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Abstract: Recently, pervasive sensing technologies have been widely applied to comprehensive
patient monitoring in order to improve clinical treatment. Various types of biomedical signals
collected by different sensing channels provide different aspects of patient health information.
However, due to the uncertainty and variability in clinical observation, not all the channels are
relevant and important to the target task. Thus, in order to extract informative representations
from multi-channel biosignals, channel awareness has become a key enabler for deep learning
in biosignal processing and has attracted increasing research interest in health informatics.
Towards this end, we propose FusionAtt—a deep fusional attention network that can learn
channel-aware representations of multi-channel biosignals, while preserving complex correlations
among all the channels. FusionAtt is able to dynamically quantify the importance of each biomedical
channel, and relies on more informative ones to enhance feature representation in an end-to-end
manner. We empirically evaluated FusionAtt in two clinical tasks: multi-channel seizure detection
and multivariate sleep stage classification. Experimental results showed that FusionAtt consistently
outperformed the state-of-the-art models in four different evaluation measurements, demonstrating
the effectiveness of the proposed fusional attention mechanism.
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1. Introduction

With the broad adoption of pervasive sensors, comprehensive patient monitoring becomes
feasible for a wide range of medical applications [1]. Various types of biomedical signals collected by
different sensing channels (i.e., multi-channel biosignals) provide abundant physiological information
and reflect different aspects of patients’ health condition. For instance, multi-channel scalp
electroencephalogram (EEG) measures electrical activity in different brain areas, and each of these
channels can be regarded as a sensing source providing unique brain information. It is applicable to
several clinical tasks, including schizophrenia diagnosis [2], emotion recognition [3], and epileptic
seizure detection [4]. In order to learn meaningful representations for the multi-channel biosignals,
significant efforts were recently made to explore feature extraction techniques using deep neural
networks [5,6]. These deep learning approaches are designed to capture abstract characteristics of
signal patterns among all the biomedical channels, referred to as multi-view learning. However,
not all the channels (or views) are relevant and important to the target task due to the uncertainty and
variability in clinical observation (e.g., different brain regions are often involved in different types of
brain activity) [4]. The irrelevance and redundant raw features may influence the model performance.
Intuitively, an ideal deep learning approach should be able to distinguish the task-related importance
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among different channels and rely on more informative ones to enhance feature representation. Thus,
channel awareness has become a key enabler for deep learning in biosignal processing, and has recently
attracted increasing research interest in health informatics.

To address the channel awareness issue, several researchers have attempted to combine
deep learning with a channel selection module, regarded as a multi-stage model, to mitigate the
influence of irrelevance and redundancy in the raw feature space [4,7,8]. It has been validated that
such deep-learning-based channel selection methods can improve the performance in modeling
multi-channel biomedical data. However, these methods adopt the same selection strategy: only the
critical channels are determined as the input to train the model, while the rest of the channels are
one-off eliminated. Utilizing such a hard channel selection procedure ignores the detailed task-related
information among channels over different situations. Take EEG seizure detection as an example:
subjects have epileptic seizures to different extents (i.e., different brain regions), and hence the
importance of each channel varies significantly across individuals. Moreover, since the existing
deep-learning-based models extract features and select channels separately (i.e., multi-stage training),
they do not consistently make all the functional modules work together, rendering it a challenging
task to develop a unified channel-aware deep learning model.

To this end, we propose FusionAtt, a deep fusional attention network, to extract channel-aware
representative features from multi-channel biosignals. We developed a new fusional attention layer
that adopts a fusion gate to fully incorporate multi-view information, in order to dynamically measure
the contribution of each biomedical channel. A multi-view convolutional encoding layer combined
with convolutional neural networks (CNNs) [9] is also adopted to train a unified deep learning model.
Experimental results conducted on different clinical datasets demonstrate that FusionAtt consistently
obtained better performance than nine biosignal feature learning baselines in terms of four evaluation
metrics. We summarize our main contributions as follows:

• We propose FusionAtt, a unified fusional attention neural network combined with multi-view
convolutional encoder, designed to learn channel-aware representations of multi-channel
biosignals.

• FusionAtt dynamically quantifies the importance of each biomedical channel by gated fusion,
and relies on more informative ones to enhance feature representation, without prior expert
knowledge.

