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Abstract: Distributed estimation over sensor networks has attracted much attention due to its various
applications. The mean-square error (MSE) criterion is one of the most popular cost functions
used in distributed estimation, which achieves its optimality only under Gaussian noise. However,
impulsive noise also widely exists in real-world sensor networks. Thus, the distributed estimation
algorithm based on the minimum kernel risk-sensitive loss (MKRSL) criterion is proposed in this
paper to deal with non-Gaussian noise, particularly for impulsive noise. Furthermore, multiple
tasks estimation problems in sensor networks are considered. Differing from a conventional
single-task, the unknown parameters (tasks) can be different for different nodes in the multitask
problem. Another important issue we focus on is the impact of the task similarity among nodes on
multitask estimation performance. Besides, the performance of mean and mean square are analyzed
theoretically. Simulation results verify a superior performance of the proposed algorithm compared
with other related algorithms.

Keywords: distributed estimation; diffusion minimum kernel risk-sensitive loss; multitask; impulsive
noise; sensor networks

1. Introduction

Distributed data processing over sensor networks has emerged as an attractive and challenging
research area for various applications such as industrial automation, cognitive radios and
inference tasks [1–4]. Distributed estimation plays a significant role in distributed data processing,
which estimates some parameters of interest from noise measurements by exchanging information
with neighboring nodes. Most algorithms proposed for distributed estimation can be classified
into a consensus strategy [5–8], incremental strategy [9–11] and diffusion strategy [12–14]. In our
work, we center on a diffusion strategy, which is robust, fully distributed and flexible among these
strategies [15–19].

Diffusion strategies are particularly attractive schemes in distributed estimation, such as diffusion
Recursive Least Squares (RLS) [20,21], diffusion Least Mean Square (LMS) [13,14]. With the
mean-square error (MSE) criterion, these algorithms can accomplish a satisfying performance in
a Gaussian noise environment. However, their performance may deteriorate dramatically in the
presence of impulsive noise [22,23]. Some algorithms have been proposed to solve the issue,
including Diffusion least-mean power (D-LMP) and the Diffusion sign-error Least Mean Square
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(DSE-LMS) adaptive filtering algorithm [24,25]. To efficiently address the non-Gaussian noise,
the correntropy [26,27] was proposed, which is a higher order statistic and widely used in adaptive
filters. Moreover, the generalized maximum correntropy criterion (GMCC) algorithm and the minimum
kernel risk-sensitive loss (MKRSL) were proposed [28,29], which provide more general frameworks
and better performance. In this work, we consider the diffusion minimum kernel risk-sensitive loss
(D-MKRSL) algorithm for distributed estimation over multitask networks.

In previous works, diffusion strategies mainly focus on the single-task estimation problem where
an identical parameter vector is estimated by all the nodes [30]. On the contrary, many essential
applications are multitask-oriented, such as regression, web page categorization and target location
tracking. In the above situations, multiple optimum vectors are different but related, which are inferred
synchronously over the networks by all nodes in a collaborative manner. This type of problem is
known as a multitask problem. Generally, distributed estimation problems over multitask networks
can be roughly classified into two fields. In the first case, there is no knowledge about the correlation
of tasks. Meanwhile, which nodes share the same tasks is unknown and nodes cooperate according to
network topology [31–33]. In the second situation, it is assumed that nodes know which cluster they
belong to and the parameter vector in each cluster is the same. Exploiting the information about the
similarity of tasks, diffusion strategies for distributed estimation over multitask are obtained [34–37].
In our work, we focus on the second case.

Inspired by the adapt-then-combine (ATC) DLMS algorithm, we propose the diffusion MKRSL
algorithm over multitask networks. The algorithm can achieve desirable performance in both Gaussian
and impulsive noise environments. Additionally, the impact of task relatedness on estimation
performance is also studied. Moreover, the mean and mean square stability are analyzed theoretically.
Effectiveness and advantages of the proposed algorithm are verified by simulation results.

