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Abstract: As the number of potential applications for Unmanned Aerial Vehicles (UAVs) keeps rising
steadily, the chances that these devices get close to each other during their flights also increases,
causing concerns regarding potential collisions. This paper proposed the Mission Based Collision
Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol applicable to all types of
multicopters flying autonomously. It relies on wireless communications in order to detect nearby
UAVs, and to negotiate the procedure to avoid any potential collision. Experimental and simulation
results demonstrated the validity and effectiveness of the proposed solution, which typically
introduces a small overhead in the range of 15 to 42 s for each risky situation successfully handled.
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1. Introduction

The adoption of Unmanned Aerial Vehicles (UAVs) to perform a multitude of tasks is raising
concerns about privacy, security, and flight safety [1], especially in urban environments where the
consequences of any flight disruption are typically much more severe due to risks of citizen injuries.
To address this issue, several efforts are taking place worldwide to make UAV flights safer. For instance,
in Europe, U-space [2] is an initiative that aims at making UAV traffic management safer and more
secure. In particular, U-space attempts to provide an appropriate interface with manned aviation and
air traffic control so as to facilitate any kind of routine mission, in all classes of airspace, and even
in congested environments like urban areas, so as to achieve the ambitious Single European Sky
(SES) goal. The SESAR Joint Undertaking [3] was set up in order to manage this large scale effort,
coordinating and concentrating all EU research and development activities onto air traffic management.
This way, a wide range of drone missions that are currently being restricted will be possible thanks to
a sustainable and robust European ecosystem that is globally interoperable.

Among the different areas where UAV flight safety is being considered, there is a particular area
that has not yet been fully addressed: The development of sense and avoidance mechanisms to enable
an UAV to become aware of its environment, allowing it to take evasive action if necessary [4]. In this
paper we focused on this problem by proposing the Mission Based Collision Avoidance Protocol
(MBCAP), a collision avoidance solution that relies on wireless communications between nearby UAVs
performing planned missions. In particular, MBCAP-enabled UAVs will constantly broadcast their
future positions, and whenever two UAVs determine that their flight trajectories overlap in time and
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space they will stop, and quickly negotiate and execute the process to safely go through the critical
area. More specifically, we present MBCAP-e, an enhanced version of the original MBCAP-i protocol
proposed in [5], that addresses many of the shortcomings detected in the earlier proposal. Among
others, the most relevant improvements include:

• Collision risk distance changed from static (90 m) to dynamic by accounting for the current
speed of the UAV;

• Beacon size was reduced, which reduces the channel occupancy;
• The safety distance between UAVs when one of them moves aside is also reduced;
• We have improved the optimal position of UAVs when moving aside so as to prevent collisions

even when the flight trajectory is smoothed around waypoints.

Experimental results using real UAVs, along with large-scale simulation experiments, validate the
effectiveness of our proposed protocol, and evidence the low overhead introduced both in terms of
channel occupation and mission delays.

The remainder of this paper is organized as follows: In the next section we present the most
relevant related works in this field. Then, in Section 3, we provide a quick overview of ArduSim,
our simulation platform used to implement and test MBCAP. In Section 4, we present our MBCAP
protocol, including all relevant technical details and improvements with regard to the initial version of
the protocol proposed in [5]. Section 5 presents experimental results that validate our solution under
different conditions, including both real flight data and simulation data, with discussion. Finally,
Section 6 concludes the paper and refers to future works.

2. Related Works

Only recently has the topic of collision avoidance between UAVs gained more attention in the
literature, and thus the number of works available remains limited.

Mahjri et al. [6] did a theoretical study of the characteristics that a collision avoidance protocol
should have, describing its elements. In this work, the authors differentiate between two techniques
for collision risk detection: Non-cooperative sensors, such as a proximity sensor [7] or a camera [8],
and cooperative sensors, such as the dissemination of flight information to nearby UAVs, as occurs
with Automatic Dependent Surveillance—Broadcast (ADS-B) [9] in the solution proposed by Liu and
Foina [10]. In general, non-cooperative sensors can help avoid collisions with static objects, but they do
not allow for a fast react enough to avoid collisions with moving objects, like other UAVs performing
independent tasks. In these scenarios, cooperative sensors are more effective as the collision risk can
be detected well in advance.

Jinwu et al. [11] defined a collision risk detection strategy based on space discretization.
They assign a degree of danger to each location in the space following a probabilistic model that
predicts the place an UAV will be in the future. This work focuses on UAVs moving very fast at a
constant speed, and defines a vast protected area around the UAV, forcing other aircrafts to scatter
over a wide area to avoid collisions. Furthermore, the authors did not explain the collision avoidance
strategy used to change the direction of the UAVs during flight.

Lin et al. [12] presented an UAV collision avoidance solution which can achieve cluster situational
awareness, autonomous formation control, and intelligent collaborative decision making. The main
idea of their algorithm is to consider all swarm members as a whole, and control the internal and
external parameters of the UAV swarm separately. Among the UAVs, a communication topology is set
up. They used a consensus algorithm to maintain the formation and avoid collisions between UAVs.
Moreover, they use the weight coefficient to set the priority for every UAV. Beyond single UAV control,
an improved artificial potential field method is adopted to control swarm mobility. They improved
the safety distance and the traditional artificial potential approach to make them more suitable for the
UAV collision avoidance task. This way, even though UAVs approach obstacles at a high speed and
with a small angle, they will still have enough time and space to change their flight direction. Authors
validated the effectiveness of their cooperative obstacle avoidance algorithm using MATLAB alone.
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Zhou et al. [13] presented a trajectory planning strategy for UAV collision avoidance. They proposed
a varying cells strategy to integrate aerodynamic constraints into trajectory planning. They also
adapted basic avoidance actions in the varying cells strategy to go through different cells, enabling
more flexible avoidance maneuvers. Authors used Monte Carlo simulations to demonstrate that
the proposed method satisfies aerodynamic constraints, while both the convergence and collision
avoidance rates improved.

Kim and Ben-Othman [14] introduced a surveillance model for multi-domain Internet of
Things (IoT) environments, which is supported by reinforced barriers with collision-avoidance using
heterogeneous smart UAVs. Formally, they defined a problem whose goal was minimizing the
movement of smart UAVs having as a condition that the collision-avoidance among UAVs was assured
when flying between their initial positions and specific spots in a limited area.

Wang et al. [15] proposed an approach based on a 2D Laser Imaging Detection and Ranging
(LIDAR) that offers a method to represent the objects in the environment in a compact manner,
which was significantly more efficient in terms of both memory and computation in comparison with
similar previous proposals. Their approach is also capable of classifying objects into categories such as
static and dynamic, and tracking dynamic objects, as well as estimating their velocities with reasonable
accuracy. The main problem of this proposal is that it was not designed for UAVs.

