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Abstract: With the growing interest in daily activity monitoring, several insole designs have been
developed to identify postures, detect activities, and count steps. However, the validity of these
devices is not clearly established. The aim of this systematic review was to synthesize the available
information on the criterion validity of instrumented insoles in detecting postures activities and steps.
The literature search through six databases led to 33 articles that met inclusion criteria. These studies
evaluated 17 different insole models and involved 290 participants from 16 to 75 years old. Criterion
validity was assessed using six statistical indicators. For posture and activity recognition, accuracy
varied from 75.0% to 100%, precision from 65.8% to 100%, specificity from 98.1% to 100%, sensitivity
from 73.0% to 100%, and identification rate from 66.2% to 100%. For step counting, accuracies
were very high (94.8% to 100%). Across studies, different postures and activities were assessed
using different criterion validity indicators, leading to heterogeneous results. Instrumented insoles
appeared to be highly accurate for steps counting. However, measurement properties were variable
for posture and activity recognition. These findings call for a standardized methodology to investigate
the measurement properties of such devices.

Keywords: insoles; criterion validity; posture and activity recognition; step counting

1. Introduction

There is growing evidence regarding the role of regular physical activity in the improvement
and preservation of functional autonomy and in the prevention of many diseases and disorders [1-5].
For example, it has been shown that regular practice of physical activity contributes in preventing
recurrent stroke [1,5], obesity [1,4], cardiovascular diseases [1-3], and cancer [1]. Physical activity can
be defined as any bodily movement produced by skeletal muscles resulting in energy expenditure [6].
The identification in daily life of relevant postures (e.g., sitting, standing) and activities (e.g., walking,
jogging, descending/ascending stairs or ramp, cycling) provides important information regarding
individuals’ active or sedentary behavior and is thus a crucial component of daily physical
activity measurement.

Physical activity may be evaluated using subjective and objective methods [7-14]. Subjective
methods such as questionnaires [7,8] and individual diaries [15] are relatively inexpensive and are the
more feasible method in large population-based studies. However, they present some limitations such
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as recall error and risk of over-reporting physical activity [16,17]. Objective methods include a wide
variety of commercially available body-worn devices to detect movement or indirectly measure energy
expenditure such as pedometers, accelerometers and heart rate monitors [14,15]. Many recent studies
have used these objective methods to quantify physical activity in different populations (e.g., those
without disease or disability, stroke survivors, people with Parkinson disease, traumatic brain injury
or cerebral palsy and those who have undergone an amputation) [7,18-20]. The criterion validity
of these objective methods varies largely from one device to another [7,21,22] with multi-sensor
activity monitors (e.g., Step Activity Monitor, GaitUp Physiolog, etc.) showing better psychometric
properties [23-25]. However, not all of these devices are appropriate for daily use in people with
disability. In fact, one study, for example, evaluated the usability of seven activity monitors in older
adults based on four criteria: (a) ease in applying the monitor, (b) ease in reading the step display,
(c) comfort, and (d) ease in accessing step display on the monitor [22]. This study concluded that
common barriers to activity monitoring were an inability to apply the monitor and a difficulty in
accessing step display on the monitor [22].

Smart insoles, equipped with miniaturized sensors appear as a potential solution for unobtrusive
monitoring of daily activities [23-26], given the fact that humans wear shoes for many hours a day and
present microelectromechanical systems have enabled instrumentation of insoles. Moreover, it has
been suggested that instrumented insoles may be less expensive than available activity monitors [27].

A recent systematic review assessed the available information on the psychometric properties
(mainly criterion validity) of different activity monitors in stroke survivors [7]. However, only one
smart insole was included in this review and no conclusion was reported regarding the criterion validity
of smart insoles as an activity monitor. The authors did report that smart insoles were unobtrusive,
lightweight and comfortable, and thus they were potentially user-friendly with high acceptability.

Another comparative review summarized the development of footwear-based systems and their
applications [20]. This review reported some accuracies of footwear-based systems for gait monitoring,
plantar pressure measurement, posture and activity recognition, body weight and energy expenditure
estimation, biofeedback, navigation, and fall risk applications in individuals with and without physical
limitations such as stroke survivors and people with Parkinson disease or cerebral palsy. However,
the analysis of psychometric properties of insoles for physical activity monitoring was not the study’s
main focus. Given the growing interest in the use of smart insoles as a monitoring device, and the
importance of physical activity, there is a need to investigate the measurement properties of smart
insoles as applied to physical activity monitoring. The most important measurement property in
this context is validity, which can be quantified in terms of accuracy, precision, specificity, sensitivity,
measurement error and criterion validity. In assessing criterion validity in this context, the agreement
between step count, posture and activity as measured using instrumented insoles and by direct
observation should be determined.

The aim of the present systematic review was to assess and synthesize the available information
on the criterion validity of the instrumented insoles in identifying postures, activities and the number
of steps.

2. Methods

2.1. Data Source and Search Strategy

This systematic review followed the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) guidelines [28]. Six electronic databases (MEDLINE, EMBASE, IEEE Xplore,
Cochrane Library, Scopus and Web of Sciences) were searched for studies reporting criterion validity
information from instrumented insoles that related to step counting, posture and activity recognition.
Free and indexed search terms were used following four steps as follows: (#1) measurement system
(search terms related to insole), (#2) measurement properties (search terms related to criterion validity)
and (#3) outcomes (search terms related to step count, posture and activity recognition). For the final
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step, search parameters #1, #2 and #3 were combined to retrieve references that covered all three
concepts (#4). The search strategy was adapted for each database and limited to English or French
language articles published from a given database’s inception to 6 May 2019. The detailed search
strategy is presented in Table 1.

2.2. Selection Criteria

We considered for inclusion only studies assessing the psychometric properties of instrumented
insoles to quantify step counting and to detect posture and activity recognition. Instrumented insoles
were defined as insoles integrating at least one of the following: pressure sensors, an accelerometer,
a gyroscope, a magnetometer, an inertial measurement unit (IMU), or other electronic sensors (e.g.,
heart rate sensors). Outcomes included the quantification of stride or step count, recognition of posture
(lying, sitting and standing), or activities (walking, jogging, ascend/descend ramp or stairs, cycling and
elevator up/down). The targeted psychometric property was criterion validity. Studies that involved
another measurement system in addition to insoles were included if data of the instrumented insole
could be extracted. Papers were included if they were scientific papers with available full-text.