• We empirically show that FusionAtt consistently achieved the best performance compared with
nine biosignal feature learning baselines on two clinical datasets, demonstrating the effectiveness
of the proposed fusional attention mechanism.

The rest of the paper is organized as follows: We first review the related work in the next section.
In Section 3, we present the details of the proposed FusionAtt model. The experimental results are
then discussed in Section 4. Finally, we conclude this work in Section 5.

2. Related Work

In this section, we summarize the literature related to our work in the following two categories:
deep learning for multi-channel biosignals, and attention-based neural networks in clinical diagnosis.

2.1. Deep Learning for Multi-Channel Biosignals

Learning deep representations of biomedical data is crucial in the healthcare domain. The existing
studies on deep learning for multi-channel biosignals are diverse due to the wide range of medical
applications. Deep belief networks (DBNs) have been widely adopted to learn inherent representations
of polysomnography (PSG) signals to classify sleep stages [10,11]. To capture temporal patterns from
multi-channel waveform data, context learning was employed for emotion recognition [3] and seizure
detection [12,13]. CNN-based approaches were also proposed to fuse information from different
sensing sources into a high-order feature space [14,15]. Compared with these models that utilize
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parameter sharing architecture to extract joint features among channels, we integrate features explicitly
according to the relative significance of each biomedical channel.

More recently, several researchers have attempted to combine deep neural networks with a
channel selection module in order to mitigate the influence of irrelevance and redundancy in the
raw feature space. Yuan et al. [4] considered the response energy of stacked autoencoders (SAEs) to
jointly determine critical EEG channels. Li et al. [7] and Jia et al. [8] proposed different DBN-based
channel selection modules to recognize affective state from multi-channel biosignal data. However,
these advanced methods, though yielding reasonably good performance, adopt hard channel selection
strategies and are not unified models. In contrast, we propose the fusional attention mechanism to
dynamically select and fuse channel information in an end-to-end manner.

2.2. Attention-Based Neural Networks in Clinical Diagnosis

Recently, attention mechanisms have attracted increasing research interest in clinical diagnosis,
due to their strong ability of feature extraction and model interpretability. Choi et al. [16] and
Ma et al. [17] adopted attention mechanisms to explain medical codes (e.g., procedure, diagnosis,
and medication codes) from electronic health records (EHRs). Yuan et al. [18] first exploited an
attention mechanism based on multi-view learning (i.e., ChannelAtt) to achieve soft channel selection
for EEG seizure detection. In general, there are two differences between ChannelAtt and our proposed
FusionAtt model. First, ChannelAtt uses local information and concatenated information to assign
attention energy, referred to as local attention and global attention, respectively. In our FusionAtt model,
we adopt a gated function to better fuse the multi-view information for the attention energy assignment.
Second, the multi-view representation module in ChannelAtt is based on a SAE, a fully-connected
neural network, while ours is based on a CNN, a locally-connected neural network, which can better
extract deep features from multi-channel biosignals.

3. Methodology

In this section we present the technical details of our FusionAtt model with multi-channel biosignal
inputs. The architecture of FusionAtt is illustrated in Figure 1. In the following subsections, we detail
the main components of our FusionAtt model.
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Figure 1. Architecture of the proposed FusionAtt model.
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3.1. Multi-View Convolutional Encoder

In order to learn deep representations of multi-channel waveform data, simply concatenating the
raw inputs of all the channels may not be enough to preserve the unique characteristics of each channel.
Inspired by the rapid development of multi-view deep learning techniques [4,15,19], we propose the
utilization of two convolutional feature encoders (i.e., channel-encoder and global-encoder) to extract
abstract features from channel-specific and global views, respectively.

Formally, we assume that the input biosignal fragments consist of C channels, denoted
as X = {x1, · · · , xi, · · · , xC}. Given the input vector of the i-th channel, denoted as xi ∈ Rn,
a channel-view representation hi ∈ Rp can be obtained using the channel-encoder (i.e., Encoderc),
as follows:

hi = Encoderc(xi; θc), (1)

where θc is the learnable parameter set in Encoderc. Similarly, we can calculate a global-view
representation hg ∈ Rp through the global-encoder (i.e., Encoderg), as follows:

hg = Encoderg(x1:C; θg), (2)

where θg is the learnable parameter set Encoderg. Generally speaking, both Encoderc and Encoderg can
be parameterized by different deep learning methods designed for feature extraction.

