
sensors

Article

Non-Destructive Trace Detection of Explosives Using
Pushbroom Scanning Hyperspectral Imaging System

Siddharth Chaudhary * , Sarawut Ninsawat and Tai Nakamura

Remote Sensing and GIS, School of Engineering and Technology, Asian Institute of Technology, Klong Luang,
Pathum Thani 12120, Thailand; sarawutn@ait.ac.th (S.N.); nakamura-tai@ait.ac.th (T.N.)
* Correspondence: st118902@ait.asia; Tel.: +66-958605039

Received: 26 November 2018; Accepted: 23 December 2018; Published: 28 December 2018 ����������
�������

Abstract: The aim of this study was to investigate the potential of the non-destructive hyperspectral
imaging system (HSI) and accuracy of the model developed using Support Vector Machine (SVM)
for determining trace detection of explosives. Raman spectroscopy has been used in similar
studies, but no study has been published which is based on measurement of reflectance from
hyperspectral sensor for trace detection of explosives. HSI used in this study has an advantage over
existing techniques due to its combination of imaging system and spectroscopy, along with being
contactless and non-destructive in nature. Hyperspectral images of the chemical were collected
using the BaySpec hyperspectral sensor which operated in the spectral range of 400–1000 nm
(144 bands). Image processing was applied on the acquired hyperspectral image to select the region
of interest (ROI) and to extract the spectral reflectance of the chemicals which were stored as spectral
library. Principal Component Analysis (PCA) and first derivative was applied to reduce the high
dimensionality of the image and to determine the optimal wavelengths between 400 and 1000 nm.
In total, 22 out of 144 wavelengths were selected by analysing the loadings of principal components
(PC). SVM was used to develop the classification model. SVM model established on the whole
spectrum from 400 to 1000 nm achieved an accuracy of 81.11%, whereas an accuracy of 77.17% with
less computational load was achieved when SVM model was established on the optimal wavelengths
selected. The results of the study demonstrate that the hyperspectral imaging system along with
SVM is a promising tool for trace detection of explosives.

Keywords: hyperspectral imaging; trace detection; principal component analysis; support vector machine

1. Introduction

The frequency of terrorist activities has increased in the last two decades leading to a global
threat which is challenging humanity. Most of the terrorist attacks use a special type of bomb known
as Improvised Explosive Devices (IED) in which the explosives are stored inside metal containers.
The explosives are made up of chemical compounds which have a great impact even when used in
small quantities. IEDs can be grouped as military, commercial and homemade on the basis of materials
used for manufacturing them. Homemade explosive mixtures can be prepared by mixing inorganic
energetic oxidant salts (ammonium nitrate, potassium nitrate, potassium chlorate) with fuels like
petrol, diesel, charcoal etc. [1]. The oxidant salts mentioned above are easily available on the market
in the form of fertilizers. Ammonium nitrate (AN) is one of the most commonly used fertilizers for
agricultural purposes and a combination with this with fuel can result in ammonium nitrate fuel
oil (ANFO), dynamites that are explosive compounds. Similarly, potassium nitrate is a widely used
fertilizer, but is also used for manufacturing firecrackers by mixing it with blackpowder. This type
of bomb is becoming widely popular as it can be manufactured using commonly available materials
at home [1–9]. In recent years across the globe, some major terrorist attacks took place in Pakistan,
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Brussels, Nigeria (2016), Paris (2015) and Boston (2013) in which IEDs were widely used. IEDs are
becoming ideal weapons for spreading terrorism due to its special features like ease of manufacturing
at low cost and it can be designed in various sizes and forms making it difficult to be detected.

