2 + θ 7 1/2 + β/π 3π/2 + θ

4 1/2 − β/π π − θ 8 1/2 − β/π 2π − θ

Based on such conformal mapping, the Hall voltage can be calculated through changing the real
device geometry into simple edge length ratios of a polygonal region [16]. In the polygonal region,
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the electric field
→

E and current density
→

J are uniform, and
→

E is perpendicular to W1W8, but
→

J is
parallel to W1W4. In this case, the Hall voltage can be calculated by

VH = (|W7W8| − |W1W2|) cos β (15)

On the other hand, one finds [17]

IbiasR� = |W1W4| cos2 β (16)

Together with Equations (15) and (16), we can obtain

VH

Ibias
=
|W7W8| − |W1W2|

|W1W4|

Rsquare

cos β
(17)

As is well known, the Hall voltage is expressed by

VH = GRsquareµHBIbias (18)

Substituting Equation (18) into Equation (17) and using the equation µHB = tanβ, the geometrical
correction factor can be written as follows:

G =
|W7W8| − |W1W2|

|W1W4|

1
sin β

(19)

According to Equations (12), (13), (14) and (19), the geometrical correction factor G as a function of
the L/W ratio at different Hall angles were calculated and the G-L/W curves are displayed in Figure 3.
It is found that the geometrical correction factor is increased from 0 to 1 with the L/W increasing.
We further notice that the geometrical correction factor becomes almost unrelated to small Hall angles,
namely, low magnetic field. As shown in the inset of Figure 3, it is obvious that the differences between
the G values can be negligible when the Hall angle β is changed between 0.1◦ and 2◦. For a low doped
silicon Hall device, µH = 1000 cm2/V·s and a low magnetic field B = 0.4 T, the Hall angle is less than
2◦. Consequently, an analytical expression of the geometrical correction factor independence of Hall
angle can be extracted for a cross-like Hall plate operating at low magnetic field less than 0.4 T. Using
MATLAB, we fit the model calculation curves under low magnetic field with an exponential function
as follows:

G = 1− 1.044 exp(−3.142
L
W

) (20)

If 0 ≤ L/W ≤ 3.5, the relative deviation between the G model and the fitted Equation (20) is less
than 0.1%.Sensors 2019, 19, x FOR PEER REVIEW 6 of 11 
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3.2. Optimal Sensitivity

For a cross-like Hall plate, the number of squares of input resistance is approximately equal to [13]:

Nsquare � 2
L
W

+
2
3

(21)

Substituting Equation (21) into Equation (10), we have

SI,I �
2G

2 L
W + 2

3

µH (22)

For example, a typical 0.18 µm standard Complementary Metal Oxide Semiconductor (CMOS)
technology, the doping concentration in the N-well active area is about 2 × 1017 cm−3. Under this
doping level, the electron Hall mobility is nearly 700 cm2/V·s and the Hall scattering factor for electrons
is about 1.1 [18]. In term of Equations (20) and (22), the current-mode sensitivity as a function of L/W
ratio was calculated and the model calculated results are shown in Figure 4. It is seen that when the
value of L/W ratio increases from 0 to 3.5, the current-mode sensitivity rises sharply and it reaches
a maximum value of about 6.8%/T at L/W ≈ 0.37. After that, the current-mode sensitivity shows a
relatively slow downward trend. Apparently, the current-mode sensitivity can always keep the optimal
value as the L/W ratio is within 0.3–0.5.
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3.3. Optimal Signal-to-Noise Ratio (SNR)

Besides the Hall sensing performance, the noise of a Hall device is also an important issue of
concern. Severe noise will overwhelm the weak Hall signal, making the Hall device inoperable.
The noise in Hall devices mainly includes low-frequency 1/f noise and thermal noise. It is worth
noting that the offset and low-frequency 1/f noise of Hall devices can be effectively eliminated by the
spinning current circuit. As the Hall device is chopping at high frequency, the thermal noise becomes
the determinant of SNR. Therefore, we just need to take into account the thermal noise in the switched
Hall sensors. The thermal noise voltage between two sensing terminals is characterized by