The remaining parts of the article are organized as follows: In Section 2, we briefly introduce
the data model of distributed estimation and propose the multitask Diffusion MKRSL algorithm.
In Section 3, the mean and mean square performance of the multitask D-MKRSL algorithm are
analyzed. Simulation results are demonstrated in Section 4. Finally, we draw conclusions in Section 5.

Notation: We use (.)T , E [.] and
⊗

to denote transposition, expectation and Kronecker product
operators, respectively. Im denotes an m×m identity matrix. 1 is an N × 1 all-unity vector. |.| is the
absolute value of a scalar.

2. Multitask Diffusion Estimation

2.1. Data Model

Let us consider a connected network with K nodes. Every node k ∈ {1, 2, ..., K} has access to
scalar random variables dk,i and a zero-mean M× 1 regression vector uk,i at every time instant i ≥ 0.
The data of node k is related via the linear regression model:

dk,i = uT
k,iw

0
k + nk,i (1)

where nk,i is the random measurement noise with zero-mean and variance σ2
n,k, which is independent

of regression vector uk,i. The goal of distributed estimation is to estimate an M× 1 deterministic but
unknown vector w0

k by exchanging and combining the data only from neighboring nodes, which
is regarded as single-task problem with w0

k = w0 for k = 1, 2, ..., K, and multitask problem with
w0

k 6= w0
l for k 6= l. It is assumed that there is no limit to how much information can be transmitted

among neighbors.

2.2. Diffusion MKRSL Algorithm

In many previous works, the diffusion distributed estimation algorithms are based on the MSE
criterion, which achieves desirable performance if the measurement noise is Gaussian, while their
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performance may deteriorate dramatically in an impulsive noise environment. To solve the parameter
estimation problem over multitask sensors networks, it becomes a significant focus of our interest to
design a novel algorithm that is robust to both Gaussian noises and impulsive noises.

The information theoretic learning (ITL) plays a significant role and provides a general framework
in distributed parameter estimation for non-Gaussian cases. The correntropy is a local statistical
similarity measure in ITL, which is defined by Reference [26]

V(X, Y) = E[kσ(X−Y)] =
∫

kσ(x− y)dFXY(x, y) (2)

where X, Y are two random variables, kσ(.) is a shift-invariant Mercer kernel and σ > 0 denotes the
kernel bandwidth. FXY(x, y) is the joint distribution function of (X, Y). In our work, we focus on the
Gaussian kernel, which takes the following form:

kσ(x− y) = exp

(
− (x− y)2

2σ2

)
(3)

The minimum kernel risk-sensitive loss (MKRSL) algorithm is derived by applying the KRSL to
develop a new adaptive filtering algorithm, which shows better convex properties than correntropic
loss on the error performance surface [29,38]. The KRSL between two random variables X and Y is
defined by

Lλ (X, Y) =
1
λ

E[exp(λ(1− kσ(X−Y)))]

=
1
λ

∫
exp(λ(1− kσ(X−Y)))dFXY(x, y)

(4)

where λ > 0 is the risk-sensitive parameter. Nevertheless, the exact joint distribution of (X, Y) is
usually unavailable in application scenarios. On the contrary, only a limited number of sample values
{x (i) , y (i)}L

i=1 are known. Therefore, the sample mean estimator of KRSL—called empirical KRSL—is
calculated by an average over samples:

L̂λ(X, Y) =
1

Lλ

L

∑
i=1

exp(λ(1− kσ(x(i)− y(i)))) (5)

Then, the KRSL cost function is derived as

JKRSL =
1

Lλ

L

∑
i=1

exp(λ(1− kσ(e(i)))) (6)

with e(i) = d(i)− uT
i w. The time average of the KRSL cost function in the above equation can be

replaced by the expectation

J
′
KRSL =

1
λ

E[exp(λ(1− kσ(e(i))))] (7)

Based on the KRSL cost function mention in the above Equation(7), the instantaneous cost function
of the KRSL algorithm is approximated as