In [16], Ma improved a previous work by introducing collision and obstacle avoidance capabilities
to target tracking. In particular, the author augmented the control input with a repulsion term that
resolves collisions with other team members and nearby obstacles. Assuming that each UAV travels at
a constant speed, a control component was added that adjusts the UAV’s heading angle to the opposite
direction in relation to the UAV’s closest neighbors, and to obstacles that could provoke collisions.
This repulsion term can also be expressed as a function of the relative bearing angles alone, making it
possible to be estimated/measured by on-board vision sensors in the presence of communication
losses. Regarding the communication topology tested, an all-to-all communication, a ring topology,
and a cyclic pursuit topology were studied. The effectiveness of the proposal was demonstrated by
only numerical simulation examples.

Chen and Lee [17] focused on proposing a novel and memory efficient deep network architecture
named UAVNet for small UAVs to achieve obstacle detection in urban environments. The proposal
shows that UAVNet can detect obstacles at a rate of 15 fps, meeting real-time application requirements.

To the best of our knowledge, no protocol has specifically addressed the issue of collision
avoidance between multirotor UAVs from independent owners following planned missions, which is
the scope of our current work.

3. ArduSim Simulator: An Overview

The MBCAP protocol has been developed using ArduSim, an accurate multi-UAV simulation
platform developed by Fabra et al. [18] that has been freely released online [19] for the
research community.

Figure 1 shows the user interface of the ArduSim application. Most of it (area 1) is used to
visualize how multicopters move during an experiment. The thin dotted line represents the mission
the UAV has to follow, when applicable, and the thicker line represents the path it is actually following.
On top, in the middle of the window (area 2), a few buttons allow the control of the experiment, and up
on the left side (area 3), the log shows messages related to the progress of the simulation, and to the
protocol under test.
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Figure 1. ArduSim main interface: Three Unmanned Aerial Vehicles (UAVs) following a mission.

Some of the features of ArduSim include:

• Effortless protocol deployment on real UAVs. Current open-source flight controllers use the
Micro Aerial Vehicle Link (MAVLink) communications protocol [20] to communicate the UAV
with an optional Ground Control System (GCS). ArduSim uses this protocol to fully control
the behavior of the UAV while it is flying. The only requirements to deploy a protocol in a
real multicopter are to attach a Raspberry Pi with a WiFi adapter (or a similar device capable
of running Java), and to connect it to the telemetry port of the flight controller, following the
instructions detailed on the ArduSim repository. ArduSim was designed to abstract the UAV
control and communication layers to the developer, so that the same developed code works
equally in simulation and in real UAVs, making the deployment straightforward.

• Soft real-time simulation. Simulations in ArduSim are performed in near real-time, which
speeds up the debugging process while the protocol is implemented.

• High scalability. On a high-end computer (Intel Core i7-7700, 32 GB RAM, SSD hard drive),
ArduSim is able to run up to 100 UAVs in near real-time, and up to 256 UAVs in soft real-time.

• UAV-to-UAV communication simulation. The communication among virtual UAVs is
performed through virtual links based on 802.11a technology, using a model based on the
results gathered from experiments with real multicopters. When the protocol is deployed in
real multicopters, ArduSim automatically broadcasts User Datagram Protocol (UDP) datagrams,
requiring a WiFi adapter connected to an Ad-hoc network.

• Thorough control Application Programming Interface (API). ArduSim provides a complete
set of functions to perform the most common maneuvers during a flight: Take-off, start a mission,
pause a mission, land, and so on.

• Deployment through a PC Companion. ArduSim can be run in three different roles: (i) Protocol
testing on simulation, (ii) protocol deployment in a real multicopter, and (iii) as a PC Companion
that helps to start and control the execution of the distributed protocol when deploying a real
UAV swarm. Moreover, the PC Companion tool allows one to recover control over the UAVs
in case the protocol does not behave as expected, thus avoiding any crash during the first tests
with real UAVs.

• Automatic collision detection. Safety is a critical aim for any protocol. ArduSim informs the
user if any collision happens during a simulation to help the researcher detect failures in the
protocol design.
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• Comprehensive experiment data logging. When the experiment ends, either in simulation or
in a real multicopter, ArduSim stores, among others, the path followed by the UAV including
coordinates, heading, speed, acceleration, distance to origin for each data recorded, as well as
the same path in Google Earth [21], NS2 [22], and OMNeT++ [23] formats.

4. MBCAP Protocol

In this section we introduce MBCAP, which has been implemented with the ArduSim simulation
platform. In particular, we detail MBCAP-e, an enhanced version of the original MBCAP-i protocol
proposed in [5], that addresses many of the shortcomings detected in that earlier proposal.

4.1. Protocol Overview

MBCAP is applicable to UAVs following a planned mission in an autonomous manner, an issue
not adequately addressed by the research community. To this aim, it relies on a cooperative
sensing approach whereby multicopters broadcast their own location and predicted future locations.
Upon receiving these data, receivers rely on it to decide if there is a collision risk (collision detection),
and to avoid the collision if necessary (collision avoidance). The strategy is based on priorities,
where an UAV has always a lower or higher priority than any other UAV it could meet during a flight.
The high-priority UAV will be the first to resume its mission, and the low-priority UAV will wait the
needed time to avoid the collision, only resuming its mission afterward.

Several technologies could be used to establish a communication link among the UAVs. ADS-B [9]
could be a good solution, but it requires infrastructure, and uses proprietary technology and restricted
frequencies. Our solution assumes the use of IEEE 802.11a wireless adapters operating in Ad-Hoc
mode, an open and cheap solution already available in the market.

Regarding the architecture of the protocol, it comprises of three threads for each UAV,
i.e., Beaconing, Listener, and CollisionDetector. The Beaconing thread periodically sends UDP
broadcast datagrams with the current location of the multicopter, followed by a list of future predicted
locations, including spatial and temporal coordinates. Such data are enough to detect collision risks
with other UAVs. The Listener thread receives and stores the most up-to-date information received
from other UAVs. Finally, the CollisionDetector thread periodically checks the gathered data and
compares the future predicted locations with the ones advertised in its own beacon to decide if there
is a collision risk with another UAV. If that is the case, it stops the multicopter and relies on the
protocol to address the risky situation. The high-priority UAV resumes the mission when the other
multicopter is ready to be overtaken. The low-priority UAV resumes the mission once the other one
is in a safe location. Furthermore, if the low-priority UAV stands still in the path of the high-priority
UAV, before giving way, it moves aside to let the UAV pass through its current location.

This protocol has been mainly designed to avoid collisions between two UAVs, as the probability
of more than two UAVs performing planned missions to meet each other and all at once is very low.
In case a third UAV detects a collision risk with any of the contending UAVs, it will stop and wait for
the previous collision risk to be solved before applying the protocol.