Vnoise=
√

4kBTRout∆ f . (23)
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with kB the Boltzmann constant, T the absolute temperature, Rout the output resistance, and ∆f the
effective noise bandwidth. Therefore, the SNR of the current-mode cross-like Hall plate can be
calculated using Equations (22) and (23):

SNR=
IH

Inoise
=

Ibias·SI,I·B
√

4kBTRout∆ f
Rout

= K·
G

(2 L
W + 2

3 )
1
2

. (24)

where Rout= (2 L
W + 2

3 )Rsquare and K = 2IbiasBµH

√
Rsquare

4kBT∆ f , which can be regarded as a constant.
Figure 5 shows the trend of the calculated SNR varying with L/W ratio. It is found that the

current-mode SNR is proportional to the bias current. However, a large bias current can cause a large
offset current, thus the value of the bias current should be limited in the practical applications. At a
fixed bias current, the maximum value of SNR is achieved at L/W ≈ 0.6. Furthermore, an optimal SNR
of the cross-like Hall plate can be acquired when the L/W ratio is in a relatively wide range from 0.4
to 0.8.
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Figure 5 shows the trend of the calculated SNR varying with L/W ratio. It is found that the 

current-mode SNR is proportional to the bias current. However, a large bias current can cause a large 
offset current, thus the value of the bias current should be limited in the practical applications. At a 
fixed bias current, the maximum value of SNR is achieved at L/W ≈ 0.6. Furthermore, an optimal SNR 
of the cross-like Hall plate can be acquired when the L/W ratio is in a relatively wide range from 0.4 
to 0.8.  
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Figure 5. SNR as a function with L/W ration when a cross-like Hall plate is operating in the current mode.

When the influence of the cross shape of Hall plate on the current sensitivity and SNR are considered
concurrently, it is suggested that the L/W ratio of 0.4–0.5 is a beneficial geometry parameter to achieve
the optimal current-mode sensitivity and SNR at the same time. Using the proposed analytical model,
the optimal performance of the current-mode Hall plate can be expected by geometry optimization.

4. TCAD Simulation Verification

To verify the accuracy of the analytical geometry optimization model, three-dimensional (3D)
TCAD simulation was carried out using Silvaco Atlas tool. First of all, based on a standard 0.18 µm
process, a 3D device simulation structure was established according to the process and geometric
parameters such as the distribution of N-well doping concentration, N-well depth, contact size, N-well
size, etc. Secondly, the device DC simulation was carried out where the two bias currents of the
same size are applied to the input terminals, and the output Hall signal and noise are measured
between the sensing terminals. Finally, the current sensitivity and signal-to-noise ratio (SNR) was
calculated according to the simulation data. In the current-mode simulation, appropriate models,
such as Shockley-Read-Hall recombination, low-field mobility, magnetic, etc., were used. Based on
SMIC 0.18-µm standard CMOS technology, the Hall current and thermal noise variations with the
cross shape of Hall plate were studied. The simulated 3D schematic of the cross-like Hall plate is
illustrated in Figure 6a. A cross-shaped N-well active area is formed on the P-type silicon substrate.
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Four N+ contacts are located at the four cross regions with 90◦ symmetrical structure and each of them
is extended to the boundary of the N-well to reduce the offset of the device. The simulated net dopant
profile as a function of depth in the active layer is shown in Figure 6b. It can be seen that the doping
level of N-well is about 2 × 1017 cm−3 and the depth of Nwell is about 3 µm, which well accords with
the distribution of doping concentrations in the actual process.
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Figure 6. Technology Computer Aided Design (TCAD) simulation model using Silvaco Atlas tool.
(a) 3D device simulation structure of the cross-like Hall plate; (b) 1D net doping profile in the device
active region.

