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Abstract: In this paper, we present Low-Bandwidth Distributed Applications Framework (LDAF)—an
application-aware gateway for communication-constrained Internet of things (IoT) devices. A modular
approach facilitates connecting to existing cloud backend servers and managing message formats
and APIs’ native application logic to meet the communication constraints of resource-limited end
devices. We investigated options for positioning the LDAF server in fog computing architectures.
We demonstrated the approach in three use cases: (i) a simple domain name system (DNS) query
from the device to a DNS server, (ii) a complex interaction of a blockchain—based IoT device with
a blockchain network, and (iii) difference based patching of binary (system) files at the IoT end devices.
In a blockchain smart meter use case we effectively enabled decentralized applications (DApp) for
devices that without our solution could not participate in a blockchain network. Employing the more
efficient binary content encoding, we reduced the periodic traffic from 16 kB/s to ~1.1 kB/s, i.e., 7% of
the initial traffic. With additional optimization of the application protocol in the gateway and message
filtering, the periodic traffic was reduced to ~1% of the initial traffic, without any tradeoffs in the
application’s functionality or security. Using a function of binary difference we managed to reduce
the size of the communication traffic to the end device, at least when the binary patch was smaller
than the patching file.
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1. Introduction

The Internet of things (IoT) has become an enabling infrastructure for a wide range of novel
applications. Traditional IoT architectures are cloud-centric [1], where a mash up of cloud services
provides the backend for the storage, analysis, visualization, and application of IoT data. This data is
collected from several end devices placed in common things or objects, over wireless, mobile, or fixed
networks. Emerging approaches in IoT shift the centralized cloud—based architecture towards fog
architecture [2], where a part of data storage and processing is moved from the cloud closer to the
network’s edge. This reduces application-level latency, scales better to immense amounts of IoT
devices, and reduces the core network’s traffic loads. Both cloud- and fog—based approaches rely
extensively on application programming interfaces (API) to access data and services at various points
within the architecture.

IoT end devices are frequently limited in their computational and storage resources or
communication bandwidth, and operate under limited available energy. It is therefore unsurprising
that there is a set of platforms, protocols, and messaging formats, as well as networks to support these
stringent requirements. They range from efficient embedded IoT platforms [3] over adapted application
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layer protocols for IoT messaging (e.g., Constrained Application Protocol (CoAP) [4] and Message
Queuing Telemetry Transport (MQTT) [5]), to dedicated low power personal areas (e.g., Bluetooth Low
Energy (BLE) [6] and IEEE 802.15.4 [7]), low-power long-range networks (e.g., Low Power, Wide Area
networking protocol (LoRaWAN) [8] and Narrow-band Internet of Things (NB-IoT) [9]), and sensor
and peer-aware (e.g., Wi-Fi Direct [10] and IEEE 802.15.8 [11]) communication networks.

Gateways have long been an essential part of heterogeneous and distributed information, service
and communication infrastructures (e.g., signaling and media gateways in VoIP systems, gateway
GPRS support node (GGSN) in 2/3G, serving (SGW) and packet data network (PGW) gateways in
EPC, etc.). A communication gateway in IoT makes possible the interoperability of heterogeneous
communication systems, but can also provide additional communication services, as for example
security. An application gateway is finely tuned based on the given application’s requirements. If it
is data driven, gateways focus on message and protocol adaptations and optimizations. They can,
e.g., provide API harmonization. Application-driven ones assist mediating services [12] and adapt
application protocol operations. In the field of IoT, there have been examples of application-specific
gateways reported for smart homes, e-health, e-mobility, and including gateways in blockchain—based
IoT infrastructures [13]. Gateways may not be independent entities: they can be part of a broader
middleware solution. Fog computing led to additional importance for gateways and growth in their
functionality. In fog—based IoT solutions, they bring a part of the initial analytics close to the data
source and thus facilitate the decentralization of application deployment. Such gateways are no
longer just communication and application mediators, but now contribute to the scalability, security,
programmability, and real-time features of fog systems [14].

Fog and related mobile edge computing provide architectural approaches that are complementary
to traditional cloud-centric systems [15]. Thus computing, storage, networking, and control in modern
information and communication systems can be allocated at various points in the system to meet
the requirements of emerging applications and challenges imposed by the IoT [14]. These can be
stringent latency requirements, network bandwidth constraints, and resource constraints of end
devices, intermittent connectivity, or security. We are still searching for the best architectural principles
to support IoT by fog [16]. A strong and solid architectural foundation must consider application
requirements and be able to balance between these requirements and networking and computing
resources. These challenges are additionally pointed out with novel combinations of technologies,
such as the IoT supported by the blockchain [17].