2.3. Article Selection

After removing duplicate references from the search results, two reviewers independently screened
the titles and abstracts to identify potentially eligible articles based on the selection criteria. Preliminary
selection results were compared and discrepancies were resolved by discussions between the reviewers.
If it was unclear based on the title and abstract whether or not a publication met the selection criteria,
the full-text of the article was read before a final decision was made. The full-text articles of all
pre-selected references were independently reviewed by the two reviewers to determine if articles
met the selection criteria. Discrepancies were again discussed and, in case of no consensus, a third
reviewer was consulted for final decision regarding the selection.

2.4. Data Extraction

The relevant data from the selected full-text articles were extracted by one reviewer. Extracted data
were as follows: full article reference, participants’ characteristics (diagnosis, age), data collection setting
and duration, insole design (sensing element, sampling frequency, data transmission method), criterion
methods (or gold standard), algorithms used, outcomes (step count, postures and activities), validity.

2.5. Methodological Quality Assessment

The methodological quality of the studies reported in the selected articles was assessed using
a structured quality appraisal tool developed by MacDermid [29]. This tool consists of 12 criteria
pertaining to the study question and design, measurement methods, analyses and recommendations.
Each item was scored as 0, 1, 2 or NA (not applicable) giving a maximum possible score of 24. For each
article, the quality score was expressed as a percentage calculated as:

obtained score
li = 100% 1
Quality score total possible score X 100% @)

As per de Oliveira et al. [30], study quality was categorized as follows: “high quality” > 80.0%,
“good quality” between 70.0% and 79.9%, “moderate quality” for scores between 50.0% and 69.9%,
and “low quality” representing scores < 50.0%. These categories and scores were used to assist
with interpretation of the review findings. No article was omitted from the review based study
quality, however.
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Table 1. Detailed literature search strategy.

Medline via OVID Search Strategy

Insole* OR foot orthos* OR instrument* shoe* OR smartshoe* OR shoe* plantar pressure OR feet orthos*:

#1 ti,ab,kw OR exp foot orthoses/

psychometric qualit* OR psychometric propert* OR validit* OR measurement error* OR specificit* OR
#2 precision OR accura* OR sensibilit: ti,ab,kw OR exp psychometric quality/ OR exp psychometric property/
OR exp criterion validity/ OR exp accuracy/

Posture* OR activit* OR classif* OR step count* OR stride count* OR number of step*: ti,ab,kw OR exp
posture/ OR exp step count/ OR exp stride count/ OR exp number of step/

#4 #1 AND #2 AND #3
Medline via PubMed Search Strategy
foot orthos*[mh] OR instrument*[mh] shoe*[mh] OR smartshoe*[mh] OR shoe* plantar pressure[mh] OR feet

#3

#1 orthos*[mh]
o psychometric qualit*[mh] OR psychometric propert*[mh] OR validit*[mh] OR measurement error*[mh] OR
specificit*[mh] OR precision[mh] OR accura*[mh] OR sensibilit*[mh]
# Posture*[mh] OR activit*[mh] OR classif*[mh] OR* step count*[mh] OR stride count*[mh] OR number of
step*[mh]
#4 #1 AND #2 AND #3

Embase Search Strategy

‘insole*:ti,ab,kw OR ’'foot orthos*’:ti,ab,kw OR ’instrument* shoe*’:ti,ab,kw OR ’smart shoe*":ti,ab,kw OR
#1 ’shoe* plantar pressure’:ti,ab,kw OR “feet orthos*’:ti,ab,kw OR "foot orthosis’/exp OR “insole’/exp OR
‘instrumented shoe’/exp

"psychometric qualit*’:ti,ab,kw OR "psychometric propert*:ti,ab,kw OR "validit*’:ti,ab,kw OR
’specificit*’:ti,ab,kw OR "precision’:ti,ab,kw OR “accura*’:ti,ab,kw OR ’sensibilit*:ti,ab,kw OR "psychometric
quality’/exp OR "psychometric property’/exp OR ‘criterion validity’/exp OR ‘specificity’/exp OR
"precision’/exp OR “accuracy’/exp OR “sensibility’/exp

#2

Posture: ti,ab,kw OR activit*: ti,ab,kw OR classif*: ti,ab,kw OR* step count*: ti,ab,kw OR stride count*:
#3 ti,ab,kw OR number of step*: ti,ab,kw OR “posture’/exp OR ‘activity’/exp OR ‘number of step’/exp OR ‘step

count’/exp
#4 #1 AND #2 AND #3
IEEE Xplore Search Strategy
#1 Insole OR foot orthosis OR instrumented shoe OR smartshoe OR shoe plantar pressure OR feet orthosis

Psychometric quality OR psychometric property OR validity OR measurement error OR specificity OR

# precision OR accuracy OR sensibility
#3 Posture OR activity OR classification OR step count OR stride count OR number of step
#4 #1 AND #2 AND #3

Web of Science Search Strategy

Insole* OR foot orthos* OR instrument* shoe* OR smart shoe* OR shoe* plantar pressure OR feet

#1 orthos*:ti,ab, kw

» Psychometric qualit* OR psychometric propert* OR validit* OR measurement error* OR specificit* OR
precision OR accura* OR sensibilit*:ti,ab,kw

#3 Posture OR activit* OR classification OR step count* OR stride count* OR number of step*:ti,ab,kw

#4 #1 AND #2 AND #3

Cochrane Search Strategy

#1 Foot orthos OR instrument* shoe* OR smartshoe* OR shoe* plantar pressure OR feet orthos*:ti,ab,kw

Psychometric qualit* OR psychometric propert* OR validit* OR measurement error* OR specificit* OR

#2 precision OR accura* OR sensibilit*:ti,ab,kw
#3 Posture OR activit* OR classification OR step count* OR stride count* OR number of step*:ti,ab,kw
#4 #1 AND #2 AND #3

Scopus Search Strategy
#1 Foot orthosis OR instrumented shoe OR smartshoe OR shoe plantar pressure OR feet orthosis OR insole
# Psychometric quality OR psychometric property OR validity OR measurement error OR specificity OR

precision OR accuracy OR sensibility
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Table 1. Cont.

