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Abstract: This paper presents an embedded system-based solution for sensor arrays to estimate
blood glucose levels from volatile organic compounds (VOCs) in a patient’s breath. Support vector
machine (SVM) was trained on a general-purpose computer using an existing SVM library. A training
model, optimized to achieve the most accurate results, was implemented in a microcontroller with
an ATMega microprocessor. Training and testing was conducted using artificial breath that mimics
known VOC footprints of high and low blood glucose levels. The embedded solution was able
to correctly categorize the corresponding glucose levels of the artificial breath samples with 97.1%
accuracy. The presented results make a significant contribution toward the development of a portable
device for detecting blood glucose levels from a patient’s breath.

Keywords: breath disease detection; breath volatile organic compounds; diabetes; support vector
machine; microcontroller implementation of SVM

1. Introduction

In the United States, obesity, diabetes, cardiovascular diseases, and other metabolic disorders have
been increasing in prevalence and severity at an extreme rate since the 1990s. In 2000, it was reported
that less than 5% of US citizens were recorded to have been diabetic [1]. In 2016, the percentage of
diabetic Americans rose 9.3% [2]. It is projected that, by 2030, 15.3% of Americans will have diabetes
and that treatment of diabetes will cost the US economy a total of over 600 Billion US dollars per
year [3]. With the prevalence of diabetes increasing at such an alarming rate, many new technologies are
emerging to better monitor and manage blood glucose level. Among non-invasive glucose monitoring
technologies, microwave sensors that are inspired by metamaterials, metasurfaces, nanoparticles,
and graphene have shown great potentials in measuring glucose in aqueous solutions with a high
sensitivity [4–7]. Recent research has focused on technologies such as meal detection [8], analysis of
glucose in sweat [9], artificial pancreas technologies [10], and correlation between blood glucose levels
and compounds present in breath [11,12]. Among these, researchers used variations of electronic-nose
technologies to quantify glucose and other compounds. The evolution of electronic-nose application
has been a recent trend in biomedical engineering and medical device industry. Several examples
of electronic-nose applications include respiratory illness diagnosis [13], detection of cancers [14,15],
detection of fungal diseases in harvested blueberries [16], and the general detection of volatile organic
compounds (VOCs) in human breath [12]. With the availability of highly sensitive and low-cost VOC
sensors, it has become affordable to create sensor-arrays that are able to detect VOCs in breath in
parts-per-million (ppm) and even parts-per-billion (ppb) [17]. Refs [18,19] demonstrated the ability
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of SVM to differentiate between various types of tissues in a medical analysis. Specifically, SVM was
trained to detect the difference between regular ovarian tissues and tissues containing ovarian cancer.
These developments in sensing technology have made it possible to sense changes in VOCs in breath
as changes in blood glucose levels of a diabetes patient.

This study intended to measure artificial breath samples that represent the breath of patients with
high and normal blood glucose (BG) levels, and to correctly classify the breath samples represented
by each level. Compared to non-invasive methods that measure glucose levels from an aqueous
solution, the method presented in this paper measures VOCs in the breath and correlates it with
the BG levels. SVM was trained to classify breath samples based on various features from a sensor
array consisting of commercially available chemical sensors. The SVM training model was then
compiled into a program run on an ATMega microprocessor to classify a breath sample in real time.
The microprocessor implementation of the classification can be used to develop a portable biomedical
device that can measure blood glucose levels from a patient’s breath sample instead of using a general
purpose computer.

2. Design of Experiments

To train and test SVM, two sets of artificial breath samples, each with a unique VOC footprint that
represented blood glucose range in a patient with diabetes, were created. One set represented a low BG
levels (50–100 mg/dL) and the second set represented a high BG levels (180–240 mg/dL). Published
data on diabetes breath analysis were reviewed for VOCs linked to blood glucose levels and their
correlated concentrations [20–22]. Table 1 shows the breath VOCs that are consistently reported across
publications as biomarkers of diabetes. Corresponding VOC concentrations and associated blood
glucose levels are also shown. Among these VOCs, we chose acetone and ethanol as the two VOCs for
further testing and analysis. This decision was informed by the extensive published work with acetone
alone or acetone and ethanol for detecting diabetes from breath. For example, silicon tungsten oxide
acetone sensors to estimate BG level is presented in [23]. A platinum functionalized tungsten oxide
sensor for sensing acetone in exhaled breath is presented in [24]. Nanotubes and nanoparticles-based
sensors for detecting acetone from breath are reported in [25,26]. A polymer-based sensor for detecting
acetone and ethanol is reported in [27].