The collision avoidance strategy is based on priorities at the time of deciding which UAV can go
on with the mission. For this purpose, all the multicopters must have a unique identifier (ID) which
enables us to establish an ordered relation among them. We used the unique ID value provided by
ArduSim, defining the high-priority UAV as the one with the higher ID value. When ArduSim runs
as a simulation environment, it provides random unique IDs for the virtual multicopters. However,
when it runs in a real multicopter, it relies on the unique MAC address of the wireless adapter used
for communications to generate a unique ID for the multicopter. This approach is good enough
to analyze the performance of MBCAP for a general case of use. Later, for its deployment on
commercial multicopters, the priority strategy should be analyzed more in depth, as some applications
(e.g., border surveillance) may have higher priority than others (e.g., precision agriculture). In such



Sensors 2019, 19, 2404 6 of 25

cases, the priority of a UAV could defined at two levels: (i) Among UAVs running different applications,
and (ii) among UAVs running the same application.

4.2. Finite State Machine

In this section we detail the finite state machine that regulates the behavior of MBCAP-e, the new
version of MBCAP, which is implemented in the CollisionDetector thread (see Figure 2). In the figure,
the circles represent the machine states, the rectangles represent the commands sent to the flight
controller to change the behavior of the UAV, and the arrows represent the transitions between states.
The blue thick arrows are related to the most common scenario where only two UAVs are involved.
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Figure 2. Mission Based Collision Avoidance Protocol-e (MBCAP-e) finite state machine.

We will proceed to describe the most common situation addressed by MBCAP, where two UAVs
meet and a collision risk is detected. Depending on the ID value, the UAVs can fall into any of the
following cases:

1. Lower priority UAV. It starts in the Normal f light state. When a collision risk is detected,
it needs a few seconds to stop in the air and enter in the Stand still state (transition a). Then,
it will wait for a short time SStimeout (transition b) to ensure that the high-priority UAV has also
reached the same state. When the other UAV informs that it is in the same state, it analyzes if it
finds itself in the route the high-priority UAV was following. If not, it is safe to continue, and the
UAV changes to the Go on please state (transition c), allowing the other UAV to continue. On the
contrary, it calculates where to move aside, and switches to the corresponding state (transition d),
moving until it reaches the target location, and changing to the Go on please state (transition e),
as in the previous case. When the high-priority UAV moves beyond the area of conflict, the UAV
resumes the mission (transition f ) to exit the protocol, as the collision has been avoided.

2. Higher priority UAV. It also starts in the Normal f light state, and changes to the Stand still state
(transition a) when a collision risk is detected. Then, it waits (transition b) for the same timeout
until the lower priority UAV gives it way, resuming the mission (transition h), and changing to the
Passing by state. Afterward, during the overtaking process, the high-priority UAV approaches
the low-priority UAV. The overtaking ends when the former detects that the distance between
them is increasing. Immediately, it informs the low-priority UAV that it can continue with the
mission, and it simultaneously switches to the Normal f light state (transition i).
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We have implemented MBCAP-e so as to be more resilient to unexpected situations,
adding additional transitions. Thus, if an UAV is in a state different from Normal f light, and a
global timeout elapses, it is because of these two cases: (i) If the UAV is not receiving messages from
the UAV it is contending with, which means that there is no risk of collision, the mission is resumed
(transitions f , i, j, k); otherwise, (ii) the UAV lands (emergency state) if the other UAV is close enough
and the protocol has failed. The Passing by state is a special case where the UAV resumes the mission
instead of landing, because the low-priority UAV has moved aside, if necessary, and there is no
collision risk.

When a third UAV detects a risk of collision with one of the UAVs that are in the process of solving
a collision situation, the protocol causes it to stop (transition a), and to wait in the Stand still state
(transition b) until the previous risky situation is solved. Afterward, the protocol is applied between
the two UAVs in risk of collision.

4.3. Beacon Content

MBCAP is a protocol where the decisions take into consideration the state information sent by the
different UAVs using beacons. These beacons are periodically broadcasted using UDP datagrams.

The beacon transmitted in MBCAP-e (see Figure 3) includes the following fields:

• id. Unique identifier of the sender UAV;
• event. Number of risky situations previously solved. The low-priority UAV resumes the mission

when the high-priority UAV finishes the overtaking process and increases the value of this field;
• mode. Flight mode, equivalent to the current state in the finite state machine (see Figure 2);
• land. Whether the UAV started the landing phase. When an UAV reaches the end of the mission,

it lands. MBCAP-e is not used while the UAV is landing because there are conditions under the
landing procedure preventing it from being stopped;

• idAv. Identifier of the neighbor UAV with which the UAV is avoiding a collision, if applicable;
• pspeed. Planned ground speed for the mission (m/s);
• speed. Current ground speed (m/s);
• ∆t. Time elapsed from the time the beacon information was generated until it has been

transmitted; predicted future UAV locations are not recalculated for each beacon to avoid
consuming excessive resources;

• n. Number of predicted future locations included in the beacon;
• Predicted locations array. 3D Universal Transverse Mercator (UTM) coordinates for predicted

future locations.

id event mode idAv speed Δt n x1,y1,z1, ... xn,yn,zn
8 2 2 8 4 8 2 24 x n Bytes

land
2

pspeed
4

Figure 3. Periodic beacon content.

The array containing the future locations sent by each UAV in a beacon includes different
information depending on its state. In particular, it will include the following information:

• Moving at low speeds (<1 m/s). Only the current location is broadcasted;
• Go on please state. The current location and the location where the risk of collision was detected;
• Moving aside state. The current and the future locations towards the safe position the UAV is

moving to;
• Stand still state. The current location and the set of waypoints not yet visited, conforming the

information used to determine if the UAV should move aside to give way for a higher priority
UAV, as detailed in Section 4.5;

• Normal f light state. The current location and future locations, used to detect a risk of collision
with other UAVs.
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4.4. Collision Risk Detection Strategy

A significant difference between an UAV manually controlled and an UAV following a mission is
the fact that we can predict where the latter will be in the future, as it tries to follow a predefined path.

The strategy followed to detect a collision risk between two UAVs consists of predicting the future
locations of the UAV given its current location, the waypoints it is moving towards (the remaining
mission), and the current speed and acceleration. UAVs broadcast their future locations and
periodically compare the received locations with their own predicted locations. If they match in
both space and time, a collision risk is detected, and the UAVs stop. A match in space happens when
the horizontal distance between the two UAV predicted locations is lower than 20 m, and the vertical
distance is lower than 50 m. On the other hand, a match on time happens when the two predictions
are within the same half second.

We already made a preliminary study on this strategy in [5], where the default configuration
sends a beacon with an interval of 500 m/s between consecutive predicted locations. These locations
are projected over the theoretical path the UAV must follow, and they are calculated considering the
actual speed and acceleration provided by the flight controller. The acceleration is estimated to be
constant throughout the flight time included in the prediction. In addition, since we observed that the
calculated acceleration varies significantly, we decided to apply the following filter to the obtained
value, with α = 0.2 as determined in our previous study:

a =


5 if a > 5,

−5 if a < −5,

0 if |a| < 0.1,

α · ai − (1− α) · ai−1 , α ∈ ]0, 1] otherwise.