In our model, we construct the multi-view convolutional encoder by stacking several multi-kernel
CNN cells consisting of convolutional, nonlinear, and pooling layers. Specifically, regarding our two
feature encoders, the latent multi-view representations of the k-th feature map, denoted as h̃(k)

i and h̃(k)
g ,

can be obtained as follows:
h̃(k)

i = f (xi ∗W (k)
c + b(k)

c ), (3)

h̃(k)
g = f (

C

∑
i=1

xi ∗W (k)
g + b(k)

g ), (4)

where θ
(k)
g = {W (k)

c , b(k)
c } and θ

(k)
c = {W (k)

g , b(k)
g } are the learnable parameters. Subsequently,

we flatten all the features extracted by different kernels and derive the global-view and channel-view
representations, that is, hi and hg, respectively. Note that the dimension of h̃(k)

i and h̃(k)
g relies on the

structure configuration of the multi-view convolutional encoder, which is given in Section 4.3.

3.2. Fusional Attention Mechanism

In order to dynamically qualify the contribution of each biomedical channel, we propose the
fusional attention mechanism, which incorporates a gated function for the final task. Specifically,
the fusion gate ri ∈ R can be calculated considering both the global-view and channel-view
representations, defined as:

ri = σ(W>
rg hg + W>

rc hi + brc), (5)

where θ
(1)
a = {Wrg, Wrc ∈ Rp, brc ∈ R} denotes the learnable parameter set. Here in Equation (5),

we rescale ri into the range of [0, 1] by adopting the sigmoid function σ(·), in order to control the flow
of multi-view information through the neural networks. We then integrate the information of the
global-view and its own channel-view representations according to the fusion gate ri, defined as:

hi = (1− ri)� hg + ri � hi, (6)

where � is the element-wise multiplication operator. According to Equation (6), the fusion gate ri
is able to learn how much information carried by each encoder is relevant to keep or forget during
end-to-end training. If ri = 1, then hi = hi. This means that only channel-view information is passed.
if ri = 0, then hi = hg. This means that only global information is passed. We use the gated unit to
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derive a more representative integrated feature vector, that is, hi ∈ Rp, as the input of the attention
energy assignment function.

The attention energy eg,i of the i-th channel can be further assigned based on the integrated feature
vector hi, as follows:

eg,i = W>
e hi + be, (7)

where θ
(2)
a = {We ∈ Rp, be ∈ R} is the learnable parameter set. Given all the attention energy values,

the contribution score vector αg ∈ RC can be normalized using softmax function, as follows:

αg = So f tmax([eg,1, · · · , eg,i, · · · , eg,C]). (8)

Intuitively, if the contribution score αg,i of the i-th channel is large, the information of the i-th
channel is high related to the corresponding task label. Subsequently, we use weighted aggregation to
compute a context vector cg ∈ Rp based on the integrated features hi(1 ≤ i ≤ C) and the contribution
score vector αg, as follows:

cg =
C

∑
i=1

αg,i � hi. (9)

In this way, our model is able to effectively incorporate the multi-view information carried by
both feature views, and hence fuse representative features from multi-channel biosignals.

3.3. Unified Training Procedure

To train our FusionAtt model in an end-to-end manner, we combine the context vector with the
global-view vector to derive an attentional representation hα ∈ Rr, defined as:

hα = f (Wh[cg ⊕ hg] + bh), (10)

where ⊕ is the concatenation operator, and Wh ∈ Rr×2p and bh ∈ Rr are the learnable parameters.
Finally, a softmax layer is applied to produce the classification task, as follows:

ŷ = So f tmax(Wshα + bs), (11)

where Ws ∈ R|class|×r and bs ∈ R|class| denote the learnable parameters. Here we employ cross-entropy
as the classification loss. Given M training samples {(X(m), y(m))}M

m=1, the cost function of our unified
FusionAtt network in terms of the learnable parameter set Θ = {θc, θg, θa, Wh,s, bh,s}, is defined as:

JFusionAtt(X(1), · · · , X(m), · · · , X(M); Θ)

= − 1
M

M

∑
m=1

[
y(m) log ŷ(m) + (1− y(m)) log (1− ŷ(m))

]
.

(12)

4. Experiments

In this section, we evaluate FusionAtt using two benchmark clinical tasks: multi-channel EEG
seizure detection and multivariate PSG sleep stage classification. We first introduce the two datasets,
then describe the baselines and implementation details. We finally present the quantitative results and
analyze the learned contribution scores through a clinical case study.