#3 Posture OR activity OR classification OR step count OR stride count OR number of step

(Foot orthosis OR instrumented shoe OR smartshoe OR shoe plantar pressure OR feet orthosis OR insole)
AND (psychometric quality OR psychometric property OR validity OR measurement error OR specificity OR

# precision OR accuracy OR sensibility) AND (posture OR activity OR classification OR step count OR stride
count OR number of step)
* represents a truncation that allows to develop all derived forms of a word.
3. Results

The electronic search retrieved 2030 records, from which 930 duplicates were removed. The title
and abstract of the remaining 1100 records were screened (1015 were removed) and then there was
a review of the full-text of the remaining 85 references (52 removed). Thirty-two articles (with
independent studies) met the inclusion criteria. The search history and selection process are presented
in Figure 1. From the 33 included articles, 27 reported on studies that evaluated posture and activity
recognition while step counting was reported in seven of them. One article [31] reported on step
counting as well as on posture and activity recognition. Most of the included articles were published in
the past 10 years as illustrated in Figure 2. Tables 2 and 3 present the description of technical features
of insoles respectively for posture and activity recognition, and step count. Table 4 summarizes the
criterion validity of insoles for posture and activity recognition, while criterion validity of insoles for
step count is included in Table 3. Finally, Table 5 presents the summary of methodological quality
appraisal of included studies using MacDermid.

3.1. Insole Models and Technical Features

The 33 articles described 17 different insole models, most of them (16/17) being academic research
prototypes (see Tables 2 and 3). Only one of these 17 insole models was commercially available [32,33].
Data transmission methods were Bluetooth, wireless and wire modules with sampling frequencies
varying from 10 Hz to 400 Hz (see Tables 2 and 3). For step detection, instrumented insoles were
validated using visual observation [25,31,34,35], other devices (the Runtastic pedometer application
and other smartphone applications) [34,36], or using a predefined number of steps [24,36,37] (see
Table 3). To validate the instrumented insoles for posture and activity recognition, comparisons were
made between the smart insole data and that collected from direct observation during data collection
or from a video recording or from other wearable devices (2D accelerometer (ADXL202), gyroscope
(Murata, ENC-03]), ActivPAL device, PPAC (plantar-pressure based ambulatory classification) and FF
(foot force sensor) + GPS [18,26,31-33,38-60] (see Table 2).
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Medline Web of Sciences IEEE Xplore Embase Cochrane Scopus
(n=340) (n=915) (n=322) (n=189) (n=18) (n=246)

=
| Duplicate studies removed }

(n=930)

Records screened by title
w and abstract (n=1100)
§
g -
[ Records excluded
(n=802)
L — e
Second records screened
2 by abstract (n=258)
E
%" Records excluded (n=213) |
S Full-text articles assessed
P (n=83)
= Full-text articles
= excluded (n=52)
3
£ Studies mcluded
(n=133)

Figure 1. Flowchart of articles identification and selection process according to PRISMA guidelines.
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Table 2. Description of technical features of insoles for posture and activity recognition.

7 of 21

Sensin Sampling Data Comparison
& Frequency Transmission Populations Age (Years) Algorithms P Settings Test Durations
Elements Methods
(Hz) Methods
M: 26.6 (3.4) Laboratory 1 h (Iaboratory),
Hegde et al. [26] 3 FSRs 402, ACC. 50 Bluetooth 15 adults F 23' 3 (5') MLD ActivPAL device and 8 AM-9 PM
T community (free-living)
Fulk et al. [31] 5 FSRs, ACC. 400 Bluetooth sljrj/tij)(i(res 62.1(8.2) ANN Video record Laboratory 2 min/activity
8 FSRs, IMU*, . . . .
Achkar et al. [32] barometer 200 Wire connection 10 older adults 65-75 DT ACC,, gyroscope Community 1 h/participant
8 FSRs, IMU*, . . .
Achkar et al. [33] barometer 200 Wire connection 10 older adults 69.9 (3.1) DT 2D ACC., gyroscope  Community 4 h (total)
Anlauff et al. [38] 4 FSRs 200 Bluetooth 8 adults 25.2 (NA) NA Visual observation NA 45 min (total)
Chen et al. [39] 4 Fizgs‘fcef 100 Wireless mode 7 adults 24.1(05) LDA Visual observation NA 15 mir/experiment
Fulk et al. [40] 5 FSRs, Acc. 25 Wireless link Si:‘tlliglgfs 60.1 (9.9) SVM Visual observation Laboratory 1 min/activity
Zhang et al. [41] 32 miniature 32 Wire connection 40 adults 27.3(13.2) ANN Visual observation Outside, 50 m
pressure sensors laboratory
Zhang et al. [42] 5 FSRs, ACC. 25 Bluetooth :jrf/tf\?;i 62.1(8.2) DT Visual observation Laboratory 2 min/activity
) 3 pressure . . Indoor and . -
Edgar et al. [43] sensors, ACC. 100 Bluetooth 1 adult 22 ANN Visual observation outdoor 3 min/activity
Hegde et al. [44] 2 or 3 FSRs 402 NA Bluetooth 3 adults 24 (4.5) MLD Visual observation Laboratory 20 min/activity
Lin et al. [45] 48 pressure 100 Bluetooth 8 people NA KNN Visual observation Indoor NA
sensors, IMU
. ) 48 pressure . . . -
Lin et al. [46] sensors, IMU 100 Bluetooth 8 people NA NA Visual observation Indoor 10 trials/participant
Peng et al. [47] 7 FSR402 25 Wireless module 1 adult 24 SVM Visual observation Indoor NA
Sazonov et al. [48] 5 FSRs, ACC. 400 Bluetooth 19 adults 28.1 (6.9) SVM, MLF, Video Indoor and 52.5 h (total)
MLD free-living
Sazonov et al. [49] 5FSRs, ACC. 25 Wireless module 9 adults 23.7 (4.3) SVM Visual observation Laboratory 11 h 36 min (total)
Shang et al. [50] 2 pressure NA Wireless module 3 adults NA Threshold Visual observation Laboratory NA
sensors, ACC. method
. 7 pressure . . .
Sugimoto et al. [51] sensors 20 USB port 2 adults NA LDA Visual observation NA 2 min
. SVM with . .
Tang et al. [52] 5 FSRs, ACC. 25 Wireless module 9 adults 23.6 (4.3) rejection Visual observation NA NA
Tang et al. [53] 5 FSRs, ACC. 400 Wireless module 9 adults 23.3 (4.3) SVM, MLP Visual observation Indoor 11.5 h (total)
Zhang et al. [54] 5 FSRs, ACC. 25 Wireless module 9 adults 27.3 (4.3) DT Visual observation NA 11.36 h (total)
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Table 2. Cont.