J̃KRSL =
1
λ

exp(λ(1− kσ(e(i)))) (8)

For the distributed diffusion estimation problem, our goal is to seek the best w0
k by minimizing the

diffusion KRSL cost function at each node k by cooperating with all neighboring nodes. For each node
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k, Nk is the one-hop neighbor set and
{

cl,k
}

are non-negative real cooperative according to Metropolis
rule weights satisfying

cl,k =



1
max (nk,nl)

, if l ∈ Nk\k,

1− ∑
l∈Nk\k

cl,k, if l = k,

0. if l /∈ Nk,

(9)

where nk is the degree of node k. The real, non-negative combining coefficients cl,k satisfy the following
conditions: ∑

l∈Nk∪k
cl,k = 1 and cl,k = 0 i f l /∈ Nk, CI = I, ITC = IT , where C is an N × N matrix.

The KRSL local cost function at each node k can be formulated as

Jloc
k (w) = ∑

l∈Nk

cl,k J̃KRSL(el,i)

=
1
λ ∑

l∈Nk

cl,k exp(λ(1− kσ(el,i)))

=
1
λ ∑

l∈Nk

cl,k exp(λ(1− kσ(dl,i − uT
l,iw)))

(10)

Based on the KRSL local cost function, the derivative of (10) with respect to w can be derived as

∇Jloc
k (w) =

1
λ ∑

l∈Nk

cl,k
∂

∂w
exp(λ(1− kσ(el,i)))

= − 1
σ2 ∑

l∈Nk

cl,k exp(λ(1− kσ(el,i)))kσ(el,i)el,iu
T
l,i

(11)

At node k, the weight vector update equation based on a stochastic gradient for w0
k is obtained by

wk(i) = wk (i− 1)− µ∇Jloc
k (w)

= wk (i− 1) +
µ

σ2 ∑
l∈Nk

cl,k exp(λ(1− kσ(el,i)))kσ(el,i)el,iu
T
l,i

= wk (i− 1) + η ∑
l∈Nk

cl,k exp(λ(1− kσ(el,i)))kσ(el,i)el,iu
T
l,i

(12)

where η = µ

σ2 is step-size and wk(i) is estimator for w0
k at time index i. The above algorithm is a

new expression of the MKRSL algorithm. Inspired by the general framework for a diffusion-based
distributed estimation algorithm [13], an adapt-then-combine (ATC) strategy for a diffusion MKRSL
algorithm is proposed. The ATC scheme first updates the value of the estimator for each node with
the adaptive algorithm. Then, the intermediate estimates are fused from its neighbors for each node k.
The intermediate estimate at each node k is defined as:

ϕk (i− 1) = ∑
l∈Nk

βl,kwl (i− 1) (13)

The nodes update their intermediate estimates by

ϕk (i) = ϕk (i− 1) + η ∑
l∈Nk

cl,k exp(λ(1− kσ(el,i)))kσ(el,i)el,iu
T
l,i (14)
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ϕk (i− 1) is an intermediate estimate at time index i− 1 for node k. The non-negative real value βl,k is
a weight coefficient, which corresponds to the matrices B, especially B = I in the ATC scheme [12].
Therefore, we can obtain:

ϕk (i) = wk (i− 1) + η ∑
l∈Nk

cl,k exp(λ(1− kσ(el,i)))kσ(el,i)el,iu
T
l,i (15)

In the above Equation (15), the task relatedness among nodes is ignored, which is called
non-cooperative diffusion MKRSL in this article.