Improvements that IoT and blockchain integration can result in decentralization and scalability;
device management and authorization; trustworthiness in data; trusted sharing service; data
monetization; autonomous machine-to-machine transactions; including smart contract—based
decentralized applications; and micropayments. Application opportunities are being sought in
areas as smart cities, smart homes, mobility, health, logistic, and food traceability [18]. There are still
a great number of open issues that have to be studied in order to seamlessly use IoT and blockchain
technologies together. Khan et al. [19] point out several challenges and future research directions for
effective implementation of security for IoT devices, including BC. These include resource limitations,
device heterogeneity, interoperability of (security) protocols, and scalability and latency of BC networks.

The research in [18] defined three types of BC IoT interactions. In the IoT–IoT approach only a part
of IoT data is stored in the BC. End devices predominantly communicate directly (e.g., over a sensor
or peer-aware network) without using the BC. This approach has lowest latency. In IoT–BC all
interactions go through BC. This ensures that all interactions are traceable, but increases the bandwidth
and data in the chain. In hybrid design only a part of the interactions take place in the BC and
the rest are directly shared between the IoT devices. The hybrid operation leverages the benefits
of BC and low-latency interactions. The fog principle in the hybrid approach can incorporate more
powerful devices such as gateways, which can then be used as BC components. This enables the
secure participation of constrained devices in blockchain communications. In the same study they
presented a resource estimation for various BC clients, including Ethereum, running in RPi v3, but
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no variations in end device architecture or the impact of communication adaptation were analyzed.
Running a light or full blockchain node in a constrained end device is possible, but permanent
connectivity beyond low-bandwidth is required. We have various other, more efficient implementation
options for the device-to-BC connection, based on remote and trusted BC nodes: (i) we can rely on
“of-the-shelf” BC node API. This does not facilitate any application-awareness and adaptation and thus
impedes further communication traffic reduction. The second option is (ii) proprietary customization
of BC nodes, their APIs, and device communications. Beside the large efforts to maintain such a
solution, the legacy approach increases heterogeneity and thus leads to vertical silos, and reduces the
interoperability and security of the solutions. BC services can be provided via (iii) cloud APIs, for
example, in Hyperledger [20]. This reduces the decentralization of the solution. Our proposed option
is (iv) applying application-aware gateways to facilitate BC services for the end devices. Unlike in
(iii) the end device can execute BC operations if required (e.g., create transactions, sign transactions,
and receive event notifications) or delegate these functions to the gateway. Gateways can be thus
fog elements that are located at the edge of the network. A context and application-aware fog smart
gateway, and its role in fog computing and cloud of things, is presented in [21], but not specifically
for blockchain. In [22] a LoRA implementation of BC aware GW was presented, but no real traffic
measurements are given.

Our study was initially motivated by our previous work with blockchain IoT systems. We were
focusing on the blockchain IoT client architectures [23] and the challenge of connecting communication
constrained IoT devices to the Ethereum blockchain network. To our knowledge, there has been no
study of application-aware gateways for IoT and blockchain integration with measurements of real
traffic in communication of BC—enabled IoT devices. For the research in this paper we designed
an application-aware gateway for constrained devices and implemented its server and client part in
NodeJS [24]. We soon realized that such a gateway could support other application examples apart from
the blockchain. Its design therefore enables efficient extensions with other application-aware services.
We tested the gateway in various application examples. Using it leads to a significant reduction in the
required communication traffic to/from the IoT device. It does not aim to reduce latency. Blockchain
operation is not real-time and major delays appear there because of the nature of BC transaction
validation and not because of the communication or gateway processing delay. For ultralow latency
applications, a hybrid approach for BC IoT interactions can be taken [18]. In the blockchain-related
use case we effectively enabled decentralized applications (DApp) for the devices that without our
solution could not participate in a blockchain network. We adapted the client architecture and applied
advanced traffic reduction functions for an Ethereum—based smart-grid switch and counter [25].
Using a binary difference service we managed to reduce the size of the communication traffic to the
end device as long as the binary patch was smaller than the patching file.

Beside the evident impact in reduction of communication traffic, the proposed solution maintains
high flexibility and can be easily adapted to, e.g., changes in remote APIs, or can accommodate
other/new communication and application protocols.

In our research we performed the following.