4.1. Datasets

CHB-MIT. We performed the task of multi-channel EEG seizure detection using the public
CHB-MIT dataset provided by the Children’s Hospital Boston [20]. This dataset contains 23-channel
256 Hz EEG signals. All the seizures are manually labeled by medical experts. Following the
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segmentation experience [21], we set both window length and step length as 1 second, and finally
generated 252, 862 input vectors from all 23 subjects.

UCD. We conducted experiments for the multivariate PSG sleep stage classification task based
on the UCD dataset collected from St. Vincent’s University Hospital and University College
Dublin [22]. This dataset contains 14-channel overnight PSG data, consisting of 128 Hz EEG, 64 Hz
electromyography (EMG), and other types of biosignals. We generated 287,840 input vectors from all
25 subjects, and each 30-second fragment is labeled as being in one of the five sleep stages.

4.2. Baseline Approaches

We compared FusionAtt with the following nine existing biosignal feature learning baselines:
Support vector machine (SVM) [23]. SVM is a classic machine learning method. Here we adopted

a one-vs-all SVM for the multi-class classification. To avoid the curse of dimensionality, we used
principal component analysis (PCA) [24] to select the top-r related components from all channels as
features before training the SVM, namely, PSVM.

SAE [25]. SAE is a widely adopted deep learning method for biosignal feature learning. For the
sake of fairness, we incorporated global and multi-view strategies to extend the SAE model, referred to
as GSAE and MSAE, respectively.

CNN [9]. The CNN is another commonly used deep learning method in biosignal processing.
Similarity, we performed the same process as with SAE (i.e., GCNN and MCNN).

CtxFusionEEG [13]. CtxFusionEEG is a multi-stage feature learning model that focuses on using
context learning to detect temporal patterns from epilepsy EEG signals. This method derives fusional
representations of multi-channel biosignals by incorporating both deep learning and handcrafted
engineering.

mSSDA [4]. mSSDA is an SAE-based multi-view deep-learning variant for multi-channel
biosignals. This method determines channels by adopting a hard selection procedure after the deep
feature extraction.

ChannelAtt [18]. ChannelAtt adopts fully connected multi-view learning to soft-select critical
channels from multi-channel biosignals. According to the original model, both the local and global
attention mechanisms are included, referred to as ChannelAttloc and ChannelAttglo, respectively.

4.3. Implementation Details

We implemented our proposed model with PyTorch. Regarding the evaluation procedure,
5-fold subject-independent cross-validation was adopted, and we report the average test results for
performance comparisons. The ratio of training, validation, and test sets was 0.7:0.1:0.2. Furthermore,
we utilized short-time Fourier transform (STFT) for data preprocessing. Adadelta was adopted for
the training process to optimize the cost function in terms of the learnable parameters. We also used
weight decay with a 0.001 L2 penalty coefficient, 0.95 momentum, and 0.5 dropout rate to train all
the deep learning methods. Table 1 lists the structure configuration of the multi-view convolutional
encoder in FusionAtt, and we set p = 128 and r = 128 for our model and baselines.

Table 1. Structure configuration of the multi-view convolutional encoder. ReLU: rectified linear unit.

Cell No. Conv Non-linear Pooling

Encoderc1 (8, 16, 32, 64)× 8 ReLU 6
Encoderc2 (3, 5)× 16 ReLU 3
Encoderc3 (3, 5)× 16 ReLU 3
Encoderg1 (1× 8, 1× 16, 1× 32, 1× 64)× 8 ReLU 1× 6
Encoderg2 (3× 3, 5× 5)× 16 ReLU 1× 3
Encoderg3 (3× 3, 5× 5)× 16 ReLU C× 3
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To quantify the performance, both Accuracy and F1-score were adopted for evaluation.
The area-under-the-curve of precision–recall (AUC-PR) and receiver operator characteristic (AUC-ROC)
were also utilized to evaluate each approach. Note that we used the Macro metric for the multi-class
classification task.

4.4. Performance on Clinical Tasks

We investigated the effectiveness of our proposed FusionAtt model compared to the baseline
methods in different biomedical tasks. Table 2 reports the experimental results of all the aforementioned
approaches on all the benchmark datasets. We can see that our FusionAtt model achieved the best
performance compared with the corresponding baselines utilizing different encoder methods on
both datasets.