Figure 7a shows the simulated current-mode sensitivity versus different L/W ratios at Ibias = 1
mA and B = 5 mT. TCAD simulation results show that the current-mode sensitivity increases and
then decreases as the L/W ratio is increased. A maximum current-mode sensitivity of about 6.7%/T
appears when the ratio of L/W is nearly 0.4 under the low magnetic field, which is in agreement
with the model calculation results. Compared with the finite element modeling (FEM) simulation
presented in the literature for cross-like Hall sensors [4], the obtained magnetic sensitivity from TCAD
simulation shows higher accuracy. This is due to the fact that the key model parameters used in TCAD
simulation, such as N-well conductivity, electrons concentration, or Hall coefficient, can be accurately
calculated according to the distribution of impurity concentration and device material characteristics.
We further find that when the L/W is in the range of 0.3–0.5, the cross-like Hall plate can obtain the
optimal current-mode sensitivity. Additionally, it is shown that the current-mode sensitivity is about
twice greater than the voltage-mode sensitivity (see Figure 7b), which validates the correctness of the
model analysis.

The SNR characteristic of the current-mode cross-like Hall plate was analyzed using the simulated
current-mode sensitivity and thermal noise data. Figure 8 illustrates the simulated SNR with respect
to the different L/W ratios. It is found that the cross-like Hall plate achieves a maximum SNR when
the L/W ratio is around 0.6, meanwhile, the SNR can keep an optimal value as the ratio of L/W is
ranged from 0.5 to 1. The TCAD simulation results show the same tendency with the theoretical model
calculation, proving the accuracy of the proposed analytical optimization model.
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The current-mode sensitivity is highly affected by the geometrical correction factor, the Hall
mobility and the square number of input resistance, but is less affected by the bias current. The Hall
mobility depends on the concentration of impurities for a given semiconductor material, while the
geometrical correction factor and the input resistance square number are directly related to the L/W
ratio, therefore, the current-mode sensitivity is dominated by the geometry parameter of L/W for
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cross-like Hall plate. Both the model calculation results and the TCAD simulation data indicate that
the optimal current-mode sensitivity can be acquired when the L/W of a cross-like Hall plate is in the
range of 0.3–0.5. On the other hand, the analytical model suggests that the SNR depends not only on
the geometrical correction factor and input resistance but also on the bias current. It means that the L/W
ratio has a dominated influence on the SNR at the fixed current bias. The model calculation indicates
the optimal SNR can be achieved in the L/W range of 0.4–0.8, which is confirmed by the 3D TCAD
simulation. The optimum L/W point in the range of 0.4–0.5 is suggested for the symmetrical cross-like
Hall plate, which allows for layout optimization to attain the optimum device performance in the
practical applications. For example in standard 0.18-µm CMOS process, the current-mode cross-like
Hall plates can achieve the maximum sensitivity of about 6.7%/T when the L/W ratio is designed to
0.4–0.5. Meanwhile, in the crucial point of L/W = 0.5, the optimal SNR can also be achieved where the
current-spinning technique is used to remove the device offset and 1/f noise. Therefore, the geometry
optimization model proposed in this paper can provide us guidance for the optimal geometry design
of the current-mode cross-like Hall sensors.

5. Conclusions

The influence of device geometry on the current sensitivity and SNR of the cross-like Hall plate
working in the current mode has been investigated. Based on the conformal mapping calculation,
a new analytical geometry optimization model is presented to analyze the current sensitivity and SNR
dependence of L/W ratio and further to predict the optimal device geometry of the current-mode Hall
plate. To verify the accuracy of the analytical model, 3D TCAD simulation was performed to study the
effect of different L/W ratio on the current sensitivity and SNR. Theoretical model calculation agrees
well with TCAD simulation results. It is revealed that an L/W ratio around 0.4–0.5 is beneficial for
the optimal sensitivity and SNR for a current-mode cross-like Hall plate. The results show that in the
0.18-µm CMOS process, the cross-like Hall plate can obtain the maximum current-mode sensitivity of
about 6.7%/T in the L/W ratio range of 0.4–0.5. In the same L/W ratio range, the current-mode Hall plate
can also get the optimal SNR. Thus, the proposed analytical geometry optimization model provides an
optimum geometry design rule for the current-mode cross-like Hall plates in the practical applications.
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