• Designed and implemented an application-aware gateway, LDAF, which can be a part of a fog
computing architecture. It enables fog data services for reduction of communication traffic of
bandwidth constrained IoT devices to connect them to arbitrary cloud APIs.

• We set-up and executed a decentralized application use case with blockchain-enabled IoT devices,
where the LDAF gateway was applied and adapted to the application’s operation, to reduce the
size and number of messages needed for the IoT application.

• For blockchain-enabled IoT devices we measured that the binary encoding of message content
reduced the periodic traffic from 16 kB/s to ~1.1 kB/s, i.e., 7% of the initial traffic. Additional
optimization of the application protocol in the gateway and message filtering further reduced the
periodic traffic to ~1% of the initial traffic, without any tradeoffs in the application’s functionality
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or security. In two other supporting use cases we demonstrated the possible applicability of LDAF
for other fog services.

In Section 2 we briefly present the adaptations of the communication networks and protocol
stacks in IoT systems. Section 3 elaborates the architecture and objectives of the LDAF framework and
Section 4 positions it in the modern fog architecture. In Section 5 we present three use cases where
LDAF was applied to optimize communication traffic of constrained IoT devices. Section 6 concludes
our research and highlights further research and application options.

2. Background

IoT device ecosystems impose changed and shifted priorities for end devices. IoT devices often
require long battery life, low deployment and maintenance costs, long operation lifetime, and careful
conservation of devices and network resources [26]. These affect the communication networks
and protocol stacks in IoT systems. For example, new low-power short (LP-PAN) and long-range
(LP-WAN) technologies were developed. Networks like Sigfox, LoRaWAN [8], or NB-IoT [9] are
especially dedicated to low bitrate and low power long-range connectivity, which was not achievable
in traditional mobile or wireless networks. New radio transmission schemes and physical channels
are applied. IoT devices can remain in sleep mode for the majority of their lifetimes to prolong
energy autonomy. These networks are being deployed around the globe and readily provide free
or commercial IoT communication services. Device connectivity can be provided with short-range
technologies, too. In this case devices connect to a gateway that has a persistent internet connection.
LP-PAN includes, e.g., Bluetooth (BT) [6,27] or IEEE 802.15.4 [7]. The latter specifies the physical
layer and media access control for low data-rate, low-power, and low-complexity, short-range radio
frequency transmissions in wireless personal area networks. It can be further complemented by
6LoWPAN [28], which defines a binding for the IPv6 WPANs. Additional advancements in wireless
networking can be found in peer-aware communications (PAC). IEEE 802.15.8 PAC [11] is WPAN
technology optimized for peer-to-peer and infrastructure-less communications with fully distributed
coordination. IEEE 802.15.8 PAC features include discovery for peer information without association,
a discovery signaling rate typically greater than 100 kb/s, detection of the number of devices in the
network, and scalable data transmission rates. Wi-Fi Peer-to-Peer v1.7 [10] is the specification for the
Wi-Fi Alliance Wi-Fi CERTIFIED Wi-Fi Direct® program, which allows Wi-Fi client devices to connect
directly with each other by setting up ad-hoc networks, without going through a wireless access point
or hotspot. In hybrid IoT–BC systems, PAC and Wi-Fi Direct can complement the IoT–BC interactions
where low-latency or lager peer communication bandwidth is required.

The IoT protocol stack demonstrates new or adapted transport and application protocols.
The TCP/IP header and protocol redundancy can become an issue if low-bandwidth communications
are sought. At the transport layer the simpler UDP can be applied instead of TCP. However, as it only
provides a best-effort transport service, an adapted security protocol DTLS was needed to operate
over UDP. DTLS [29] implements its own sequencing and simple packet retransmission, which would
otherwise be a part of the TCP. In an extreme case, IoT stack can renounce the TCP and IP and
apply optimized non-IP networking and transport solutions, as for example the non-IP data delivery
(NIDD) [30] over NB-IoT (a part of 3GPP Release 13 Features) or in device-to-gateway communication
through LoRaWAN MAC.

The application layers Constrained Application Protocol (CoAP) [4] and Message Queuing
Telemetry Transport (MQTT) [5] provide low(er) bitrate alternatives to the established HTTP(S) [31,32]
and WebSockets [33]. CoAP is a one-to-one request-response protocol for transferring state information
between client and server. It is a simpler alternative to HTTP, which results in simpler hardware
requirements for CoAP smart objects, as well as in the protocol’s lower communication overhead
and therefore of the resulting reduced power consumption [34]. MQTT is a publish-subscribe
protocol: a broker decides where to copy and route messages published by the clients. This enables a
many-to-many bus for live data communication. Clients mostly apply a TCP connection to the broker.
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MQTT is not optimized for low-bitrate communications; however, the MQTT for Sensor Networks
(MQTT-SN) extends the MQTT for low-power and low-cost devices. It does not require TCP/IP stack,
and can be alternatively used over UDP.