8 of 21

Sensing Sampling Data Comparison
Frequency Transmission Populations Age (Years) Algorithms Settings Test Durations
Elements Methods
(Hz) Methods
Zhang et al. [55] 45;?:2;29 35 Bluetooth 10 adults 24-56 NA Visual observation Community NA
Chen et al. [56] 4 pressure 250 Wireless module 5 adults, 1 23.2(1.3); 45 DT, LDA Visual observation NA 8h
sensors amputee person
Cates et al. [57] 4 FSRs, ACC. 20 Bluetooth 20 adults 28 (5) SVM Visual observation NA 2 min/activity
Hegde et al. [58] seifsf:SZIgC. 50 Bluetooth 4 adults 28 (0.5) MLD Visual observation Laboratory 10 min/activity
Cl;?r;ig E};m ACC. 50 Wireless module 10 adults 22(1.7) CNN Visual observation NA 10-30 min/activity
8 pressure DT, KNN, Indoor and 15 and 20 m,
Nguyen et al. [60] sensors, ACC. 50 Bluetooth 3 adults 24-29 SVM PPAC and FF + GPS outdoor 17-step (stairs)

ACC.: accelerometer; SVM: Support vector machine; MLP: Multi-layer perceptron; ANN: artificial neural network; LDA: Linear discriminant analysis; KNN: k-nearest-neighbors; MLD:
Multinomial Logistic Discrimination; CNN: convolution neural networks; DT: decision tree; NA: not applicable; * Physilog module including an IMU* (accelerometer, gyroscope and
magnetometer) and a barometer sensor: Physilog®10D Silver, GaitUP CH; FF+GPS: foot force sensor and GPS; PPAC: plantar-pressure based ambulatory classification; min: minute; h:
hour; FSR: force sensitive resistor.

Table 3. Description of technical features and criterion validity of insoles for step count.

Sampling Data Comparison Test Durations/
Sensing Elements ~ Frequency  Transmission Population  Age (years) Algorithms P Settings o Criterion Validity
Methods Condition
(Hz) Methods
Lin 48 textile pressure . . . o
etal. [24] sensors, IMU* 100 Bluetooth 10 adults NA Average method 100 predefined steps Community NA Accuracy: 99.9-100%
e;fral;O[I;gS] 8 press:rcecs CNSOTS, 50 Bluetooth 7 adults 24.5(2.14) Average method Video record Indoor 16 m Accuracy of 100%
Fulk 5 FSRs, ACC. 400 Bluetooth 12 st.roke 62.1 (8.2) Sum method Video record Laboratory 2 min ICC =099
etal. [31] survivors
:iaihfil] 2 FSRs NA Bluetooth 1 athlete NA NA direct observation Community 720 m Measure(;z}ent error:
o e o
Neueleu Individual, average Indoor and
& 5 FSRs 10 Bluetooth 12 adults 21-35 and cumulative sum Video record 6 min Accuracy: 94.8-99.6%
etal. [35] outdoor
methods
. X Error rate of 4%
Rodriguez 1 pressure sensor, NA Wire link 1 adult NA NA Two sn}art})hone NA 50 predefined (walking) and 0%
etal. [36] ACC. applications steps .
(running)
Piau 1 pressure sensor, - . . ) Measurement error:
etal. [37] ACC. 100 Wifi 3 adults 25,29, 30 Acceleration variance 100 predefined steps Laboratory NA <1%
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(=2]

Number of articles
Fos

=]

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Article years

Figure 2. Number of articles having reported the criterion validity of instrumented insoles in the past
10 years, for steps, activity and posture detection.

3.2. Populations

Most of the selected articles (n = 26) reported on studies that assessed the measurement properties
of instrumented insoles in healthy adults only [20,26,35,38,39,43-55,57,59,60] (see Tables 2 and 3).
Three articles reported this information in stroke survivors (51.7 + 45.1 and 65.2 + 41.8 months
post-stroke) [31,40,42]. Two articles reported on older adults [32,33], one on both older and younger
adults [41], and one on both young healthy adults and persons with an amputation [56]. A total of
290 participants were included in the selected studies (n = 33), with sample sizes ranging from 1 to 40.
Participants were aged between 16 and 75 years old (see Tables 2 and 3).

3.3. Study Settings and Test Durations

For posture and activity recognition, insoles were evaluated between 1 min and 13 h in a laboratory
setting (n = 15) [26,31,40,42-50,53,58,60], as well as within the community, including outdoor activities
(n = 8) as illustrated in Table 2 [26,32,33,41,43,48,55,60]. In eight articles, the setting was not
mentioned [38,39,51,52,54,56,57,59]. For step counting, evaluations were also performed in both
laboratory (n = 3) [25,31,35,37] and community (n = 2) [24,34] environments, but for shorter durations
(2 min, [31] and 6 minutes [35]), on predefined distances of 16 meters [25] and 720 m [34] or for
a predetermined number of steps (50 steps [36] and 100 steps [24,37]) as illustrated in Table 3.

3.4. Algorithms

Different algorithms were used to identify postures and detect activities, including a decision tree
(DT, n = 6), linear discriminant analysis (LDA, n = 3), multinomial logistic discrimination (MLD, n = 4),
a convolutional neural network (CNN, n = 1), a support vector machine (SVM, n = 8), multi-layer
perceptron (MLP, n = 2), an artificial neural network (ANN, n=3), k-nearest-neighbors (KNN, n = 2)
and other methods (n = 2) as illustrated in Table 2. For step counting, algorithms used were based on
the sum of pressure signals (n = 1), average of pressure signals (n = 2) and acceleration variance (n = 1)
as illustrated in Table 3.