(1)

By default, the predicted future locations are only updated once per second, but beacons are sent
five times per second to make the protocol resilient to channel losses. The only field updated on a later
beacon based on the same information is the time elapsed since the beacon was generated (field ∆t,
see Section 4.3).

MBCAP-e includes several improvements over the work in [5]. The previous version of the
protocol (MBCAP-i) sent 50 predicted locations within each beacon, which corresponds to 25 s in the
future. This configuration is prone to stop the UAVs too soon when their speeds differ significantly.
In MBCAP-e, we just send the necessary amount of locations to detect a collision risk considering the
current speed of the UAV (see Equation (2)).

d = dGPS + dbrake + dreact + dcomm (2)

where:

dGPS = 2.5 m
dbrake = f (speed)
dreact = 1 s× speed
dcomm = 2 s× speed

We consider that there is a collision risk if the distance d between the UAV and the location where
a collision risk is detected is lower than the combination of: (i) The GPS error (dGPS), (ii) the distance
required to brake (dbrake), being that the latter depends on the current UAV speed (see Figure 4), (iii) the
distance traveled between two collision risk checks (dreact), and (iv) the distance traveled throughout a
predefined time when considering that some messages can be lost during transmission (dcomm).

Given the safety distance, we calculated the total prediction time to be included in beacons as the
safety distance divided by the current speed, and the number of locations to include in the beacon
as the total prediction time divided by the time elapsed between two predicted locations (500 m/s
in the default configuration). With the new configuration, the beacon only includes between 12 and
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17 predicted locations depending on the speed, which represents a maximum of 9 s in the future,
considerably lower than the original version of the protocol.
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Figure 4. Measured brake distance vs. current flight speed.

Figure 5a compares the distance between the UAVs when they stop due to a collision risk in the
original (MBCAP-i), and the enhanced version of the protocol (MBCAP-e), both flying at the same
speed. In the previous version, the UAVs stop too soon, causing the low-priority UAV to wait for a
long time period until the high-priority UAV overtakes it. Furthermore, the distance between them
increases as the speed goes down. On the other hand, with MBCAP-e, the distance is significantly
lower, and it increases with the speed. Figures 5b and 6 show similar results when the UAVs travel
at different speeds. As stated before, the original version of the protocol is prone to stop the UAVs
too soon when their speeds are quite different. With MBCAP-i, when the UAVs meet face-to-face,
this distance could be up to 380 m, and when one of them overtakes the other from behind, it could be
up to 260 m, making the process unnecessarily slow. With MBCAP-e, the distance becomes almost
independent of speed differences and is significantly lower.

In order to enhance the performance of the protocol, we have introduced additional improvements
regarding the information included in the beacon:

• Prediction window. As mentioned above, the number of future locations sent is reduced from
50 floats to a double number ranging from 12 to 17. This improvement reduces the size of the
beacon from 640 bytes to 328–448 bytes, and reduces the CPU overhead while checking if there
is a collision risk, thereby improving the overall quality of the prediction;

• Beacon renewal. If the protocol state of the UAV changes, we immediately update the predicted
locations in the beacon;

• Location accuracy. The predicted locations were originally sent as UTM coordinates in float
numbers, and now, in MBCAP-e, they are sent as double numbers instead, which increases the
precision when detecting possible collision risks;

• Braking awareness. Now, only the current location of the UAV is sent if it is braking
(a < −0.6 m/s2).

All of these changes have improved the overall quality of the prediction. To check the accuracy
improvement of the mechanism used to predict future locations, we performed experiments with
a single virtual multicopter, measuring the distance between the predicted locations advertised in
beacons and the actual UAV location at the predicted time. The UAV had a programmed speed
of 15 m/s, and followed a route composed by two perpendicular segments, thereby representing
very unfavourable conditions, since it is the maximum speed supported in mission-driven flights on
common multicopters, and also because it represents a very pronounced turn. Figure 7a compares
the maximum predicted location error for the original protocol and MBCAP-e, and Figure 7b shows
the mean error. It can be observed that, when the UAV accelerates at the beginning of the experiment,
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while it takes the curve (second 140), and when it brakes for landing, the prediction error is higher.
The error when flying at constant speeds remains mostly uniform. In all cases, the error in MBCAP-e
is significantly lower than in the original version of the protocol, with a uniform maximum error of
1 m when the UAV traverses each segment of the mission at a constant speed. Figure 8 shows the
average error for each of the predicted positions in the beacon along the whole experiment. We can see
that there are much fewer locations being sent than before, and that the prediction quality increases,
showing generally less error.
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Figure 5. Distance between UAVs after stopping, in a face-to-face meeting. (a) UAVs flying at the same
speed. (b) UAVs flying at different speeds.
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Figure 8. MBCAP-i vs. MBCAP-e: Average predicted location error for each of the predicted positions
on the beacon.

Additional enhancements have been included regarding the collision detection calculation.
These changes, detailed below, improve the success rate at avoiding collisions, and reduce the time
overhead introduced by the protocol (see Section 5):

• Risk detection during landing disabled. We disable the protocol when one of the involved
UAVs is landing because some landing procedures cannot be stopped, making it impossible to
apply the protocol;

• Risk detection over time. To detect if there is a collision risk we check if the predicted locations
match in space and time. We only check if they match on time if the speed of both UAVs is
greater than 1 m/s, and both beacons send more locations in addition to the current location of
the UAV. This is a more conservative approach, as we assume that a stopped, or almost stopped
UAV, will keep the location over time, and the approaching UAV will detect a risk when any of
the future locations that it reports in the beacon matches in space with the location of the UAV
that is standing still;

• Short-term position status. If the other UAV is in the Go on please or the Stand still state,
we only check if there is a collision risk with the current location of the UAV, ignoring the
remaining locations included in the beacon. The first case includes the location where the UAV
has detected the collision risk, and the second case includes a list of waypoints. None of these
locations represent a position where the UAV will be on the short term, and so checking the
existence of a possible collision risk at these locations would be inappropriate;

• Fewer waypoints per beacon in the Stand still state. In order to improve performance, we now
include only the waypoints needed to report the path the UAV will follow for the next 400 m,
a distance that is greater than the maximum distance between UAVs when they stop to avoid
the collision;

• Risk check timeout. This new timeout works as follows: Once a collision risk has been avoided,
we wait four seconds before attending any other UAV, informing that there is a collision risk
with the current UAV (field idAv of the beacon). This approach solves a race condition in the
protocol, due to its distributed nature, where the current UAV again detects a collision risk with
the other UAV because the latter keeps signaling that the previous collision situation is still in
the process of being avoided;

• Global timeout set to 120 s. If an UAV is in an state different from Normal f light for more
than 120 s, it must resume the mission if possible (see Section 4.2), or land due to a deadlock
condition associated to a protocol failure. This threshold is wide enough to consider the worst
case, where the high-priority UAV (planned speed 1 m/s) could need 92 s to overtake the other
UAV (planned speed 15 m/s). This situation could happen when the UAVs meet face-to-face.
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4.5. Collision Avoidance Strategy

The global idea behind the collision avoidance strategy is to define a right of way based on
priorities among the UAVs. For this purpose, we use a unique number (ID) based on the MAC address
of the wireless adapter used for multicopters to communicate with each other. We use a random
number provided by ArduSim when performing simulations. The UAV with a higher ID has right of
way over the UAV with a lower ID.