However, multitask estimation is an attracting filed in practical applications. Nodes are grouped
into some clusters and each cluster has an identical task in clustered multi-task networks. Furthermore,
utilizing the relatedness of tasks, the performance of distributed estimation can be improved.
The Equation (15) is adjusted for multitask estimation:

ϕk (i) = wk (i− 1) + η ∑
l∈Nk∩c(k)

cl,k exp(λ(1− kσ(el,i)))kσ(el,i)el,iu
T
l,i + τ ∑

l∈Nk\c(k)
ρkl (wl (i)−wk (i))

(16)
c (k) is the cluster of node k, with the cluster of node k non-negative strength parameter τ, weights ρkl
and η(i)= exp(λ(1− kσ(ei)))kσ(ei). The notation Nk ∩ c(k) is the set of neighboring nodes k and in the
same cluster as k. On the contrary, Nk\c(k) denotes the set of neighboring nodes of k that are not in the
same cluster as k. The Equations (15) and (16) are defined as the increment step. The combination step
can then be derived as

wk (i) = ∑
l∈Nk

cl,k ϕl (i) (17)

The step-size η(i) is a function of e(i) and the curves with different values of λ (where σ = η = 2.0)
and σ (where λ = η = 2.0) is depicted in Figure 1.
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Figure 1. Curves of η(i) as a function of e(i) (a)different values of λ(σ = η = 2.0) (b)different values of
σ(λ = η = 2.0).

It is shown that the step-size η(i) will approach zero as |e(i)| → ∞ for different values of λ.
Therefore, the MKRSL algorithm maintains the robustness to outliers, such as impulsive noise.
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For a better understanding, the Multitask Diffusion MKRSL algorithm is summarized in
Algorithm 1:

Algorithm 1: Multitask Diffusion MKRSL Algorithm

Input: dk,i, uT
k,i, η, τ, and

{
cl,k
}

satisfying (10)
Initialization: Start with

{
wl,−1 = 0

}
for all l.

for i = 1 : T
for each node k:
Adaptation

ϕk (i) = wk (i− 1) + η ∑
l∈Nk∩c(k)

cl,k exp(λ(1− kσ(el,i)))kσ(el,i)el,iuT
l,i

+τ ∑
l∈Nk\c(k)

ρkl (wl (i)−wk (i))

Communication
Transmit the intermediate ϕk (i) to all neighbors in Nk
Combination

wk (i) = ∑
l∈Nk

cl,k ϕl (i)

end for

3. Performance Analysis

The multitask D-MKRSL algorithms are evaluated theoretically under model (1) in this section.
In the following, some common assumptions are adopted for tractable analysis [39,40].

(1) The regression vector uk,i is independently and identically distributed (i.i.d.) and

E
[
uk,iuT

k,i

]
= Ru,k.

(2) For each node k at time index i, the input noise nk (i) is independent of uk,i and is a mixture
signal of zero mean Gaussian, we have E[nk,i] = 0.

(3) The step-size η is small enough, so the squared value can be negligible.
Then, the estimate-error vectors are defined as follows:

w̃k,i = w0
k −wk,i (18)

and
ϕ̃k,i = w0

k − ϕk,i (19)

Furthermore, the global quantities are defined to covert the local variables to global ones:

K=blockdiag {η IM, ..., η IM} (20)

X=blockdiag {τ IM, ..., τ IM} (21)

w̃i = col {w̃1,i, ..., w̃K,i} (22)

wi = col {w1,i, ..., wK,i} (23)

w0
k = col

{
w0

1, ..., w0
K

}
(24)

3.1. Mean Performance

We consider the gradient error caused by replacing the cost function of KRSL with instantaneous
values. The gradient error of the intermediate estimate at time i and each node k is defined as follows:

sk(wk,i−1) = f̂k(wk,i−1)− fk(wk,i−1) (25)
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where f̂k(wk,i−1) = 1
σ2 exp(λ(1− kσ(ek,i−1)))kσ(ek,i−1)ek,i−1uT

k,i−1 and fk(wk,i−1) = 1
σ2 E[exp(λ(1−

kσ(ek,i−1)))kσ(ek,i−1)ek,i−1uT
k,i−1]