Sensors 2019, 19, 2438 10 of 21

3.5. Outcomes

Regarding types of posture and activity, instrumented insoles were used to identify when
participants were sitting [26,31-33,40,42-54,56-58], standing [26,31-33,38—40,42-54,56-59], walking [26,
31-33,38-40,42—-46,48-60], running [41,48,49,51-54,57,59], jumping [43,57,59], cycling [26,42,44,48,49,
51,53-55,58,59], ascending/descending a ramp [32,39,60] or stairs [26,32,33,39,41,42,47,49,51,53,54,56,
57,60], car driving [26,55], vacuuming [26], taking an elevator up/down [32,33], dancing [43], lying
down [26,44,57], shelving items [26], washing [26], sweeping [26], or falling down [50] (see Table 4).

3.6. Criterion Validity of Instrumented Insoles

For posture and activity recognition, criterion validity was assessed using accuracy, precision,
specificity, sensitivity and identification rate (see Table 4). Overall accuracies varied from 75.0% to 100%
for posture and activity recognition, as reported in 22 articles [26,32,33,39,40,42-49,51-53,55-58,60].
Precision, reported in 10 articles [31-33,42,44,48,49,53,59,60], varied from 65.8% to 100%. In two articles,
precision of instrumented insoles varied from 3.0% to 27.2% for ascending/descending stairs [42,53].

Only four articles reported an assessment of the specificity of posture and activity recognition
with values ranging from 98.1% to 100% [32,33,52,57], except for ascending/descending stairs for
which specificity varied from 43.1% to 97.4% [52]. Sensitivity was reported in 13 studies and varied
between 73.0% and 100% [31-33,40,42,44,48,49,52,53,57,59,60], except for down/upstairs (between
10.0% and 91.7%) [42,49,52,53,57]. Identification rate was reported in three studies and varied from
66.2% to 100% [38,41,50]. In one article, the instrumented insole was reported to identify sitting with
an identification rate varying from 0% to 98.0% [50]. Accuracy was the most widely used index to
assess criterion validity of insoles for posture and activity recognition (see Table 4). Only two articles
reported accuracy, precision, specificity and sensitivity [32,33].

For step counting, accuracies were from 94.8% to 100% (see Table 3) [24,25,35]. Similarly, one
article reported an intraclass correlation coefficient (ICC) of 0.99 for number of steps [31]. Error rates
of 4% and 0% were reported for walking and running respectively [36]. In two articles, the reported
measurement errors were 0% [34] and < 1% [37] for step counting during walking. The methods used
to validate step counting were different from one article to another.

3.7. Methodological Quality of Included Articles

Based on MacDermid criteria, the total methodological quality scores for each reported article
were calculated (Table 5). Total quality scores varied between 12 and 23 points corresponding to
50.0% and 95.6%. For posture and activity recognition, the methodological quality was high in 16
articles, good in six articles, and moderate in four articles as illustrated in Table 5. For step counting,
methodological quality was high for one article, good for two articles and moderate for three articles
(see Table 5).
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Table 4. Criterion validity of insoles for posture and activity recognition.

Postures and Activities

Accuracy @

Criterion Validity
Precision ®

Specificity © Sensitivity (@ Identification Rate

Hegde et al. [26]

Lying down, sitting, standing,
walking, ascending and
descending stairs, vacuuming,
shelving items, cycling,
washing, sweeping, car driving

81% (overall); 98% (Lying down),88%

(sitting), 92% (standing), 96%

(walking), 67% (ascending stairs),

41% (descending stairs), 63%

(vacuuming), 65% (shelving items),
99% (cycling), 83% (washing), 69%

(sweeping), 92% (car driving)

Fulk et al. [31] Sitting, standing, walking From 95.4% to 98.7% From 95% to 99%
Sitting, standing, walking,
Achkar et al. [32] elevator up/down, From 97.8% t0 99.9% * From 90.3% t0 99.1% From 98.5% to 100% From 77.7% to 99.6%
up/downstairs and
ascending/descending ramp
Achkar et al. [33] Slttmg’iz;ﬂi;l igtandmg, Accuracy of 93%, From 91% to 95% From 93% to 99% From 88% to 99%
92.12% with SD = 6.53 and
0, 1 —

Anlauff et al. [38] Standing and walking 66.26% with SD = 15.78

during standing and
walking respectively

Chen et al. [39]

Standing, walking, ascending
and descending stairs,
ascending and
descending ramp

99.9% for standing, 98.9% for

walking, 99.5% for ascending and
99.5% for descending stairs, 99.1% for

ascending and 99.9% for
descending ramp

Fulk et al. [40]

Sitting, standing, walking

95% and 99.9% for group and
individual models **

From 82% to 99% and from
99.9% to 100% for group
and individual models

Zhang et al. [41]

Walking, running, ascending
and descending stairs

98.3% for testing and
98.8% for training

Zhang et al. [42]

Sitting, standing, walking,
ascending/descending stairs,
cycling on a stationary bike

91.5% for group and 99.1% for
individual (standing, sitting,

walking); 80.2% and 97.9% for group
and individual models (all activities)

From 82.8% to 97.2 % for
group model (standing,
sitting, walking); 3% to

92% for group (all
activities)

From 82% to 96.8% for
group model (standing,
sitting, walking); 15% to

93% for group (all
activities)
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Postures and Activities

Accuracy @

Criterion Validity
Precision ®

Specificity © Sensitivity (@ Identification Rate

Edgar et al. [43]

Sitting, standing, walking,
ascending and descending
stairs, jumping jacks, east coast
six count swing dancing

For household activities: 96.67%
(sitting), 90% (standing), 100%
(walking), 77.67% (ascending stairs)
and 95.67% (descending stairs),
96.67% (doing the dishes), 62%
(folding laundry and 98.3%
(vacuuming), For athletic activities:
96.6% (sitting), 100% (standing), 100%
(walking), 100% (standing), 100%
(jumping jacks), 79% (skate forward),
96.6% (skate backward), 76% (swing
lead), 96.6% swing follow)

Hegde et al. [44]