Once a collision risk has been detected, both UAVs stop in the air and start the collision avoidance
procedure. While they are in the Stand still state, they send their current location and a list with
the next waypoints of the mission they have to follow. Figure 9 shows how the low-priority UAV
determines, based on such beacon information, whether it should move aside to allow the other UAV to
pass by, which happens when it stands on the path the high-priority UAV must follow. This is achieved
by determining if the distance between its current location P(x0, y0) and each of the mission segments r
(delimited by P1(x1, y1) and P2(x2, y2)), defined based on the locations advertised by the high-priority
UAV, is higher than the threshold ds. Notice that ∆x and ∆y refer to the relative increments on each
axis according to the UTM coordinate system. Once the collision risk is detected, and to determine
whether it is necessary for the lower-priority UAV to move to some specific location, it will follow
these steps:

(1) Determining the intersection Pi(xi, yi) of line r (that contains the mission segment) with the
perpendicular line s passing on point P:

Pi = (xi, yi) = (
y0 − y1 +

∆x
∆y x0 +

∆y
∆x x1

∆y
∆x + ∆x

∆y

, y1 +
∆y
∆x

(xi − x1)) (3)

(2) If Pi is within the mission segment, calculate the distance d between P and Pi.
(3) It is only necessary to move aside from this mission segment if the intersection Pi is within the

mission segment, and d < ds. If d12 refers to the distance between P1 and P2, in other words, it is
the length of the segment, it is possible to calculate the coordinates for a safe location where to
move (Ps) follows:

Ps =

(xs1 , ys1) = (xi − ds
d12
|∆y|, y0 − ∆x

∆y (xs − x0)) if x0 ≤ xi,

(xs2 , ys2) = (xi +
ds
d12
|∆y|, y0 − ∆x

∆y (xs − x0)) otherwise.
(4)

Figure 9. Safe location analysis.
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If the low-priority UAV needs to move aside, it changes its location and gives way to the other
UAV. Otherwise, it directly gives way. Then, the high-priority UAV starts the overtaking process,
which finishes when (i) it goes beyond the collision risk region, and (ii) the distance to the low-priority
UAV is increasing, and greater than 20 m.

In order to improve the success ratio at avoiding collisions, and the overall performance of the
protocol, several changes have been introduced in the collision avoidance strategy:

• Reduced safety distance. In the original version of MBCAP, when the low-priority UAV needs
to move aside, it moves until the distance to the mission segment is of 20 m. We have rationalized
this distance as the sum of the probable GPS error of both UAVs, an error margin due to detected
errors of the flight controller while trying to take a curve at a high speed, and an additional error
margin due to slight movements of the UAV while standing still:

ds = 2× GPSerror + curveerror + positionerror (5)

where:

GPSerror = 2.5 m, curveerror = 1.5 m, positionerror = 1 m;

• Overtaking end behavior. In MBCAP-e, the overtaking process does not finish until the
high-priority UAV is at least 20 m (collision risk threshold) beyond the other UAV when the
distance is increasing. As the safety distance is now lower than 20 m, without this requirement
the UAV would immediately detect another collision risk with the low-priority UAV, and the
protocol would be triggered again;

• Waypoint behavior. When the high-priority UAV is close to a waypoint (see the UAV with
an arrow indicating its direction in Figure 10), it performs a curve to approach that waypoint,
but without actually reaching it, and without stopping at all. If a collision risk is detected,
both UAVs stop, but the previous approach to detect if the low-priority UAV is far enough
from the path the other UAV is about to follow is not good enough, as there is an offset
(dotted line) between the real path and the theoretical mission of the UAV. To consider this
special case, we calculated the function that represents the maximum distance dc between
the curve and the theoretical mission for different values of the planned speed and angle α

between consecutive segments of the mission (dc = f (s, α)). If the high-priority UAV is close to
a waypoint (dh < dcurve), the angle between segments of the mission is reduced so as to trace a

curve (α ∈ [−π

2
,

π

2
]); then, if the low-priority UAV is in the inner side of the corner defined by

the mission segments of the other UAV, and its distance dl to the mission segment is not safe
(dl < dc + ds), then we assume that there is a collision risk, and the UAV must move to the other
side of the mission segment to guarantee safety.

dl
dc

PwpPi
di-wp

dcurve

α 

dh

Figure 10. Safe location on curve analysis.
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5. Validation of the Proposed Solution

Having introduced the improved version of the MBCAP protocol, in this section we validate its
correctness. To this end, we run ArduSim with different roles (see Section 3) to perform three different
sets of experiments to analyze the behavior of the protocol under several circumstances: (i) UAVs
approaching following straight trajectories under the most common scenarios, and with the presence
of wind (ArduSim running as simulator), (ii) comparison of the results gathered in simulation with
experiments using real multicopters (ArduSim running as simulator and also deployed on real UAVs),
and (iii) analysis of the scalability and behavior of MBCAP when collision risks happen in scenarios
with a large number of UAVs (ArduSim running as simulator).

5.1. Metrics

For our tests, we refer to the low-priority UAV with the number 1, and to the high-priority UAV
with number 2, meaning that the UAV 1 is the one moving aside whenever necessary.

The main metric used to validate MBCAP-e is the success ratio at avoiding collisions between
UAVs, and the second metric is the flight time overhead introduced by the protocol while it is being
applied; in other words, it is the difference between the time needed by the UAV to finish the mission
when it has solved one or more collision risks, and the time needed to accomplish the mission when
no other UAVs are present.

5.2. Common Scenarios and Impact of the Wind

The first set of experiments analyzes the most common scenarios where two UAVs approach each
other following straight intersecting trajectories and considers different angles. Each of the following
experiments was repeated three times, considering the worst result in all cases:

• Perpendicular crossing (1). UAV 1 does not need to move aside;
• Standard takeover (2). Both UAVs follow a similar trajectory, although UAV 2 is approaching

UAV 1 from behind at a higher speed. UAV 1 must move aside so that UAV 2 can takeover;
• Face-to- f ace meeting (3). This situation also requires UAV 1 to move aside in order to allow UAV

2 to pass without taking any risk;
• Angled trajectories (4). UAV 1 does not need to move aside;
• Angled trajectories, opposite directions (5). Again, UAV 1 does not need to move aside;
• Supervision o f a crop f ield (6). It simulates a real situation where an UAV approaches another

UAV that is supervising a crop field sized 1500× 900 m, going through it in a zig-zag fashion
(see Figure 11), following lanes separated by 100 m. The two UAVs meet with perpendicular
trajectories when UAV 2 is on its third pass over the crop field, and UAV 1 does not need to
move aside.