Standoff trace detection is a method in which the operator or the sensor does not have physical
contact with explosives and therefore this technology provides for a better capability for different
architectures of security. Some of the potential techniques to detect traces of explosive materials are
laser based spectroscopic techniques which include raman spectroscopy, laser induced breakdown
spectroscopy (LIBS), resonant raman spectroscopy, laser induced fluorescence (LIF), ion mobility
spectrometry and hyperspectral remote sensing [10,11]. LIBS is considered as a destructive technique
and therefore it is not recommended to be used on humans and vehicles. Since the laser beam used
in this technique is pointed at a specific spot, it becomes more time-consuming and difficult to scan
large areas in real conditions [12]. Ion mobility spectrometry (IMS) is one of the most commonly used
techniques for trace detection. Although it is a successful technique, it has drawbacks like false alarm
rate, matrix effects, instability in response and use of physical molecular structure for detection [13].
LIF works on the principal of decomposing molecules into characteristic fragments [14,15] but LIF can
detect only nitrogen containing explosives and requires a laser source which can be tuned to different
wavelengths which results in thermal degradation of samples [16]. Many scientists and engineers
from industry and academia have been working on implementing standoff trace detection methods
on different applications [11,17–23] but no technology has emerged as an optimum technique yet.
Methods which are used today to scan suspicious objects on a bomb site still have the operators at
risk due to their close contact with the target [1–9]. Therefore, a new technique is required in order to
tackle the problem of detection of target objects while maintaining the safety of the operator.

Trace detection of chemicals used in explosives involves many difficulties and challenges due to
the physical properties of the traces. Some of the key challenges faced by the standoff trace detection
techniques are discussed below [24]:

1. Average area density (AAD)
AAD is defined as the total mass of a chemical in a given area. AAD calculated for the traces of
the chemical (2 gm) is very low as compared to the AAD of the background material (soil 20 gm).
It can be visualized in conceptual Figure 1a that a small number of traces of chemicals is present
on the surface of soil in a petri dish of 4 cm diameter.
AAD for traces of chemical is calculated to be 0.15 gm/cm2 where as AAD for soil is 1.59 gm/cm2

2. The traces of chemical cover a very small area of the total area of the background. In the conceptual
Figure 1b, it can be observed that traces occupy an area which is relatively very small as compared
to the area of background. To overcome this problem, the sensor should have high spatial
resolution (small ground sampling distance) to identify the traces, while keeping the area coverage
region high.

3. Due to environmental causes, the traces of chemicals might be mixed with clutter materials which
can be visualized at a microscopic scale in Figure 1b. This makes it very difficult to spatially
separate the received signals from the materials. A high level of clutter materials would tend
to induce noise in the spectral reflectance of the chemical traces. This problem can be resolved
by designing a refined algorithm with a strong discrimination capability based on the unique
spectral response of the chemicals.

Hence, identification of explosives using standoff detection is a challenging task for researchers
and engineers. Therefore, the focus of defense research organizations and forensic sciences is to
develop a standoff trace detection technique which overcomes the key challenges discussed above and
also fulfils the following requirements [19]:

• High sensitivity and selectivity
• Potential to identify hidden explosive materials
• Minimize the risk of operators
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• Non-destructive technique to avoid sample destruction
• Portable to crime sceneSensors 2019, 19, x FOR PEER REVIEW 3 of 16 
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Figure 1. (a) Conceptual example of traces of chemicals present on the soil surface in a petri dish of 4 
cm diameter; (b) Conceptual example of a standoff trace detection sensor illustrating key challenges 
associated with standoff trace explosive chemical detection. 
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various applications such as food engineering, agriculture, airborne survey, forensic science and 
mineralogy [5,10,25–28]. Therefore, it is a well-established technique for object detection, monitoring 
the quality of the surface and studying the composition of the sample. HSI is a suitable technique for 
trace detection of residue of explosives due to its notable combination of imaging and spectroscopy, 
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Individual spectra generated from HSI gives rich spectral and spatial information which works as a 
powerful tool for quantification and identification of the samples in a more efficient manner. The HSI 
system is undergoing rapid development, making the system more portable with high area coverage 
so that it can be used at the crime scene to view and interpret samples in real time. 

Figure 1. (a) Conceptual example of traces of chemicals present on the soil surface in a petri dish of
4 cm diameter; (b) Conceptual example of a standoff trace detection sensor illustrating key challenges
associated with standoff trace explosive chemical detection.

Hyperspectral Imaging System (HSI) has the potential to carry out the above-mentioned
requirement and is a powerful emerging tool which can be used for analysis of chemical traces.
The traces can be identified and visualized by analysing the difference in the spectral reflectance of
the trace and its background [10]. HSI has high-speed data acquisition, a non-invasive/destructive
technique which is a combination of imaging and spectroscopy. This technique has been applied
in various applications such as food engineering, agriculture, airborne survey, forensic science and
mineralogy [5,10,25–28]. Therefore, it is a well-established technique for object detection, monitoring
the quality of the surface and studying the composition of the sample. HSI is a suitable technique for
trace detection of residue of explosives due to its notable combination of imaging and spectroscopy,
capability to determine the composition of each pixel generated in the cubic image within a fast
response time [29] which makes it more advantageous over the current spectroscopy methods
which only provide spectral information, ignoring spatial information about the traces of explosives.
Individual spectra generated from HSI gives rich spectral and spatial information which works as
a powerful tool for quantification and identification of the samples in a more efficient manner. The HSI
system is undergoing rapid development, making the system more portable with high area coverage
so that it can be used at the crime scene to view and interpret samples in real time.