Lying down, sitting, standing,
walking and cycling

98.3% for SmartStep 3.0 and 98.5% for
SmartStep 2.0;

93% and 100% (Lying
down), 96% and 100%
(sitting), 96% and 100%
(standing), 100% (cycling)
for SmartStep 3.0 and 2.0;

100% (Lying down), 92%
and 97% (sitting), 96% and
100% (standing), 99% and

100% (walking), 100%
(cycling) for SmartStep 3.0
and 2.0;

Lin et al. [45]

Sitting, standing, walking,

100% (sitting), 99.7% (standing),
95.8% (walking),

Lin et al. [46]

Sitting, standing, walking,

100% (sitting), 99.7% (standing),
95.8% (walking),

Peng et al. [47]

Sitting, standing, ascending
and descending stairs,

92.9% (overall); 100% and 91.5%
(standing), 91% and 76.5% (walking),
93.7% and 85% (ascending stairs),
86.7% and 84.5% (descending stairs)
for 7 and 4 sensors respectively

Sazonov et al. [48]

Sitting, standing, walking,
jogging, cycling

Overall: 96% obtained by SVM, 95%
by MLD and MLP; Recall and
precision from 96% to 97% and 97%
(sitting), 92% and from 92% to 93%
(standing), from 96% to 98% and
from 95% to 98% (walking), from 94%
to 95% and from 85% to 93% (cycling)

97% (sitting), from 92% to
93% (standing), from 95%
to 98% (walking), from
85% to 93% (cycling)

From 96% to 97% (sitting),
92% (standing), from 96%
to 98% (walking), from
94% to 95% (cycling)

Sazonov et al. [49]

Sitting, standing, walking,
jogging, cycling, ascending and
descending stairs

95.2% =+ 3.5% for all sensors, 95.9% +
3.3% for left shoe and 94% + 3.1% for
right shoe

95% (Sitting), 100%
(standing), 99% (walking),
99% (cycling), 78%
(ascending stairs),96%
(descending stairs)

99% (Sitting), 99%
(standing), 99% (walking),
94% (cycling), 90%
(ascending stairs), 80%
(descending stairs)
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Postures and Activities

Accuracy @

Criterion Validity

Precision ® Specificity ©

Sensitivity (@ Identification Rate

Shang et al. [50]

Sitting, standing, walking,
falling down

100% (standing), from 0%
to 98% (sitting), from 97%
to 99% (walking), 100%
(falling down)

Sugimoto et al. [51]

Sitting, standing, walking,
running, ascending and
descending stairs, cycling

From 85% to 90%

Tang et al. [52]

Sitting, standing,
walking, running

92.4% and 99.2% without and with
linear kernel; 97% and 99.1% without
and with RBF kernel;

From 91.3% to 99.8%
(sitting), from 96% to 100%
(standing), from 96.4% to
99.6% (walking), from
43.1% to 97.4% (ascending
stairs), from 50.2% to
87.2% (descending stairs),
from 91.2 to 99.2%
(cycling) using without
and with RBF and
linear kernels

From 84.1 to 98.1 (sitting),
from 95.9% to 99.9%
(standing), from 96.8 to
100% (walking), from 53.7
to 90.5% (ascending stairs)
from 46.8 to 91.7
(descending stairs), from
95.5% t0 99.9% (cycling)
using without and with
RBF and linear kernels

Tang et al. [53]

Sitting, standing, walking,
jogging, ascending and
descending stairs, cycling

97% and 78% with SVM, 98.7% and
95.9% with SVM_rej, 97.3% and 96.1%
with MLP, 99.8% and 98% with
MLP_rej on raw and feature data
respectively.

from 66.6% to 97.6%
(sitting), from 65.8% to
99.9% (standing), from

94.4% to 100% (walking),
from 27.2% to 92%
(ascending stairs), from
20.9% to 98.3%
(descending stairs), from
89.9% to 100% (cycling)
without and with rejection
on raw and feature data
using SVM

From 77.1% to 99.9%
(sitting), from 75.6 to 100%
(standing), from 83% to
99.9% (walking), from
17.5% t0 99.3% (ascending
stairs), from 10% to 98.3%
(descending stairs), from
81.1% t0 99.6% (cycling)
without and with rejection
on raw and feature data
using SVM.

Zhang et al. [54]

Sitting, standing, walking,
jogging, ascending stairs,
descending stairs, cycling

98.85% without boosting and 98.90%
after boosting algorithm

Zhang et al. [55]

walking, cycling, bus

passenger, car passenger, and

car driver

75% (with 2 sensors per foot), 91%
(with 4 sensors) and 93% (with
6 sensors)
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Criterion Validity

Accuracy @ Precision ®

Specificity ©

Sensitivity (@ Identification Rate

Chen et al. [56]

Sitting, standing, walking,
obstacle clearance,
ascending/descending stair

Overall: 98.8% = 0.5% and 98.4%
(healthy and amputee people); 99.8%
+ 0.1% and 100% for sitting, 99.8% +
0.1% and 100% for standing, 98.7% +

1% and 98.4% for walking, 97.9% =+
0.6% and 96.8% for obstacle clearance,
98.5% + 0.9% and 98.1% for
ascending stairs, 97.6% + 1% and
96.9% for descending
stairs respectively.

Cates et al. [57]

Sitting, lying, standing,
walking, running,
ascending/descending
stair, jumping

Sitting (99.7%), lying (97.7%),
standing (98.5%), walking (97.8%),
running (98.3%), ascending
(97%)/descending (96.8%) stair,
jumping (99.3%)

Sitting (99.7%), lying

(98.3%), standing (99.5%),

walking (99.2%), running
(98.7%), ascending
(98.1%)/descending
(98.2%) stair,
jumping (99.9%)

Sitting (85.8%), lying
(99.3%), standing (92.3%),
walking (95.5%), running

(90.5%), ascending
(87.3%)/descending (85%)
stair, jumping (93.8%)

Hegde et al. [58]

Sitting, standing,
walking, cycling

96.6% (overall); more than 99% for
sitting and standing; less of 90%
for cycling

Cuong Pham
etal. [59]