The update equation of the intermediate estimate can be rewritten as

ϕk,i = wk,i−1 + µ (sk(wk,i−1) + fk(wk,i−1)) (26)

fk(wk,i−1) is twice continuous differentiable in a neighborhood of a line segment between points
w0

k and wk−1. Thus, based on the Theorem 1.2.1 in Reference [41], we have

fk(wk,i−1) = fk(w
0
k)−

 1∫
0

Hk

(
w0

k − tw̃k,i−1

)
dt

 w̃k,i−1 (27)

where Hk(w) is the Hessian matrix of fk(wk,i−1). w̃k,i−1 = w0
k −wk,i−1 is the weight error vector for

node k. The unknown vector w0
k is the real-value that we want to estimate, so fk(w0

k) is equal to zero.
The estimate of each node converges to the vicinity of the unknown vector w0

k . Thus, w̃k,i is small
enough such that it is negligible, yielding

fk(wk,i−1) ≈ −

 1∫
0

Hk

(
w0

k

)
dt

 w̃k,i−1

= −Hk(w
0
k)w̃k,i−1

= −βRu,kw̃k,i−1

(28)

where Ru,k=E
[
uk,iuT

k,i

]
and β is a constant.

So, the approximate value of the gradient error at the value of w0
k is

sk(wk,i−1) ≈ sk(w
0
k)

= f̂k(w
0
k)− fk(w

0
k)

=
1
σ2 exp(λ(1− kσ(ek,i−1)))kσ(ek,i−1)ek,i−1uT

k,i−1

(29)

Substituting (28) and (29) into (26) and adjusting for multitask estimation, we can get the intermediate
estimate

ϕk,i = wk,i−1 + µ(sk(w
0
k)− Hk

(
w0

k

)
w̃k,i−1) + τQ

(
w̃k,i−1 + w0

k

)
(30)

where
Q=IMN − P⊗ IM (31)

P is the matrix with (k, l)-th entry ρkl . Substituting (30) into (17), we can get the update equation of
wk (i) as follows

wk (i) = ∑
l∈Nk

cl,k[wk,i−1+µ(sk(w
0
k)− Hk

(
w0

k

)
w̃k,i−1)+τQ

(
w̃k,i−1 + w0

k

)
] (32)

Define global quantity H = diag
{

H1
(
w0

1
)

, ..., Hk
(
w0

N
)}

and rewrite (32) as

wi = C
(

wi−1 + Ksi −KHw̃i−1+XQw̃i−1 + XQw0
)

(33)

Noting that Cw0 = w0, subtracting both sides of (33) from w0, the global vector is obtained:

w̃i−1 = C (IMN −KH + XQ) w̃i−1 + CKsi + CXQw0 (34)
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Calculating the expectation of (34) leads to

E [w̃i−1] = C (IMN −KH + XQ)E [w̃i−1] + CK E [si] + CXQw0 (35)

where E [si]=col
{

E[s1(w0
1), ..., sN(w0

N)]
}
= 0. Based on Lemma 1 of [13], the matrix IMN −KH + X

should be stable to guarantee mean stability. There it holds that

|λmax (IMN −KH + XQ)| < 1 (36)

λmax is the largest eigenvalue of matrix. Thus, a sufficient condition for maintaining the stability of the
algorithm is:

0 < η <
2

βλmax (Ru,k) + 2τ
(37)

3.2. Mean-Square Performance

In this section, we mainly focus on the mean-square performance of the proposed algorithm.
Computing the weight norm of (34) and calculating the expectations, we can obtain

E
[
‖w̃i‖2

Σ

]
= E

[
‖w̃i−1‖2

Γ

]
+E[sT

i KCTΣCKsi]+ 2
(

XQw0
)T

ΣC (IMN −KH + XQ)E[w̃i−1]+CXQw0

(38)
where

Γ = (IMN −KH + XQ)CTΣC (IMN −KH + XQ) (39)

and Σ is an Hermitian non-negative-definite matrix. w̃i is dependent of Γ with Assumptions 1 and 2.
Therefore, we have:

E
[
‖w̃i−1‖2

Γ

]
= E

[
‖w̃i−1‖2

E[Γ]

]
(40)

Let
γ=vec {E [Γ]} (41)

and
σ = vec {Σ} (42)

where vec(.) is the transpose of the vectorization of a matrix. The Equation (40) can be rewritten to
follow equation with (41), (42):

E
[
‖w̃i‖2

σ

]
= E

[
‖w̃i−1‖2

γ

]
+ E[sT

i KCTΣCKsi] + 2
(
XQw0)T

ΣC (IMN −KH + XQ)E[w̃i−1] + CXQw0 (43)

The vectorization operator denoted by Reference [42] is:

vec {ABC} =
(

CT ⊗ A
)

vec {B} (44)

Taking expectation and vectorization operations with (38), (41), (42), we have

γ = δσ (45)

where
δ = E [(IMN −KH + XQ)⊗ (IMN −KH + XQ)]Z (46)

Z = E
[
CT ⊗ CT

]
(47)

Based on the relationship of the matrix trace and the vectorization operator [42], we have

tr
{

ATB
}
= vecT {B} vec {A} (48)
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Σ is symmetric and deterministic, and we obtain

E[sT
i KCTΣCKsi]=vecT {V}Zσ (49)

where V=KE
[
sisT

i
]

K. According to A.1 and A.2, V can be evaluated as

V = blockdiag
{

η2s2
1

(
w0

1

)
, ..., η2s2

K

(
w0

K

)}
(50)

Substitution of (45) and (50) into (43) has

E
[
‖w̃i‖2

σ

]
= E

[
‖w̃i−1‖2

δσ

]
+ vec {V}Zσ+2

(
XQw0

)T
ΣC (IMN −KH + XQ)E[w̃i−1] + CXQw0

(51)
the recursion of Equation (51) is stable and convergent if the matrix δ is stable. δ can be
approximated as

δ ≈ [(IMN −KH + XQ)⊗ (IMN −KH + XQ)]Z (52)

We know that all the entries of Z are non-negative and all its columns sum up to unity. From the
above equation, the stability of δ is in accordance with the stability of IMN −KH + XQ. Therefore,
choosing the step-size lined with the Equation (37) can keep the proposed algorithm stable in the
mean-square sense.

4. Simulation

In this section, we validate the performance of the proposed algorithm over multitask sensor
networks in two scenarios: a Gaussian environment and an impulsive noise environment. The noise
is assumed to be generated by a Gaussian mixture distribution, which is commonly used in signal
processing [43,44]:

pni = (1− vi)N(0, σ2
1 ) + vi N(0, σ2

2 ) (53)

where N(0, σ2
i )(i = 1, 2) is the Gaussian distribution with zero-mean and variance σ2

i . And σ2
2 is set to

much larger than σ2
1 , which can generate the impulsive noise.

More frequent impulses are achieved with an increase of vi, especially{
if νi = 0→ Gaussian

if νi 6= 0→ Impulsive.
(54)

Increasing νi leads to more frequent impulses.
We consider a fully connected sensor network with 15 nodes. The network topology and cluster

structures are demonstrated in Figure 2. From the network topology, we can easily find that nodes 1 to
6 belong to the first cluster. Meanwhile, nodes 7 to 10 compose the second cluster and nodes 11 to 15
are in the third cluster.
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Figure 2. Network topology.

Input variances and noise variances based on Assumptions 1 and 2 are depicted in Figure 3.
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Figure 3. The variances of the input signal (a) and noise (b).