Figure 11. Collision avoided on a crop field (scenario 6).
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During experiments, the flight speed was set to 10 m/s, except for scenario (2) where UAV 1 was
flying at a lower speed (5 m/s), so that UAV 2 was able to takeover. The collision was avoided in
all cases and the time overhead (∆t) introduced by the protocol is shown in Table 1, comparing the
original version of the protocol with MBCAP-e. In general, we found that the flight time overhead
introduced by MBCAP-i for UAV 1 ranged between 35 and 56 s, and for UAV 2 it ranged from 18 to
29 s. On the other hand, MBCAP-e introduced an overhead of 27 to 42 s, and 15 to 24 s, respectively.
The results show an overall gain for MBCAP-e in terms of flight time overhead, specially for UAV
1 (lower priority); such an improvement is mainly associated with having UAVs stop at a shorter
distance between them.

Table 1. MBCAP flight time overhead (min:s).

Scenario UAV
MBCAP-i MBCAP-e

on off ∆t on off ∆t

1 1 3:41 3:03 0:38 3:29 2:59 0:30
2 3:21 3:03 0:18 3:17 3:00 0:17

2 1 4:28 3:35 0:53 4:08 3:33 0:35
2 3:32 3:03 0:29 3:23 2:59 0:24

3 1 3:59 3:03 0:56 3:41 2:59 0:42
2 3:32 3:03 0:29 3:21 3:00 0:21

4 1 3:40 3:03 0:37 3:27 2:59 0:28
2 3:21 3:03 0:18 3:16 3:01 0:15

5 1 3:51 3:03 0:48 3:34 2:59 0:35
2 3:26 3:03 0:23 3:16 3:01 0:15

6 1 10:46 10:11 0:35 10:31 10:04 0:27
2 30:47 30:27 0:20 30:33 30:17 0:16

We also tested if the presence of wind affects the correctness and performance of the protocol.
Table 2 shows the results when introducing constant deterministic wind at a high speed (20 m/s) in
scenarios (1) and (2). We observed that the flight time increased with headwind, as the UAV was no
longer able to keep a ground speed of 10 m/s, and it had no significant variation when the UAV flew
at 5 m/s, or if the sidewind or tailwind were present. Moreover, the flight time overhead introduced
by MBCAP-i and MBCAP-e was not significantly affected by the wind speed.

Table 2. MBCAP flight time overhead (min:s) vs. wind.

Scenario Wind UAV MBCAP-i MBCAP-e

∆t on off ∆t

1 crosswind 1 0:38 3:29 3:00 0:29
headwind 2 0:18 3:26 3:11 0:15

1 crosswind 1 0:38 3:30 3:01 0:29
tailwind 2 0:18 3:15 2:58 0:17

2 headwind 1 0:53 4:09 3:34 0:35
headwind 2 0:29 3:32 3:08 0:24

2 tailwind 1 0:53 4:07 3:32 0:35
tailwind 2 0:29 3:22 2:58 0:24

Overall, we found that both versions of the protocol avoided the collision in all cases, with the
flight time overhead introduced by MBCAP-e being significantly lower than for the previous version.
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5.3. Simulation vs. Real Testbed for Common Scenarios

The second set of experiments analyzes the effectiveness and performance of MBCAP-e deployed
on real multicopters. To this end, we deployed ArduSim with MBCAP-e in a GRCQuad quadcopter
from Quaternium [24] (see Figure 12a), and in a customized hexacopter (see Figure 12b), both capable
of running ArduSim with the multicopter role in a Raspberry Pi 3B+ attached to them, and connected
to the telemetry port of the flight controller through a serial port link (detailed instructions are available
in the ArduSim repository [19]). Experiments were performed for scenarios 1 to 5 from the previous
section with similar missions, and then they were repeated without using MBCAP-e in order to
measure the flight time overhead. In the experiments, the hexacopter had higher priority than the
quadcopter. Finally, the experiments with and without MBCAP-e were repeated in simulation to
compare both results. As an example, Figure 13 depicts a Google Earth 3D view that shows the path
followed by the real multicopters with a red line, the path of the virtual high-priority UAV with a blue
line, and the route of the virtual low-priority UAV with a black line. The green arrows indicate the
direction the UAVs were moving towards before detecting the collision risk, also marked with a green
circle. We observed that the paths followed in simulation and in real experiments were quite similar.

(a) (b)
Figure 12. Multicopters used in real testbed. (a) Quadcopter, and (b) hexacopter.

Figure 13. Simulation vs. real experiment in a perpendicular crossing (scenario (1)).

The collisions were avoided in all cases, both in simulation and in real experiments. Table 3
shows that, in general, the flight time overhead remains similar in both environments, with the
exception of scenarios (1) and (5), where the presence of a gusty wind slightly increased the time
necessary to complete the process. A video showing these experiments is also available online
(https://youtu.be/xHnMuMOd9C0).

https://youtu.be/xHnMuMOd9C0
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Table 3. MBCAP-e flight time overhead (min:s). Simulation vs. real testbed.

Scenario UAV
Simulation Real testbed

on off ∆t on off ∆t

1 1: quadcopter 3:53 3:25 0:28 3:56 3:21 0:35
2: hexacopter 3:10 2:53 0:17 3:15 2:59 0:16

2 1: quadcopter 4:10 3:38 0:32 4:12 3:36 0:36
2: hexacopter 3:57 3:33 0:24 4:08 3:43 0:25

3 1: quadcopter 3:39 2:56 0:43 3:39 2:56 0:43
2: hexacopter 3:20 2:56 0:24 3:18 2:59 0:19

4 1: quadcopter 3:30 3:04 0:26 3:29 3:03 0:26
2: hexacopter 3:20 3:02 0:18 3:29 3:03 0:26

5 1: quadcopter 3:31 2:54 0:37 3:49 2:55 0:54
2: hexacopter 3:14 2:58 0:16 3:23 2:59 0:24

5.4. Scalability Analysis

In the previous sections we confirmed that MBCAP-e behaves better than its previous version.
The protocol always avoids collisions whenever two UAVs meet in the air following a straight line
from different directions, and the flight time overhead is bounded and low enough considering the
battery capacity of current multicopters. Moreover, we showed that MBCAP can easily be deployed
on real multicopters thanks to ArduSim’s capabilities. In this section, we analyze how the protocol
behaves when the risk of collision increases, and the UAVs trace curves along their path, by simulating
a large number of UAVs in a bounded area. A video that summarizes some of these experiments is
also available online (https://youtu.be/bEdcsPX1hXY).