Standing, running, walking,
cycling, jumping, kicking

93.4% (overall); 88.3% or
standing, 85.4% for
running, 100% for
walking, 95.1% for cycling,
97.3% for jumping, 94.4%
for kicking

93.2% (overall); 87.2% for
standing, 97.4 for running,
97.4% for walking, 100%
for cycling, 91% for
jumping, 85.9% for kicking

Nguyen et al. [60]

Level ground
ascending/descending stair,

ascending/descending incline

91.35% (level ground),
98.64% (stair descent),
100% (stair ascent), 100%
(incline descent), 100%
(incline ascent)

97.84% (overall); 98.11% (level
ground), 98.11 (stair descent), 99.73%
(stair ascent), 100% (incline descent),

99.73% (incline ascent)

100% (level ground), 100%
(stair descent), 98.65%
(stair ascent), 100%
(incline descent), 90.54%
(incline ascent)

(a) Accuracy

true negative

true positive

true positive + true negative

true positive + false positive + false negative

except in [32] where * accuracy =

true positive

true negative-+false positive ”

; (d) Sensitivity =

data pooled from several participants.

true positive + false negative

total sample number 4

(b) Precision

true positive .
true positive+false positive /

(c) Specificity =

** For individual models, a classifier was trained for each individual participant. The group model was trained on the
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Table 5. Summary of methodological quality appraisal of included studies using MacDermid criteria.

Study MacDermid Criteria Total Overall Score (%) Quality Score
References 1 2 3 4 5 6 7 8 9 10 11 12
[31] 2 2 2 2 1 - 2 2 2 2 - 2 19 95% HQ
[38] 2 2 2 2 1 - 2 1 2 2 - 2 18 90% HQ
[34] 2 2 2 2 1 - 2 1 2 2 - 2 18 90% HQ
[26] 2 2 2 2 1 - 2 1 2 2 . 2 18 90% HQ
[48] 2 2 2 2 1 - 2 1 2 2 - 2 18 90% HQ
[47] 2 2 2 2 1 - 2 1 2 2 - 2 18 90% HQ
[52] 2 2 2 2 1 - 2 1 2 2 . 2 18 90% HQ
[53] 2 2 2 2 1 - 2 1 2 2 - 2 18 90% HQ
[41] 2 2 2 2 1 - 2 2 2 2 - 1 18 90% HQ
[35] 2 2 2 1 1 - 2 2 2 2 - 2 18 90% HQ
[42] 2 2 2 2 0 - 2 1 2 2 - 2 17 85% HQ
[44] 2 1 2 2 1 - 2 1 2 2 - 2 17 85% HQ
[32] 2 2 2 2 1 - 2 1 2 2 - 1 17 85% HQ
[46] 2 2 2 2 0 - 2 1 2 2 - 2 17 85% HQ
[56] 2 2 1 2 1 - 2 1 2 2 - 2 17 85% HQ
[37] 1 2 2 2 1 - 2 1 2 1 - 2 16 80% HQ
[39] 2 2 2 2 1 - 2 1 2 2 - 2 16 80% HQ
[43] 1 2 2 2 0 - 2 1 2 2 - 2 16 80% HQ
[45] 1 2 2 2 0 - 2 1 2 2 - 2 16 80% HQ
[51] 1 2 2 2 1 - 1 2 2 2 - 1 16 80% HQ
[40] 1 2 1 2 1 - 2 1 2 2 - 2 16 80% HQ
[55] 2 2 1 2 1 - 2 1 2 2 - 2 16 80% HQ
[24] 2 2 2 2 1 - 1 0 1 2 - 2 15 75% GQ
[49] 2 1 2 2 0 - 2 1 2 2 - 1 15 75% GQ
[59] 2 1 2 2 0 - 1 1 2 2 - 2 15 75% GQ
[54] 2 0 2 2 0 - 2 1 2 2 - 1 14 70% GQ
[36] 1 1 2 2 0 - 1 1 2 2 - 2 14 70% GQ
[25] 2 2 2 2 0 - 1 1 2 1 - 1 14 70% GQ
[57] 2 1 2 2 0 - 1 1 2 1 - 2 14 70% GQ
[35] 1 1 2 2 0 - 1 1 2 2 - 2 14 70% GQ
[50] 1 1 2 2 0 - 1 1 1 2 - 1 12 60% MQ
[58] 2 2 2 1 0 . 1 1 1 1 . 1 12 60% MQ
[33] 2 1 1 1 0 - 2 1 1 0 - 1 10 50% MQ

High quality” (HQ) > 80.0%, “good quality” (GQ) between 70.0% and 79.9%, “moderate quality” (MQ) for scores between 50.0% and 69.9%, and “low quality” (LQ) < 50%. MacDermid
criteria [29]: 1. Was the relevant background research cited to define what is currently known about the psychometric properties of the measures under study, and the need or
potential contributions of the current research question? 2. Were appropriate inclusion/exclusion criteria defined? 3. Were specific psychometric hypotheses identified? 4. Was an
appropriate scope of psychometric properties considered? 5. Was an appropriate sample size used? 6. Was appropriate retention/follow-up obtained? (Studies involving retesting or
follow-up only) 7. Documentation: Were specific descriptions provided or referenced that explain the measures and its correct application/interpretation (to a standard that would allow
replication)? 8. Standardized Methods: Were administration and application of measurement techniques within the study standardized and did they are considered potential sources of
error/misinterpretation? 9. Were analyses conducted for each specific hypothesis or purpose? 10. Were appropriate statistical tests conducted to obtain point estimates of the psychometric
property? 11. Were appropriate ancillary analyses were done to describe properties beyond the point estimates (Confidence intervals, benchmark comparisons, SEM/MID)? 12. Were the
conclusions/clinical recommendations supported by the study objectives, analysis, and results?
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4. Discussion

The aim of the present review was to assess and synthesize the available information on the
criterion validity of instrumented insoles in detecting posture, activity and steps. This systematic
review included 33 articles that reported smart insole criterion validity data such as the accuracy,
precision, specificity, sensitivity, identification rate, and measurement error for step counting, posture
and activity recognition. Accuracy varied from 75.0% to 100%, precision from 65.8% to 100% and
specificity from 98.1% to 100%. These values excluded the detection of ascending/descending stairs
because in some articles, the criterion validity of this activity was reported to be very low (from 3.0%
to 53.0%) [26,42,52] except in studies of Sazonov et al. [49], Zhang et al. [41], Sugimoto et al. [51],
Peng et al. [47], and Chen et al. [39]. Sensitivity varied from 73.0% to 100%, identification rate from
66.2% to 100% and measurement error was of 4.0%. Walking, standing and sitting were the most
frequently assessed activities. In summary, the criterion validity of instrumented insole varied from
one article to another, and was expressed by different indicators. Overall, instrumented insoles appear
to be best at monitoring of steps.