Table 2. Performance comparisons on two clinical biosignal datasets. GCNN: global extension of
convolutional neural network (CNN); MCNN: multi-view extension of CNN; GSAE: global extension
of stacked autoencoder (SAE); MSAE: multi-view extension of SAE.

Seizure Detection (CHB-MIT) Sleep Stage Classification (UCD)
Method AUC-ROC AUC-PR F1-Score Accuracy AUC-ROC AUC-PR F1-Score Accuracy

PSVM 0.8291 0.7021 0.6421 0.8768 0.8177 0.5764 0.5204 0.6193
GSAE 0.5934 0.4180 0.0668 0.7987 0.7068 0.4965 0.2760 0.4917
MSAE 0.7529 0.4937 0.1479 0.8013 0.7213 0.5224 0.3542 0.5262
GCNN 0.9255 0.8054 0.7506 0.8849 0.8655 0.6589 0.5042 0.6270
MCNN 0.9263 0.8702 0.7959 0.9088 0.8732 0.6725 0.5925 0.6590
CtxFusionEEG 0.9287 0.7833 0.7202 0.9025 0.8483 0.5330 0.4680 0.6688
mSSDA 0.9450 0.8801 0.8186 0.9364 0.8544 0.6208 0.5969 0.6741
ChannelAttloc 0.9554 0.9134 0.8625 0.9477 0.8699 0.6370 0.5890 0.6855
ChannelAttglo 0.9556 0.9119 0.8675 0.9506 0.8662 0.6458 0.6137 0.6859
FusionAtt 0.9701 0.9145 0.8953 0.9622 0.8894 0.7021 0.6637 0.7257

Given the results of the baselines, the traditional classification method PSVM outperformed the
SAE-based models in both tasks. This demonstrates the effectiveness of the handcrafted PCA features
where SVM could find a relatively clear hyper-lane to separate classes in the vector space. Among all
the deep learning baselines, we observed that the multi-view-based methods obtained better results
than the globally based methods. This illustrates the advantage of multi-view representation, in which
the meaningful features are effectively extracted from multi-channel biosignal data. The improvement
of the CNN-based methods compared with the SAE-based methods demonstrates that all the
deep learning models take advantage of the CNN feature encoder. The reason is that the spatial
information of channels is retained and the classifier can hence capture more detailed information
from multi-channel biosignals. Since mSSDA employs the hard channel selection procedure, all the
evaluation measurements increase compared with the SAE-based methods. This suggests the benefit of
channel selection on multi-channel biosignals to capture critical information. CtxFusionEEG performed
on par with mSSDA in terms of accuracy, but achieved a much worse F1-score than mSSDA, even the
other deep learning baselines. This means that adopting multi-stage training would not consistently
make all the functional modules work together to yield good results across different classes.

From the results of the attention-based models, the comparisons between ChannelAttloc and
ChannelAttglo indicate that the concatenated information captured by the global attention mechanism
is helpful for feature extraction. Our proposed FusionAtt model performed better than all the baselines,
due to the effective integration of the multi-view representation and fusional attention mechanism.
Moreover, Figures 2 and 3 illustrate the ROC and PR curves of all the test folds on the CHB-MIT and
UCD datasets, respectively. We can see that FusionAtt achieved the best performance in terms of the
AUC-ROC and AUC-PR. This means that FusionAtt was able to focus on providing complementary
information toward each view representations, and hence could help to learn more informative features
from multi-channel biosignal data. According to the overall analysis on both datasets, we conclude
that the fusional attention mechanism is key to identifying critical patterns from biomedical signals,
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and the attentional representation learned by FusionAtt can improve the performance for different
biomedical tasks in healthcare.
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Figure 2. Receiver operating characteristic (ROC) and precision–recall (PR) curves of the proposed
method and the baselines on the CHB-MIT dataset. (a) ROC curves; (b) PR curves.
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Figure 3. ROC and PR curves of the proposed method and the baselines on the UCD dataset.
(a) ROC curves; (b) PR curves.