Table 1. VOC concentrations for low and high blood glucose levels [20–22].

Compound Low BG Level High BG Level

Acetone 1–3 ppm 5–7 ppm
Methyl Nitrate 1 ppm 3 ppm

Ethanol 0–20 ppb 35–50 ppb
Methanol 0 ppb 1 ppb

A test system was designed to ensure tests were conducted in a controlled and repeatable manner.
The test system contained three 236 mL glass chambers connected to one another with chemical
resistant tubing. A tank of ultra-clean air (20% oxygen and 80% nitrogen) was connected to a secondary
flow control valve that permitted the air to flow at 0–1.5 L/min. As an effort to introduce carbon
dioxide would increase the chamber setup complexity and also because CO2 does not have an impact
on the sensors that are used in the presented study, air without CO2 was used. The receiving end of
the flow control valve was connected to the first chamber, which contained water in which the clean
air was percolated to simulate the humidity of a breath sample. Each compound or combination of
compounds simulating a BG level was introduced into the second chamber. The sensor array was
placed in the third chamber. The sensor array consisted of four commercially obtained VOC sensors.
However, the responses from two of the sensors were minimal to the concentration levels used in
this study and those responses, when included, did not provide any significant improvement in the
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SVM training. Thus, data from only two sensors, termed as Sensor-1 and Sensor-2, were utilized and
presented in this paper.

To determine evaporation and diffusion rate for each compound in the chamber, the sensor
array was sealed into an air tight chamber after a sample of each acetone or ethanol was introduced
separately [28,29]. Figure 1 depicts the response of Sensor-1 to acetone. The result in Figure 1 shows
that the sensor began to respond to the acetone 70 s into the experiment. Next, to determine the
flow-rate of the system that would yield the maximum quantity of each VOC in the third chamber of
the system, where the sensor array would be placed, sensor responses to acetone were measured at
a constant air flow (0.5 L/min). Figure 2 shows the response of the sensor array placed in the third
chamber when acetone was introduced in the second chamber. This process was repeated for ethanol
independently and the results suggest that the peak sensor response for all sensors occurred at the
same time as in the acetone test.

Figure 1. Response of Sensor-1 to acetone over time in an air-tight chamber.

Figure 2. Responses of Sensor-1 and Sensor-2 placed in the third chamber of the system to acetone
introduced in the second chamber at 0.5 L/min.

Based on the above results, a consistent flow control method was developed. The timing and flow
control are shown in Table 2. Figure 3 shows the response of the two sensors in the sensor array to
1 ppm of acetone introduced using the process shown in Table 2. While we could not find an exact
replica of the tests we conducted with these sensors, comparable experiments are reported in [30,31].
In the published work, the sensors are tested with 1 ppm of acetone and the results are comparable to
the sensor responses shown in Figure 3. The sensor responses shown in Figure 3 were divided into
five segments, as shown in Table 3, based on the timing of sensor responses to the introduction and
evacuation of the VOCs.
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Table 2. Timing and flow control for the chamber.

Time (min) Action Air Flow Rate

t = 0–5 Clean System 1.5 L/min
t = 5–6 Introduce Chem. 0 L/min

t = 6–6:45 Blow Chem. to Sensor 0.5 L/min
t = 6:45–12 Steady State Response 0 L/min
t = 12–15 Clear System 1.5 L/min

Table 3. Sensor response feature segments.

Feature Time Segment (s)

Baseline 0–50
Rise 65–85

Steady State 150–400
Fall 450–500

Late Fall 500–600

Figure 3. Sample sensor array responses showing results for: (a) acetone; (b) ethanol; and (c) mixed
compounds representing low and high blood glucose levels. The spikes in (b) seen at the end of steady
state and beginning of system clearing cycle were due to the residual ethanol in the VOC chamber,
which was transported to sensor array chamber. This also indicated a slower ethanol evaporation.