5.4.1. Experimental Setup

MBCAP was tested on a squared area of 5 × 5 km, deploying 25, 50, 75, and 100 UAVs on
four different scenarios. Each scenario consists of a new random deployment location for each
UAV, and each UAV is assigned a new random mission based on the Gauss–Markov Mobility
pattern [25] included in OMNeT++ [23]. Each experiment was repeated three times, taking the mean
value. Moreover, the flight time and the traveled distance were measured with MBCAP-i, MBCAP-e,
and without applying the protocol at all, in order to determine its overhead and performance. When the
protocol is not used, the mean flight time was of 1 h and 4 min, the mean traveled distance per UAV
was of 36.9 km, and the mean number of collisions was of 6.5, 16.5, 45.5, and 84.25 when deploying
25, 50, 75, and 100 UAVs, respectively. Furthermore, we found that the selected scenario does not
significantly affect the experimental results.

We used Algorithm 1 to get a random location and heading for each UAV included in our
experiments. Initially, all the UAVs were randomly located inside the target area and then, if needed,
their initial location was adjusted so that the distance between them was greater than or equal to
the minimum distance specified for the experiment (100 m). The minimum distance between UAVs
had an upper limit to assure that they could fit inside the area (dmin < ∆x/

√
n, and dmin < ∆y/

√
n).

Figure 14a shows the results gathered for a scenario with 100 UAVs randomly deployed.
The main objective of this set of experiments was to force the UAVs to meet several times in the air,

not only when they were flying following a straight line, but also when they were performing a curve
trajectory close to a waypoint. To this end, we designed long experiments where the UAVs changed
their direction along almost one fourth of the mission length so as to create a highly unfavorable
scenario. We used Algorithm 2 (see Figure 15) to get all the waypoints of the mission, starting from
the initial location previously calculated. The length of each segment of the mission was randomly
obtained in a range that varied from 250 to 500 m. Moreover, the maximum length should be lower
than half the side of the area where UAVs were deployed so as to guarantee that the algorithm can

https://youtu.be/bEdcsPX1hXY
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go on. Global parameter α represents the linearity of the path followed by the UAVs, varying from 0
(Brownian movement) to 1 (linear motion). We set α to 0.75, which makes the mission significantly
linear (see Figure 14b), changing to a Brownian movement when the UAV was too close to the limits of
the area, with the aim of allowing it to bounce inward. Finally, we set the number of the mission’s
waypoints to 100, which is equivalent to 99 segments having a mean length of 375 m.

Algorithm 1: RANLOC Returns a Random Initial Location and a Random Heading for n UAVs.
Input: area = ∆x× ∆y = 5× 5 km, n UAVs (25, 50, 75, or 100), area center location, dmin = 100

minimum distance between UAVs in meters
Output: A = {(P1, β1), (P2, β2), ...(Pn, βn)}, where Pi are locations, and βi are headings

1 A = ∅
2 for i← 1 to n do
3 Pi = random location
4 βi = random heading
5 A = A ∪ (Pi, βi)

6 end
7 success = f alse
8 while !success do
9 success = true

10 for i← 1∧ success to n do
11 for j← i + 1∧ success to n do
12 if Pi distance to Pj < dmin then
13 Pi = random location
14 success = f alse
15 end
16 end
17 end
18 end
19 return A

(a) (b)
Figure 14. Experiment setup in an area of 5× 5 km. (a) 100 UAVs randomly deployed. (b) 25 random
Gauss–Markov missions.
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Algorithm 2: RANMISSION Gets a Random Mission for n UAVs.
Input: area = ∆x× ∆y = 5× 5 km, n UAVs (25, 50, 75, or 100), location of the area center,

[dmin, dmax] = [250, 500] mission segment length range in meters, mobility linearity of
α = 0.75, numWPs = 100 waypoints of the mission, A = {(P1, β1), (P2, β2), ...(Pn, βn)}
starting location and heading of the n UAVs

Output: M = {mission1, mission2, ...missionn}, where missioni is the sequence of waypoints
that comprises the mission of the UAV i.

1 M = ∅
2 for i← 1 to n do
3 Pprev = Pi
4 missioni1 = Pprev

5 βprev = βi
6 for j← 2 to numWPs do
7 α′ = α

8 γj = 2π (1− α′)

9 dj = random length ∈ [dmin, dmax]

10 β j = random heading ∈
[
βprev − γj/2, βprev + γj/2

]
11 Pj = Pprev + f (dj, β j)

12 if Pj /∈ area then
13 do
14 α′ = 0
15 γj = 2π (1− α′)

16 β j = random heading ∈
[
βprev − γj/2, βprev + γj/2

]
17 Pj = Pprev + f (dj, β j)

18 while Pj /∈ area
19 end
20 missionij = Pj

21 Pprev = Pj

22 βprev = β j

23 end
24 M = M ∪missioni

25 end
26 return M

dprev

Pprev 

Pj βj 

βprev 

γj 

γj/2 

dj

Figure 15. Gauss–Markov mobility model calculations.

5.4.2. Global Results

Table 4 compares the results gathered with MBCAP-i and with MBCAP-e, when varying the
number of UAVs in the area. We show the mean value for all the experiments, finding that MBCAP-e
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significantly outperformed MBCAP-i. We now proceed to analyze the performance metrics included
in Table 4.

Table 4. MBCAP-i vs. MBCAP-e: Collision avoidance performance (mean value by experiment).

MBCAP-i MBCAP-e

Number of UAVs 25 50 75 100 25 50 75 100

Collisions expected 6.5 16.5 45.5 84.25 6.5 16.5 45.5 84.25

Risks detected 28.17 132.92 338.75 659.42 23.08 105.08 249.08 438

Soft collisions (d < 5 m) 0.58 1.83 3.42 10.08 0.08 0.08 0.58 1.5

Hard collisions (d < 4 m) 0.58 1.67 2.58 8.42 0.08 0.08 0.58 1.08

Deadlocks avoided 0.08 1.67 4.33 10.83 0 0.33 0.25 0.58

Deadlock failures 0.33 3.42 8.75 21.42 0 0 0 0

• Collisions expected. Represents the mean number of collisions detected between UAVs in a
single experiment, when the protocol was not in use. This value allows us to determine the
success ratio of the protocol at detecting and avoiding collisions;

• Risks detected. Represents the mean number of times the collision-avoidance protocol was
enforced throughout the experiment. Figure 16a shows that the mean number of risky situations
detected along an experiment increased with the number of UAVs present in the area as O(n2),
and it also showed the precision increment in the collision detection strategy that was achieved
with MBCAP-e, where the latter was able to prevent UAVs from stopping unnecessarily in
many situations. On the other hand, Figure 16b shows that the mean number of dangerous
situations detected by an UAV in a single experiment increased with the number of UAVs as
O(n). Finally, Table 4 and Figure 17 show that, in general, the UAVs detected less risky situations
when adopting MBCAP-e, for any number of UAVs, e.g., 66.4% for 100 UAVs;