Apart from the aforementioned CoAP and MQTT, additional application-layer protocols strengthen
support for IoT devices [35]. The OMA LWM2M protocol [26], for example, introduces device
management functionality and transfer of service data from the network to devices over sensor or
cellular networks. It is based on CoAP and DTLS, but other connection bindings are supported, too.

Despite various adaptations of communication networks and protocol stacks for IoT, cloud-centric
IoT systems apply more common communication, transport, and application technologies to make
the cloud resources available to others. These cloud systems range from, e.g., IoT collection and
analysis platforms [36], public open-data resources [37], geolocation and maps [38], open weather
information [39], and similar sources. The technologies for cloud APIs are based on TCP/IP stack
with HTTP or WebSocket at the application layer. If structured data formats are applied for content
upload/download, these are commonly JSON or XML. We have three options for matching IoT
device-specific communications and message formats with those of the cloud backend:

(i) Support IoT specific protocols in cloud APIs: not likely, if the cloud service is externally
provided and the IoT solution developer therefore cannot affect the cloud API implementation
and functionality.

(ii) Develop a dedicated proxy function between the available API implementation and the one
appropriate for our IoT devices.

(iii) Apply a modular application gateway, as the LDAF presented in this paper, where common API
and device connectivity functions are readily available and where the developers can concentrate
on application-specific optimization of traffic volumes.

3. LDAF Background and Overview

The Low-bandwidth Distributed Application Framework (LDAF) [40] is comprised of a LDAF
server and corresponding client entities—Figure 1. A LDAF client runs on an end device, e.g.,
an (constrained) IoT device, and connects to the LDAF server via one of the available connection
mechanisms. At the moment WebSockets, HTTP, and The Things Network (TTN) [41] are implemented.
The LDAF server connects to arbitrary cloud APIs, e.g., cloud platforms for IoT, Google services,
Ethereum client API, etc., to enable the following.

• API aggregation: the LDAF server adapts to specific external API requirements (communication
protocols, message formats, and authentication) and adapts it to a common message exchange
between itself and the client.

• Efficient binary message serialization: the content of the messages between the client and the
server is binary encoded using Protocol buffers (ProtoBuf, PB) [42] or similar binary encoding
mechanism to reduce the message size. This is especially efficient compared to exchanging
structured text—based messages (e.g., JSON and XML).

• Application adaptation: server can adapt the application logic, e.g., to reduce the number of
messages passed to the client to further reduce the communication requirements. It can also
take over a part of a device’s application execution (heavy computations, hash calculations,
caching, etc.), and thus not only reduces the communication bitrate, but the processing and storage
requirements at the end device too. This allows for applications beyond simple aggregation
of APIs.

The LDAF framework is characterized by modular architecture, as depicted in Figure 1. It enables
the flexible addition of new connection mechanisms and new services. A service is a particular
mapping between an API, or APIs, and the clients that are communicating with these APIs through
the LDAF server. There can be an arbitrary number of services implemented in LDAF server.
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Figure 1. Overall architecture of low-bandwidth distributed application framework (LDAF): LDAF
Server, LDAF Clients, and external application programming interfaces (APIs).

Without LDAF the device would connect directly to the external API, and would therefore have to
comply with the protocols, syntax, semantics, and application logic imposed by the API. These might
not be well adapted to the device constraints.

3.1. LDAF Architecture

3.1.1. Messages

A LDAF message is comprised of a header and payload. As can be seen in Figure 2, the header
has two fields, namely Type and SequenceNumber. With default settings each field is 1 B long, but can
be reconfigured if more message types and longer sequences are required.
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Figure 2. LDAF message format.

A message sequence is required to associate the responses with the appropriate request. However,
it could be applied in the future to increase the reliability of message transfer at the application layer
(reordering message sequences, detecting message loss, ARQ). In push messages from the server to the
client the SequenceNumber is omitted because such a message is not a response to a specific request.

The message type determines which schema must be applied to decode the binary message
content. Both the message Type and the SequenceNumber are emitted to the available Services, so that
the corresponding Service decodes and processes the message.