Images generated from the HSI technique are also known as hypercube due to their three
dimensions in which X and Y represent the spatial information of the image whereas Z gives
information regarding the spectral property of the sample at different wavelengths. It can also be
viewed as a stack of two-dimensional images obtained at specific wavelengths. The system collects
a series of image planes which maps the intensity of reflected light from the surface at a given
wavelength. The hyperspectral image is composed of a large number of pixels which gives the
information regarding the reflection at a wavelength and is used to generate the spectral graph as
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shown in Figure 2. Use of the HSI technique to perform standoff trace detection of explosives would
be of great interest to defense agencies across the globe as it would solve the problem of detection of
target objects while maintaining safety of operators.

When chemical samples are exposed to a source of light with proper wavelength and energy,
it results in an interaction of incident photons and the surface of the [30,31]. The energy which
is incident on the chemical sample can undergo several phenomena like absorption, transmission,
scattering, and reflection. The ratio of reflected energy to incident energy is termed as reflectance [10].
Information regarding the chemical sample can be acquired by analyzing the amount of reflected
energy which is a function of wavelength [5]. Chemical composition of the samples is a factor which
determines the reflectivity and the signals reflecting from the surface of the chemical is affected by the
following parameters [24]:

• Optical properties of the sample
• Illumination of light source
• Sensitivity of the detector

As discussed, reflectance is function of wavelength; therefore, all chemicals used in explosives
have their own unique spectral reflectance [32]. An electronic database known as a spectral library can
be generated which can store reflectance of different explosive materials using their hypercube image.
Since the hypercube image and spectral reflectance is unique for every explosive material, it can be
used for identifying and discriminating the various chemicals used in explosives [33,34].

In most of the studies for object classification, Support Vector Machine (SVM)—a machine learning
technique—is used [35–39]. It is an extensively used nonlinear classification technique. The algorithm
tends to minimize generalization errors by finding the optimum margin (hyperplane) between the
support vectors to separate the classes. SVM has an advantage over other classification algorithms due
to its performance with small samples, and a nonlinear and high dimensional dataset. This technique
has been used for several applications, but not implemented for finding traces of chemicals in
a hyperspectral image.

The principal aim of the study was to develop a non-destructive system for trace detection
of chemicals with high accuracy using HSI along with SVM. In this study, we also evaluate the
potential of HSI for trace detection of different chemicals used in explosives and to develop a spectral
library for chemicals like AN, C4 and trinitrotoluene (TNT) which are used in IEDs. In experiments,
a hyperspectral sensor is used to collect spectral reflectance of the chemicals and soil at 144 wavelengths.
The SVM model is later evaluated based on classification accuracy. Flow of the methodology is shown
in Figure 3.Sensors 2019, 19, x FOR PEER REVIEW 5 of 16 
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2. Materials and Methods

2.1. Samples

In this study, composition C4, which is a plastic explosive with a texture like clay, ammonium
nitrate and 2,4,6-trinitrotoluene (TNT) were used. C4 is a dirty white, light brown solid and it smells
like motor oil whereas TNT is a yellow solid. Composition of C4 varies according to the manufacturers
but 90% is research department explosive (RDX) and the remaining 10% is a mixture of polyisobutylene,
dioctyl sebacate and mineral oil [40,41]. C4 is considered resistant to physical shocks and it can explode
only when the detonator inside the explosive is exposed to fire. The chemical can be molded easily into
different shapes to vary the direction of explosion. A total of 20 samples of pure chemical AN (10 gm),
C4 (10 gm) and TNT (10 gm) and 10 samples of soil (20 gm) mixed with AN (2 gm), C4 (5 gm) and
TNT (2 gm) were used in this study. Chemical samples were prepared after weighing them accurately.
The weighted chemical samples were placed in petri dishes with a black body and a diameter of 4 cm.
Average area density of AN, TNT was 0.16 gm/cm2, whereas for C4 and soil it was calculated to be
0.39 gm/cm2 and 1.59 gm/cm2, respectively. Samples were mixed, distributed and levelled uniformly
in the petri dishes to reduce surface roughness. Petri dishes were placed over a black platform to
minimize any reflection from the background.