• Soft collisions (d < 5m). Mean number of possible collisions taking place during an experiment.
We considered that a simulated collision happened when two UAVs was located at a distance
lower than 5 m, meaning that a security cylinder of 5 m radius around each UAV. The typical GPS
error on multicopters was 2.5 m, and so we considered it a very unfavorable situation, occurring
in those cases where the GPS error bias of both UAVs was exactly the opposite. MBCAP-e highly
improved the collision avoidance ratio with respect to MBCAP-i, e.g., from 88.04% to 98.22%,
for the worst-case experiment (100 UAVs);

• Hard collisions (d < 4m). Represents the same metric, but with a more realistic threshold.
In this case, we only considered that a collision had happened if the UAVs were closer than 4 m.
As expected, the success ratio was higher (98.92%), but this was only detected in experiments
with 100 UAVs, as in other cases the number of collisions was too low to compare;

• Deadlocks avoided. Represents the number of situations where an UAV surpassed the global
timeout when waiting for other UAVs to solve another collision risk situation, but resumed its
mission (transitions f , i, j, or k in Figure 2). Somehow the protocol had failed and the UAV
waited an excessive amount of time because it was trying to solve a collision with an UAV that
had already moved out of the contending area; in this situation, the protocol was able to detect
that the UAV was no longer present and that the risk had gone, allowing the waiting UAV to
go on with its mission. With MBCAP-e, the UAVs in this situation were only in extremely rare
cases, i.e., 0.07% for 100 UAVs.

• Deadlock failures. Represents the number of situations where an UAV surpassed the global
timeout while waiting for other UAVs to solve another collision risk situation, as it was not safe
for it to go on with the mission (transition g in Figure 2). If a low-priority UAV was blocked in a
state for too long and the high-priority UAV was already present in the conflict area, it should
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not continue with the mission, because resuming it could cause a collision. MBCAP-i showed an
undesirable behavior, failing in many encounters, while with MBCAP-e no UAV needed to land.
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Figure 16. MBCAP-i vs. MBCAP-e: Average risks detected during an experiment. (a) Total risks vs.
number of UAVs: O(n2). (b) Risks by UAV vs. number of UAVs: O(n).

To gain further insight on the protocol performance, we analyzed in detail the few collisions
detected, finding that the collision risks between two UAVs were always avoided, meaning that
collisions always happened when three or more UAVs met in the same area, and at the same time;
in particular, problems only occurred when a third UAV stopped in the path that the high-priority
UAV was following while overtaking the low-priority UAV. We considered this case a possible but
improbable situation.

Regarding the behavior of the low-priority UAV, when it stops it can stand still while being
overtaken, or it could move aside to allow the other UAV to go on. With MBCAP-i, it needed to move
aside in 22.8% of the cases, while with MBCAP-e this occurred for 28.3% of the cases. This is due to
the Waypoint behavior improvement included in the collision avoidance strategy (see Section 4.5 and
Figure 10), as it forced the low-priority UAV to move further away from the path the high-priority
UAV had to follow.

Up to this point, we have compared the success ratio of MBCAP-i and MBCAP-e. Now we analyze
the flight time overhead of both versions of the protocol. Table 5 shows the mean flight time and path
length for an UAV using MBCAP-i, MBCAP-e, and without using the protocol. We can observe that,
with MBCAP-e, an UAV needs to travel for an additional 35 meters on average, and consumes a mean
extra time of 158 seconds at avoiding collisions, while with MBCAP-i it needs 51 extra meters and
306 extra seconds, respectively. The mean speed during the flight was also higher with MBCAP-e,
showing that MBCAP-e was significantly more efficient at avoiding collisions than the previous version.
Figure 18 shows the mean time overhead for an UAV during the whole experiment, given the number
of times that UAV needed to stop to avoid a collision. We can observe that the slope of the line is
nearly constant, independently of the number of UAVs included in the experiment. Also, we find that
its slope is lower with MBCAP-e, as the UAV requires less time to avoid each collision. We also find
that, the more UAVs present in the same experiment, the more collision risks per UAV were detected,
and that with MBCAP-i an UAV detected more collision risks than with MBCAP-e. Finally, Figure 19
shows the mean time needed for an UAV to avoid a single collision depending on the number of
UAVs flying around in the same experiment. It is clear that, with MBCAP-e, UAVs required less time
to avoid a collision, with a mean value lower than 25 s, while with the previous version it needed
more than 30 s.
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Table 5. MBCAP-i vs. MBCAP-e: Performance comparison (mean value by experiment).

Reference MBCAP-i MBCAP-e

Flight
time (s)

Min. 3618 3691 3688

Mean 3848 4154 4006

Max. 4111 5511 4457

Max. overhead - 1120 553

Flight
length (m)

Min. 34893 34916 34918

Mean 36898 36949 36933

Max. 39194 39258 39253

Max. overhead - 229 127

Mean speed (m/s) 9.59 8.9 9.22
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Figure 17. MBCAP-i vs. MBCAP-e: Distribution of UAVs given the risks detected by each one.
(a) Experiment with 25 UAVs. (b) Experiment with 50 UAVs. (c) Experiment with 75 UAVs.
(d) Experiment with 100 UAVs.
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Figure 18. MBCAP-i vs. MBCAP-e: Global time overhead given the risks detected by each UAV.
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Figure 19. MBCAP-i vs. MBCAP-e: Time overhead by risk detected vs. number of UAVs.

Overall, experiments have shown that MBCAP-e added a significant improvement over the earlier
version of this protocol when performing large scale simulations in a congested airspace. Furthermore,
we found that the time overhead introduced by the protocol remained quite low (mean overhead of
25 s per risky situation solved).

6. Conclusions and Future Work

As new mission-based applications for multicopters emerge, the number of UAVs flying
simultaneously also increases, and the risk of collision between them becomes higher. In addition,
there are currently no collision avoidance protocols developed for UAVs from different owners when
performing planned missions.

This work proposed MBCAP-e, an enhanced version of the MBCAP protocol that avoids collisions
between multirotor UAVs performing planned missions by relying on a cooperative sense and avoid
approach. Experimental results showed that MBCAP-e was able to avoid collisions between two
UAVs in all cases, and with a success ratio of 98.22% in highly crowded environments (100 UAVs
scenario). Experiments using real UAVs evidenced the resemblance between the simulated and
real-life performance of MBCAP-e. In addition, we found the flight time overhead introduced by the
protocol to be quite low and well bounded, considering the current lifespan of multicopter batteries.
Overall, the effectiveness, reliability, and efficiency of MBCAP-e proved to be considerably higher
when compared to its previous version (MBCAP-i). In fact, we found that collisions only took place
with MBCAP-e when multiple UAVs were implied in the risky situation, and one of them remained
stopped along the path of the high-priority UAV while taking over, a situation associated to the priority
strategy adopted.
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As future work, we plan to improve the priority strategy considering that different applications
may need different priority levels, and so different alternatives for handling priority assignment
will be studied. We will also study alternative collision avoidance strategies based on safety areas
and roundabout-like manoeuvres [26] to further enhance the effectiveness of MBCAP-e at avoiding
collisions, and to reduce the time overhead involved in collision avoidance manoeuvres.
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