There can be an arbitrary number of message types required by one Service. This would make
static type assignments inefficient; we therefore applied a dynamic assignment. The message type
is indicated by the value at the corresponding location in the Type parameter. The Type parameter
is interpreted by a service offset, which points to the first message type for each particular service.
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The following service offset points to the location after the last message type of the previous service.
The offsets of all services applied in a connection are specified in the service definition.

We thus minimized the data required for the appropriate type identification. For each message
we thus introduced 2 B of additional overhead and only 1 B for push messages. The remainder is the
payload. With 1 B for the Type field we can organize, e.g., 1 Service with up to 256 different messages
types or two Services, one with 20 and the other with up to 236 types. For the Ethereum—based
smart grid meter, for example, four types of messages are required: (i) a periodic block notification,
(ii) an event notification, (iii) a request, and (iv) a response for transaction verification.

LDAF messages are thus encoded in two substages. The first is the efficient binary serialization of
the message content (e.g., protocol buffers [42] and js-binary), and the second is building the message
header, which consists of SequenceNumber and Type, as depicted in Figure 2 and explained previously.
If required, other serialization methods can be included in the framework.

3.1.2. Connections

A LDAF connection determines how end devices connect to the LDAF server. There can be
various options implemented to meet the needs of the constrained devices. Current implementation
supports WebSockets (over TCP/IP), HTTP (over TCP/IP) and integration with the LoRaWAN and The
Things Network [41]. In a similar way, CoAP (over UDP/IP) or MQTT can be added.

A connection receives and forwards messages from a device to the corresponding Service. During
the connection setup, service definitions at the LDAF client and at the LDAF server are compared.
If they do not match (e.g., client requesting unavailable services), the connection is not established.
This assures that the server can provide all the required services, that the message types are correctly
interpreted, and that the message payload is correctly decoded.

3.1.3. Services

Services address the needs of end device applications and therefore affect the size and/or number
of messages for the end device. Two levels of application adaption are possible:

• Transcoding of messages: The service receives messages from the external APIs in format and
protocol imposed by the API and transcodes the payload to the LDAF message format described
in Section 3.1.1. In this case the application does not affect the number of messages from/to
the device.

• Application adaptation: The service in this case actively modifies the application logic. This affects
the number of messages and further reduces the traffic for the end device. The service can
determine whether a particular message is actually required for the device application and filter it
out. It can, e.g., aggregate duplicated messages, negotiate and confirm message exchange with
the API, and only pass the success notification to the end device, or build an aggregated response
for the device that includes data collected from various APIs.

Application adaptation helps LDAF servers distribute the application logic among the end device,
cloud services, and the edge of the network.

3.1.4. Server and Client

The LDAF framework is comprised of server and client entities. The LDAF server embodies the
establishment and management of the end device connections, message encoding, service execution,
and connections to external APIs. The LDAF client applies a set of client libraries for the LDAF server
connections and message encoding and enables end device application logic to communicate with
the framework.

When the LDAF server is initialized, the Service.js library scans the subdirectory where all available
services are defined and implemented. A particular service is usually implemented as a main library
(main.js), with the specific application logic and a service definition file (serviceDef.js). Service definition
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files specify message type object. It also specifies (binary) message-content encoding mechanism,
including corresponding message definition files (e.g., proto). Upon initialization, connections to the
external APIs are established, too.

We applied two message types for the Ethereum—based smart-grid switch and counter. As seen
in Figure 3, one is for notifications about new blocks added to the blockchain (‘newBlock’) and the
other (‘newEvent’) for new event notifications sent from the smart contract to the device.
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When a new client connects to a selected service on an LDAF server, they compare client and
server service definitions, which must match to ensure correct encoding and decoding of messages.
Both service definition files (serviceDef.js) and message definition files (e.g., proto) must be present on
the client’s side, too. We provide a generic client library (Client.js), which establishes the connection to
the server and receives, transcodes, and transmits messages.

4. Positioning the LDAF in Fog Architectures

There are several options for deployment of LDAF server in current and future communication
networks. These options differ in their level of network integration. They can range from

(i) Function reachable through the network and implemented at (external) application servers,
which are only connected, but not really integrated in the network infrastructure, and

(ii) Function provided by the network, where LDAF is a functional component of, e.g., the 4G/5G network.

Applying LDAF as an additional application server reachable through the network is
a straightforward approach. It is independent from the underlying network infrastructure. The network
is merely providing internet connectivity from end devices to the LDAF proxy. In LoRaWAN the
application servers are already foreseen in the architecture. We tested this approach with a LoRaWAN
TTN platform. In a similar manner the current 4G and emerging 5G networks provide channels to
external internet servers and applications. This approach however, cannot fully exploit the possibilities
that would appeared if LDAF were integrated into the network infrastructure.