3. Support Vector Machine

SVM is a machine learning algorithm that has been widely used in published literature for data
classification in many areas. For example, SVM has been used to classify tissue samples used for cancer
identification [18,19]. SVM was used for this research to evaluate the accuracy of detection of artificial
breath samples. The features analyzed by the SVM are straightforward, and a variety of regression
techniques or classification techniques could be used. For example, principal component analysis
has been used in source classification of indoor air pollutants [32,33]. One could argue that SVM is
too sophisticated for this application, but the significance of using SVM to analyze these features is
rooted in the portability of this research. The experimental setup used in this research generates a
model that can only classify data that are collected using the same setup. A regression-based model
would have the same limitations. The benefit of using SVM is that, if this research were continued
using human subjects and more sensors, SVM could be trained to achieve the same results that were
observed in this experiment, whereas a regression model would have to be restructured entirely to
match the new experiment. Thus, the SVM approach for the classification of breath samples makes a
greater contribution to the development of a portable biomedical device than a regression approach.

The SVM used in this study was trained to complete a binary classification [34] of artificial breath
samples. The presented SVM structure was used in this research because the number of support
vectors used in the model required less memory than the data requirements of other machine learning
algorithms such as artificial neural networks. SVM requires less memory than the machine learning
algorithms discussed in [35]. This makes SVM a better choice for an embedded application with
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limited storage. The SVM intends to make a distinction between the two diabetes VOC footprints
shown in Table 1. The problem in this study required the SVM to generate a two-class solution.
The classification function for this problem is defined by Equation (1) where N is the number of
support vectors used, and K(x, xi) is the kernel function chosen. The input parameters x and xi are
explained when discussing SVM training below. The parameter b is the error offset, ai is the data
scaling factor, and yi is a dataset that describes the features obtained in testing.

f (x) = ΣN
i=0aiyiK(x, xi) + b (1)

In training SVM, each entry of datum xi that is entered into Equation (1) is characterized by a
class x. The kernel function acts as a transformation that generates support vectors that help classify
data in Equation (1). In Equation (2), Φ(x) is the kernel transform operation for each class and Φ(xi) is
the kernel transform operation for each dataset corresponding to class [34].

xxT
i → Φ(x)Φ(xi)

T = K(x, xi) (2)

The kernel function maps a nonlinear boundary between all data classes in training while using all
support vectors to span the input data across many, or an infinite number of dimensions [34]. There are
many models that the kernel function K(x, xi) can follow. In this study, a radial basis function (RBF)
kernel was chosen. The process used to choose a kernel function for this experiment is based on the
work of [36]. The RBF kernel model is described mathematically in Equation (3) where x is the class, xi
is the dataset corresponding to that class and σ is the variance of the testing data [34,36].

K(x, xi) = exp(
−γ||x− xi||2

σ
) (3)

The cross-validation method was used to determine the γ and C parameters used by the kernel
function to scale data and define dimensional space so that the SVM could classify the data most
accurately [36]. The cross validation method iteratively attempted to classify a dataset using an SVM
that was trained with the remaining data, but, in each iteration, parameters γ and C were varied.
This generated different support vectors with each iteration and, therefore, a different accuracy in data
classification. The goal of the cross validation method was to determine the values of γ and C that
produced the most accurate results.

4. Results and Discussion

Ten experiments were conducted for each VOC separately, and as a combined footprint for low
and high BG levels, as indicated in Table 1. Nine tests of each footprint were used to train the SVM,
and one test of each class was used for testing. A cross-validation process example is shown Table 4.

Table 4. Cross-validation process example for acetone.

Acetone γ = 2−3 γ = 2−2 γ = 2−1 γ = 20 γ = 21

C = 2−3 100% 82% 64% 50% 50%
C = 2−2 82% 82% 63% 50% 50%
C = 2−1 59% 50% 50% 50% 50%
C = 20 68% 59% 50% 50% 50%
C = 21 68% 59% 50% 50% 50%
C = 22 68% 59% 50% 50% 50%

The cross-validation process was performed for all data segments defined in Table 3 for results
that were generated by testing where acetone, ethanol, and a combination of acetone and ethanol were
introduced into the system. The results of the parameters determined by this process can be seen
in Tables 5–7.
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Table 5. Cross validation results for acetone.