4.5. Sensitivity Analysis

In this subsection, we discuss the effects of various hyper-parameter choices in FusionAtt,
including the dimensionality of multi-view representation p and the size of attentional representation r.
Specifically, we plot the accuracy results of our proposed FusionAtt model and the two ChannelAtt
variants under different hyper-parameter settings on both datasets. Here we use the hyper-parameter
setting mentioned in Section 4.3 as the basic configuration, and vary one from 32 to 512 while keeping
others fixed to the basic configuration.

Figure 4 illustrates the variation of accuracy under different sizes of multi-view representation
p using different feature encoders on the two datasets. From the figures, we observe that when the
dimension was small, all the models resulted in limited accuracy performance, demonstrating that
a smaller size of p led to worse capture of the multi-channel information. When we increased p,
the model performance increased rapidly. However, when p was too large, the performance decreased
slightly. This shows that properly setting the size of multi-view representation can help to generate
robust features to improve the performance, while excessive hidden neurons negatively impact the
model performance. Similarity, as shown in Figure 5, we can see the same trends of the influence under
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different sizes of attentional representation r. Among all the figures, regarding the feature encoders,
the proposed FusionAtt model consistently beat the two ChannelAtt models. This resulted from the
fact that the multi-view convolutional encoder has strong model generalization capability. Moreover,
the FusionAtt model was less sensitive to different choices of hyper-parameters than the other models.
This demonstrates that the fusion gate in Equation (5) enables FusionAtt to dynamically fuse features
from multiple views, deriving more comprehensive features from multi-channel biosignals.
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Figure 4. Performance variations with different dimensions of multi-view representation. (a) Sensitivity
analysis on the CHB-MIT dataset; and (b) Sensitivity analysis on the UCD dataset.
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Figure 5. Performance variations with different dimensions of attentional representation. (a) Sensitivity
analysis on the CHB-MIT dataset; (b) Sensitivity analysis on the UCD dataset.

4.6. Case Study

In this subsection, we discuss the learned contribution scores in FusionAtt to justify the benefit of
adopting the fusional attention mechanism in clinical settings. Figure 6 presents a clinical case study of
multi-channel EEG seizure detection on the CHB-MIT dataset where a subject suffered epileptic seizure
from the 6-th to 13-th timestamps. We display the mean scores of every 5 fragments and mark the max
value among all the channels within each timestamp for clear visualization. Note that according to the
EEG seizure detection results discussed in Section 4.4, the contribution scores learned from all of the
channel-aware attention variants were similar, due to the similar attention learning scenarios.



Sensors 2019, 19, 2429 10 of 12

1 3 5 7 9 11 13 15 17 19 21 23

Channel

1

3

5

7

9

11

13

15

17

T
im

es
ta

m
p

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6. Multi-channel electroencephalogram (EEG) seizure detection of a patient in the case study.

From Figure 6, we can observe that the learned contribution scores of all the channels were
different within different timestamps. Analyzing the timestamps that belong to the non-seizure stage,
the distribution of contribution scores was relatively uniform. Therefore, no seizure pattern was
recognized, and hence our model paid equal attention to all the EEG channels in detecting seizure onset.
Regarding the timestamps in the seizure stage, we can observe that the 17-th and 18-th channels
were the two most active ones that significantly contributed to the final task of seizure detection.
This indicates that the seizure onset was highly related to the brain regions measured by these two
channels. According to the International 10–20 system employed in this dataset [20], the seizure onset
in this case was located in the central region of the brain, which conforms to the channels selected
by our model. To sum up, the case study justifies the ability of our proposed FusionAtt model to
learn interpretable contribution scores with clinical meanings. According to Table 2, the meaningful
representations support the effectiveness of FusionAtt for good performance in seizure detection.

5. Conclusions

In this paper, we present deep fusional attention networks, namely FusionAtt, to learn deep
representations of multi-channel biosignals for clinical tasks. The proposed FusionAtt is a unified deep
learning framework that fuses gated attentional features by capturing dependencies among biomedical
channels based on multi-view convolutional encoding. Experiments on two benchmark clinical tasks
showed that FusionAtt was able to efficiently fuse channel-aware information from multi-channel
biosignals. The case study intuitively showed how FusionAtt was able to interpret influential clinical
observations by analyzing the learned contribution scores of biomedical channels.

Our future work will include the incorporation of different deep-learning architectures for feature
encoding, in addition to investigating the performance of FusionAtt on larger datasets. In addition,
FusionAtt can be extended to other task-oriented applications with similar data structure where the
channel awareness is still a major challenge.
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