The benefits of integrating LDAF in the network infrastructure—and thus the gateway being
a function provided by the network—may include the following.

(i) Proximity of computational and storage resources to reduce latency and backend traffic.
(ii) Collaborative sensing where LDAF would implement initial data preprocessing and aggregation

of messages or streams from several end devices.
(iii) Switch to non-IP data delivery for the end device for further traffic optimization.
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(iv) Information about the status of the radio-access network (RAN) for dynamic LDAF services or
near-real-time application-aware performance optimization of the LDAF services.

(v) Context awareness of the services, where context can reach beyond traditional cookie or
location—based adaptations.

LoRaWAN network architecture is typically laid out in a star-of-stars topology, in which the
gateway is a transparent bridge relaying messages between end devices and a central network server
in the backend. Gateways are connected to the network server (NS) via standard IP connections,
while end devices use single-hop wireless communication to one or many gateways. The network’s
server hosts all the intelligence; it manages packets from different gateways and sends them to the
specific application server. In LoRaWAN, LDAF could become a part of the network server. A similar
approach was taken in [43], where the NS blockchain management of end devices was built into
LoRaWAN architecture. LDAF services in NS could rely on the network and device status provided
by the NS and thus adapt service operation. The LDAF could, e.g., pass on the time-insensitive
information only when the end device wakes from sleep mode for other communications, without
additionally awakening it.

In mobile edge computing (MEC) [44], Evolved NodeB (eNB) and Next-generation NodeB (gNB)
not only provide radio access, but can host the fog nodes that execute a part of the application’s
functionality at the edge of the network. A new feature of LTE and 5G networks, as compared to
3G, is the exchange of data flows directly among the neighboring NBs. These would enable new use
cases and applications like computation offloading, distributed content delivery, web performance
enhancements, and application-awareness and optimization for IoT [45]. The LDAF server placed at
the NBs could, e.g., aggregate and exchange data from various end devices, including those connected
to different radio nodes. Besides, the network slicing mechanism [46] completely separates the network
service provision from the actual physical infrastructure. The network, storage, and computational
resources can be dynamically allocated in a network slice. In 5G networks it is already foreseen that
the computational and storage capabilities for the control and data plane may be positioned at various
locations in the network topology.

The LDAF proxy could be integrated in wired power-line communication systems (PLC), which are
important customer–domain infrastructure in smart grid systems. The predominant use of PLCat the
moment is remote meter reading; however, new smart grid applications envisage new communication
over PLC. A PLC modem is integrated in the (smart) electricity meter on the customer’s side. The PLC
communication is terminated in a message-aggregating gateway, located at the secondary substation.
A secondary substation usually has its own local area network and wired broadband connectivity
towards the higher levels of the grid’s architecture. The PLC in such a setup only provides low data
rates, which limits the frequency of meter reading and practically narrows the scope of new associated
services. An LDAF server would be placed at the message-aggregating gateway and the LDAF client
in smart meters.

5. Use Cases

To demonstrate the applicability of our approach we set up three use cases and applied the LDAF
framework to manage the traffic from/to a communication-constrained device. The first case is a simple
DNS query in which a device resolves a given host name to a corresponding IP address.

The second example represents a realistic case of an IoT device, controlled over the Ethereum
network. For this we applied our previously developed prototype system, dubbed Swether [25].
This is an IoT electric meter and switch, which is a part of a broader decentralized application (DApp).
The DApp is comprised also of a corresponding smart contract deployed in the Ethereum network and
a web—based Ethereum enabled user interfaces to initiate control activities. The application logic in
Swether requires access to a fully synchronized Ethereum blockchain (BC) node. In our case the node
was set on a remote server. Without LDAF the Swether connects to the BC node’s JSON-RPC API over
WebSockets. The remote server provides it with key BC functionalities, including indication of chain
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synchronization, event notifications from the smart contract, and creation, signing, and deployment of
Ethereum transactions. The details of this architecture are discussed in [23].

The third case targets binary transfers from the network to the IoT end devices, as, for example,
in software updates and patching. To reduce unnecessary traffic to the device, we implemented
a service that, instead of forwarding a complete new binary file to a device, calculates and forwards
only the binary difference between the old and new version of the file. As in other cases, the originating
file server does not implement such a service and only provides full versions of files. We can apply
such a service with Swether, too, e.g., for system updates.