Acetone Baseline Rise Steady State Fall Late Fall

γ 2−3 2−3 2−3 2−3 2−2

C 2−3 2−1 2−3 2−1 22

Accuracy 100% 73% 100% 77% 78%

Table 6. Cross validation results for ethanol.

Acetone Baseline Rise Steady State Fall Late Fall

γ 2−3 2−3 2−3 2−1 2−3

C 2−1 2−1 2−3 22 2−3

Accuracy 100% 60% 100% 100% 100%

Table 7. Cross validation results for a mixture of acetone and ethanol.

Acetone Baseline Rise Steady State Fall Late Fall

γ 2−2 22 2−3 22 2−3

C 2−3 22 2−1 2−1 21

Accuracy 64% 60% 100% 100% 76%

Based on the results of the cross validation process, it was determined that the steady state section
of the data yielded the highest accuracy. In addition, little preprocessing was needed to achieve high
accuracy classification results for the steady-state samples. The number of features used in training
contributed to classification accuracy; however, variations in the transient sections of the experiment
were difficult to quantify. For the training and testing of a low and high blood glucose levels, ten
sets of results with a combination of acetone and ethanol were used. The two VOCs were introduced
sequentially in the first chamber, each with a concentration corresponding to a high or low blood
glucose level, as shown in Table 1. The air flow settings shown in Table 2 were used for these tests.
The SVM was trained using every permutation of the nine samples from the low BG class and nine
samples from the high BG class with the remaining sample from each class used for testing. Data were
collected from the experiment every 5 s during the steady state section of the test defined in Table 3.
The SVM was able to classify the data collected in this manor with 97.07% accuracy.

In the presented study, we chose diabetes detection as the target application, however, the
developed system could be used for other medical and non-medical applications by replacing the
sensors used in this study with appropriate sensors and retraining the SVM algorithm. In this study, we
used metal oxide semiconductor (MOS) based VOC sensors. These sensors can be replaced by optical
and meta-material based sensors, which have also shown to have high sensitivity for applications in
medical diagnosis [37–40]. For example, ref. [40] presented a meta-surfaces based sensing for detecting
diabetes, cancer, and blood oxygen level. These and other types of sensors could be used with the
presented algorithm for various applications.

The microcontroller program was designed to recognize data from the steady state portion of the
experiment in real time tests [41,42]. The same parameters used in the post-processed results were
used in the real-time test. For this experiment, new data were collected for testing, and all ten samples
of the high BG class and the low BG class were used to train the SVM. New data were collected in
the same manner as collected in testing to ensure accuracy. During the steady state portion of the
experiment, data were collected from Sensor-1 and Sensor-2 every 5 s to generate a set of 251 total
samples each containing two features, one from each sensor. Six total tests were conducted with the
microcontroller classifying the data in real time. Three of the tests introduced acetone and ethanol
into the system representing a low BG footprint, and the other three tests introduced acetone and
ethanol quantities representing a high BG footprint. The microcontroller classified the two features
read at 5-s intervals in real time, indicating whether the data were classified as a high BG footprint or a
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low BG footprint. Of the 753 two-feature readings collected in this manner, 731 of the reading were
classified correctly. The other 22 readings were classified incorrectly. These results suggest that this
microcontroller experiment was able to classify low BG and high BG VOC footprints in real time with
a 97.1% accuracy.

5. Conclusions

A microcontroller-based solution that can recognize different VOC footprints consistent with the
exhaled breath of patients having high or low blood glucose levels has been presented and discussed.
Cross-validation processes were used to determine the SVM parameters and to create a model SVM
microcontroller solution that recognizes and classifies data. In real time experiments with artificial
breath, the trained model was able to classify low and high blood glucose levels with 97.1% accuracy.
These results represent significant progress in developing a noninvasive portable device that could
measure blood glucose levels from a patient’s breath.
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