Scenario 1 (Gaussian noises Environment): As shown in Figure 3, the desired signal is a random
process with a zero-mean Gaussian (i.i.d.) noise signal. In the experiment, system parameters are
set with λ = 2, σ = 1.5 and the step-size is set with η = 0.02. τ is a regularization parameter, which
promotes similarities between the tasks of the neighboring cluster and is chosen τ = 0.1. The learning
curve of the mean square deviation(MSD) is defined as

MSD =
1
K

K

∑
k=1

∥∥∥w0
k − wk,i

∥∥∥2

2
(55)

which is adopted for performance comparison. d(i) is the average value of dk,i for all nodes k at
time i in Figure 4a. We compare some related algorithms over multitask network, such as diffusion
least mean p-power (D-LMP) [21], diffusion generalized maximum correntropy criterion algorithm
(D-GMCC) [16], diffusion sign-error LMS (DSE-LMS) [22], D-LMS [12] and the proposed d-MKRSL
algorithm in Figure 4b. The step-sizes of all algorithms are chosen after many experiments to ensure
the same convergence speed, and other parameters for each algorithm are experimentally selected to
achieve a desirable performance. From the above figure, we can conclude that the D-MKRSL algorithm
outperforms other related algorithms in the Gaussian noise environment.
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Figure 4. Gaussian noise environment (a) desired signal (b) transient network MSD(dB).

Scenario 2 (Impulsive noise Environment): The impulsive noise model (54) is adopted to depict
the distribution of impulsive interference in the experiment. We now test the influence of the impulsive
interference on the performance of the algorithms mentioned above. In Figures 5a and 6a, the desired
signals are plotted with vi = 0.05, 0.03 impulsive noise. The corresponding performance of the
algorithms in the impulsive noise environment is plotted in Figures 5b and 6b. The value of the
parameters α and λ for D-GMCC are selected to achieve the best performance in both the Gaussian
and impulsive noise environments. We can observe that the proposed D-MKRSL algorithm is robust
and also shows superior performance compared with other related algorithms in the impulsive
noise environment.
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Figure 5. Impulsive interference environment of vi = 0.05 (a) desired signal (b) transient
network MSD(dB).
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Figure 6. Impulsive interference environment of vi = 0.03 (a) desired signal (b) transient
network MSD(dB).

Furthermore, we consider the performance of the algorithm in a nonstationary scenario and the
unknown vector w0

k is assumed to change at time 1000. From the convergence curves in Figure 7,
it can be easily observed that the proposed algorithm maintains a desirable performance even in the
presence of sudden changes of an unknown vector.
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Figure 7. MSD learning curves in a non-stationary environment (a) Gaussian environment (b)
Impulsive Interference.

Another important aspect is how the correlation of tasks influence the estimation performance.
First, we investigate whether the proposed algorithm can promote performance by utilizing the
relatedness of tasks compared with non-cooperative strategy. Figure 8 compares the D-MKRSL
algorithm with a non-cooperative strategy over a multitask network at identical relatedness of tasks.
It is clear that utilizing the relatedness of tasks is beneficial to improve the performance of estimation.
Next, the impact of the similarity of tasks on performance is studied. According to Reference [35],
the optimum mean vector is assumed to uniformly distribute on a circle of radius r centered at w0

k .
The bigger the value of r is, the smaller the correlation of the tasks will be. Optimum parameter vectors
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over the multitask network will be different but related based on the model. The multitask estimation
model can be expressed as:

w0
k = w0 + r

(
cos θk
sin θk

)
θk = 2π (k− 1) /N + π/8

(56)

Figure 9 demonstrates that the performance of the algorithms will be improved with the
increasing similarity.
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Figure 8. Network MSD comparison over multitask environment.
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Figure 9. Network MSD comparison with different r value.

5. Conclusions

In this work, we consider the problem of distributed estimation over multitask sensor networks.
Then, the D-MKRSL algorithm is proposed and can achieve a desirable performance. Through
theoretical analysis, a sufficient condition for ensuring the stability of the D-MKRSL algorithm is
obtained. Compared with related algorithms, the simulation results show that the D-MKRSL algorithm
has better performance in both Gaussian and impulsive noise environments. Furthermore, we uncover
the relationship between the relatedness of tasks and estimation performance. It is demonstrated that
the performance is improved with a higher correlation among tasks by cooperation strategy.
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