5.1. Measurement Setup

To execute and evaluate the described use cases, we set up the environment depicted in Figure 4.
One Linux based computer hosted the LDAF server. It was connected to the Internet to access the APIs
of external (cloud) applications (e.g., the Ethereum geth client for BC or any cloud API according to
the application needs). It was also connected to a local IP network for communication with IoT end
devices. If necessary the local IP network could be replaced by non-IP access, e.g., by integrating the
LDAF server into LoRaWAN access point or network server.
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In the blockchain use case, the end devices were five physical instances of the Swether device,
as well as several emulated instances. For emulation only the specific sensing and actuation hardware
was eliminated, otherwise they ran exactly the same application software as the Swether, and thus
producing the same network load. The emulated instances were applied to create a number of
concurrent clients while estimating scalability of the system. Beside the LDAF server, in the BC use case
another server was applied, to host the Ethereum geth client. It had permanent Internet connection to
keep the geth client synchronized with public the Ethereum network. For DNS and binary transfers to
the IoT devices, corresponding HTTP request were launched from the end devices to the LDAF server,
when needed.

The entire communication traffic from/to LDAF server was captured and analyzed with Wireshark.

Resource Consumptions at the LDAF Server

During the operation we estimated the system requirements imposed to the LDAF server. Because
the CPU and memory requirements were so low, we installed the LDAF server on a Raspberry Pi
(RPi) 3 B as well. We tested it with up to 100 concurrent clients using the blockchain service in LDAF.
The memory consumption was independent from the number of clients and was ~5%, i.e., 50 MB.



Sensors 2019, 19, 2337 11 of 15

The CPU load was varying. During the block processing (the Ethereum network creates a new block
approximately every 20 s) the 1 s average was approximately 3–6%, otherwise ~1%. LDAF service
implementation assures that the number of clients subscribed to the same service, does not significantly
affect the CPU load. We would like to point out that a systematic resource monitoring of the server
resources was not our research objective. The observed values can serve as indication and are
application-specific and indication and are application-specific.

5.2. Example 1: DNS

We developed a new service definition (dnsServiceDef.js) and a simple DNS client. The LDAF
client initiates a WebSocket connection for the transaction between the client and the LDAF server.
The LDAF server sends a DNS query to the predefined DNS server and receives the responses.
These transactions are encapsulated in the UDP messages. The service definition includes the parsing
rules from the DNS response of the DNS server and forms message syntax for the LDAF client.

The regular DNS transaction executed by the NodeJS environment results in one request and one
response, as shown in Figure 5. The sizes of the messages are 72 B and 88 B, respectively. The DNS
data sizes are 30 B and 46 B. The request size might depend on the particular domain name.
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Figure 6 presents the corresponding message sequence between the LDAF client and LDAF server.
An HTTP request and response are required to set up the WebSocket. Once the socket is up, there is one
request and one response in the transaction. The sizes of the messages are 75 B and 72 B, respectively.
The WS data is 15 B and 16 B. Although the LDAF does not address low-latency requirements for
IoT applications, we estimated the delay introduced by the application of LDAF server and service.
For DNS without LDAF the response time was about 4 ms. The LDAF added ~40 ms including the
additional delay for TCP session setup.
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The sizes of the messages in regular DNS transactions and in LDAF are comparable. This is
because DNS is not a communication-intensive protocol. It applies UDP for transport and therefore
gains an advantage of 12 B per packet over WebSocket using TCP. However, if we focus only on data
fields in both transactions, the difference is more evident. Binary encoding in LDAF reduces the size of
the message content field of all messages to about 1/5.

5.3. Example 2: Ethereum—Based Smart Grid Switch and Counter

We developed a new service definition (serviceDef.js) for LDAF server and the client was a Swether
device configured to operate over LDAF. Upon service initiation the LDAF server connects to the
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remote Ethereum node. Just as in case of DNS, also here the client initiates a WebSocket connection
for communication between the client and the LDAF server. The LDAF in our case enables two
optimization scenarios:

1. Binary message content serialization by applying binary encoding of message content instead of
textual (JSON). In this case all the messages from the Ethereum node are passed to the Swether.
Bandwidth reduction is a consequence of more efficient encoding.

2. Application adaptation reduces the number of block notifications that are periodically sent
from the Ethereum node to the connected devices. For Swether, we applied this information to
check the block depth for security reasons. After receiving an event notification for an action
to be executed in the Swether, it first waits for a predefined number of blocks to verify that the
notification is actually placed deep enough in the chain. However, in most other cases the block
number notification is not required by the end device.