The variation in the reported instrumented insole criterion validity results could be related to
several factors such as methods of training algorithms, dataset size, and heterogeneity of activities
and postures. For example, larger datasets may result in a higher rate of successful classification.
The training and validation algorithms from Edgar et al., [43] were based on datasets of 4800 and
2400 feature vectors respectively, which yielded a successful classification of 99.3% for training and
89.6% for validation. Zhang et al, [41] on the other hand, reported an identification rate of 98.8% for
training and 98.3% for validation based on 11 268 feature vectors for training and 8687 for validation.
The results from Sazonov et al. [42,61] suggest that the algorithm training method may also influence
the accuracy of events detection results. These researchers used two models of training algorithms, an
individual model and a group model. The individual model, a training algorithm for each individual
participant, yielded higher accuracy for both training and validation (99.9% and 99.1%, respectively)
than the group model (95.0% and 91.5%, respectively) [40,42]. Finally, the variability of reported
accuracies between studies may be due to the heterogeneity of experimental conditions regarding
activities to be detected (sitting, walking, etc.). Indeed, with an experimental task of only 3 distinct
activities (standing, sitting and walking), articles had reported high criterion validity [31,40,45,46]
while in other articles, experimental conditions with more than 3 selected activities (standing, sitting,
walking, car driving, vacuuming, ascending/descending stairs, elevator up/down, dancing, lying down,
shelving items, washing, etc.) led to lower detection rate [32,33,39,43,44,53,57]. These differences in
the experimental conditions do not allow comparisons of the different models of instrumented insoles
that were used across studies. It is, therefore, difficult to state which of the insoles was best. To make
such a conclusion, more consistent studies are needed that would have tested different models of
instrumented insoles through standardized experimental conditions. However, the findings of this
systematic review may help identifying the most appropriate device for a given application.

Some authors have reported the inability of their algorithms to discriminate between a walking
activity and standing posture, with confusion occurring mainly in people with low walking speed
(0.69 = 0.35 m/s) such as older adults and stroke survivors [32,40]. This indicates that event detection
algorithms may be sensitive to the amplitude of movements, so that the detection of upright events
like standing or slow walking based on sensor signals can be confused, leading to false positive results.
Such observations have been reported in the literature with other physical activity monitoring devices
(pedometers, accelerometers and inertial sensors) that are known to be less accurate in detecting
activities at slow walking speed [22,62-64]. However, it worth noting that among the 33 articles
included in this review, only three reported an assessment of the criterion validity of instrumented
insoles in stroke survivors [31,40,42] and only two in older adults [32,33]. Therefore, more studies are
required to investigate the accuracy of instrumented insoles in discriminating standing from walking
at a slow speed.
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Ten different algorithms were identified in this systematic review of 33 articles. These varied
from simple (for example, binary decision trees) to complex machine learning algorithms (for example,
Support Vector Machine, SVM). It is difficult to directly compare these algorithms of the variability
in the experimental conditions under which they were used. However, two articles examined the
accuracy of the same instrumented insole for posture and activity recognition using either two (SVM,
MLP) [53] or three algorithms (SVM, MLP, MLD) [48] under the same experimental condition and
on the same dataset. The authors [48,53] concluded that there was no significant difference between
these algorithms. However, the storage space requirement was high for SVM compared to MLD and
MLP [48]. MLD and MLP can run on wearable devices such as insoles, while SVM runs only on
a computer, and data are then stored and processed off-line. Thus, SVM cannot be used for real-time
posture and activity recognition.

This systematic review highlights the need for a consensus on the methodology and the
measurement quality to consider (e.g., accuracy, precision, specificity) when validating insoles
for posture and activity recognition. The ideal study design would be the one that compares different
models of insoles based on the same experimental protocol. However, this seems complex since,
contrary to other wearable devices such as wrist-worn accelerometers, one participant can only wear
a maximum of two insoles at a time. Therefore, in place of multiple comparisons of insoles within
the same data collection, standardized methodology of insole validation would be useful for future
research. Consensus on postures and activities that should be included in experimental designs for
insole validation studies would also facilitate the comparison of psychometric properties for different
models of this new monitoring device. Moreover, the use of similar methods of evaluation and
standardized postures and activities could enable pooling data for comparative analyses [7].

Given that most of the studies in this review were conducted in a laboratory setting, we found
limited evidence regarding the criterion validity of insoles within an outdoor context. Future work
should consider evaluating the psychometric properties of insoles in the community setting. To make
this possible, sensors and circuit boards should be integrated into insoles rather than having separate
components that need to be connected for data collection, as was the case for most of the 16 insole
models evaluated here. With external components to carry on during data collection, the use of some
insoles may be uncomfortable for the users while performing daily activities. Another limitation of the
findings from this review is that many studies enrolled only young, healthy adults. Such samples do
not allow testing the insoles in individuals with various or unstable walking patterns. Indeed, accuracy
of instrumented insoles could vary from a normal walking pattern to pathological or modified walking
patterns for step counts, posture and activity recognition. Thus, there is a need to evaluate insoles on
different walking patterns.

5. Conclusions

This systematic review provides a summary of the validity of instrumented insoles for steps
count and activity recognition. Instrumented insoles appeared to be highly valid for step counting;
but measurement qualities were variable for posture and activity recognition due to the heterogeneity
of experimental conditions and tasks on which different models of insole were tested using ten different
algorithms. The most frequently assessed activities were walking, standing and sitting. In addition,
several indicators (e.g. accuracy, precision, measurement error, etc.) were used to assess criterion
validity of the insoles. Further research should standardize indicators of criterion validity to be
considered, and the experimental postures and activities used for testing the insoles.
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