We therefore implemented block notification filtering at the LDAF (with an arbitrary filtering
ratio), to reduce the number of messages. To maintain the application’s security, event validation
was implemented in the LDAF service, too. Only verified event notifications are passed to the
Swether. As Swether does not have to verify them, block number notification is no longer essential
data for application operation. Only occasional block number notifications are applied to check the
node synchronization.

For the first scenario we set the LDAF service to pass every (1 out of 1) block notification to the
Swether. We captured all the traffic from and to the LDAF server, so as to include the WebSocket
session setup and at least 10 consecutive block notifications. The traffic between LDAF server and
Swether was 1104 B and between the LDAF server and the Ethereum node about 16 KB. Due to binary
message content, encoding the traffic was thus reduced to ~7% of that from the original API of the
Ethereum node. For DNS, this advantage was minimal due to the small DNS query sizes and UDP.
For Ethereum the reduction is substantial, as the traffic is reduced nearly to 1/14.

However, the traffic was even more reduced when the application adaptation was applied.
As shown in Figure 7, we applied different filtering rates to reduce the number of block notifications
for the Swether. If we reduced the number to one out of two messages, the traffic was ~3% of the initial
sum. If we let every one out of 10 messages through, the remaining traffic was only 1%. Despite the
evident traffic reduction, we did not make any tradeoffs in the application’s functionality or security.
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5.4. Example 3: Binary Transfers to the End Device

We developed a new service definition (serviceDef.js) for LDAF based on the bsdiff-nodejs
library [47] to enable the following.

Application adaptation. The LDAF server caches a version of a previously downloaded file.
Upon request from the device or a push from the cloud server for an update, the LDAF service
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calculates the binary difference between the new and previous content and returns it to the device. The
device patches the old version of the file.

Despite binary content, binary LDAF message content serialization still takes place. It is a generic
part of LDAF message encoding and not a part of the service. However, it does not additionally
reduce the size of the already compressed binary content. If LDAF was applied exclusively for
transferring binary files, the binary difference could be implemented as the default LDAF message
content serialization. However, being a service allows for the broader use of the framework.

The effect of this service predominantly depends on the binary difference of the two files transferred.
To test the operation and estimate the impact of message and communication overhead, we used two
binary installation files, named v62 and v63, each ~1.8 MB. The size of the binary difference patch to
upgrade from v62 to v63 (as reported by bsdiff) was 1531 kB. The size of the patch when the v62 file
was compared to itself was 145 B, to allow for the mandatory bsdiff patch header. Transferring the v63
file from the file server to the LDAF server resulted in 1942 kB in download. The corresponding patch
from the LDAF server to the end device resulted in 1627 kB download. The difference between the
original file v63 and the patch was 292 kB. The difference in download traffic was even a bit bigger,
315 kB, as a consequence of more efficient WS download compared to HTTPS. The void patch for
v62 to v62 resulted in only 619 B download, and that was mostly due to WebSocket establishment.
The exact communication traffic loads might vary a little bit, if the experiment was repeated, due to
changed network conditions (e.g., more or less frequent retransmissions of lost packets).

Other file pairs would result in larger or smaller binary differences, but the key is that the LDAF
framework reduces the size of the communication traffic at least as much as the binary patch is smaller
than the patching file.

6. Conclusions

We designed, developed, and tested an application-aware gateway framework for constrained
devices—the LDAF. It facilitates flexible implementation proxying services to reduce the communication
loads by efficiently encoding binary message content and adapting application protocol operation to affect
the number of exchanged messages; it further reduces the traffic for the end device. The implementation
proved to be robust, able to run several concurrent services and serving various clients.

Currently we are implementing LDAF into a smart city ecosystem (EkoSMART). A part of this
project is an integration platform, which supports a variety of smart city applications, including e-health,
well-being, and smart mobility. These subsystems contribute IoT measurements into the integration
platform and share it to various cross-domain applications. LDAF will enable the connection of
communication-constrained devices and API integration.

Our further research is focused on implementing an LDAF server on a LoRaWAN network server
for application services that are aware of the network status.

The next foreseen use cases are university e-learning and study management platforms.
These platforms are independent, yet they must be synchronized. The available REST APIs, however,
are not flexible enough to reduce the amount of traffic required to synchronize the two. This is not
an IoT case and the traffic volumes are expected to be substantially higher. At the moment, ~15 MB of
data is transferred for periodic syncing, although only ~1 MB is actually required. With LDAF we
expect to lower the communication and processing during one synchronization, and thus enable more
frequent synchronizations.
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