2.2. Hyperspectral Imaging System

2.2.1. Hyperspectral Image Acquisition

HSI was assembled at a laboratory scale to obtain hyperspectral images of the chemical samples
based on reflectance. The reflectance data in the laboratory was obtained by BaySpec OCI F hypespectral
sensor, which consists of a charge couple device which has a readout mode; specifications of the
hyperspectral sensor are shown in Table 1. The images were acquired by pushbroom scanning in
144 bands with spectral resolution of 4.16 nm from 400 to 1000 nm using software SpecGrabber
(Super Gamut, BaySpec, Inc., San Jose, CA, USA). Measurements were taken using 150 W halogen and
150 W infrared lamps as the light sources positioned 90 cm from the sample at an angle of 45◦ to the
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zenith, as shown in Figure 4. Intensity of the halogen lamp used in the experiment decreases after
700 nm, therefore the infrared lamp is used along with the halogen lamp to have uniform intensity
throughout the spectrum of 400–1000 nm. For acquisition of spectral data, the sensor was placed 40 cm
above the stage on which the chemical samples were placed. To complete the scanning of the chemical
samples in one single scan line, the sensor was attached to a conveyor belt which moved at a speed
of 1 cm/s. The hyperspectral sensor placed at the nadir detected the reflected energy in the area of
15.4 cm × 12.3 cm with a field of view of 22◦ at 144 bands. Spatial resolution (pixel/mm) is a function
of distance between the sample and the sensor at nadir position; for the laboratory condition it was
calculated to be 0.012 cm. The samples prepared were placed in black petri dishes of diameter 4 cm
and placed over a black platform to minimize any sort of reflection from the background. The samples
inside the petri dishes were levelled uniformly to reduce surface roughness.
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Table 1. Specifications of hyperspectral sensor.

Scanning Technique Push Broom

Field of View (FOV) 22◦

Focal Length 16 mm
Frame Per Second (FPS) 45 fps

Swath 15.4 cm × 12.3 cm
Spatial Resolution 0.012 cm

Spectral Bands 144
Spectral Resolution 4.16 nm (FWHM)

Height of Sensor 40 cm

2.2.2. Hyperspectral Image Calibration, Selection of Region of Interest and Extraction of Spectral Data

The white reference image was acquired using a circular white surface of teflon (8 cm diameter).
This image was used for calibration of the sensor and it behaved like a perfect Lambertian surface,
and in the spectral range of 400–1000 nm it achieved a minimum 95% reflection value. The dark
reference image acquired by covering the camera lens with its cover and keeping all the light sources
off spectral reflectance data (R) was calculated by calibrating the maximum raw intensity (I) to ideal
white intensity (Iw) and black background (Ib).

R = (I − Ib)/(Iw − Ib) (1)

where I is intensity of the raw image, Iw is the intensity of the white reference image and Ib is the
intensity of the dark reference image. CubeCreator software (Super Gamut, BaySpec, Inc.) was used to
apply corrections in the hyperspectral image.
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The acquired hyperspectral image is a rectangular image which needs to be cropped so that
analysis is performed on the sample of interest. To perform cropping on the image, region of interest
(ROI) needs to be predefined to extract the spectral information. In this study, the ROI for each chemical
sample in the hyperspectral image was defined manually and spectral information for the ROI was
extracted [42]. The final spectrum to represent the chemical sample was calculated by averaging the
spectrum of all pixels within the ROI. This further resulted in the creation of a spectral library by
putting the average spectrum of each sample together in one file. Calibration, selection of the region of
interest, and the extraction of the spectral data were performed in ENVI (Environment for Visualization
of Images; ITT Visual Solutions) and R studio.

2.3. Data Preprocessing

2.3.1. Selection of Optimal Wavelength

HSI generates a large amount of high dimensional data which is complex and redundant,
making it difficult to analyze without the support of multivariate analytical methods [43]. Principal
component analysis (PCA) is a well-established statistical method [44] and an efficient technique to
be applied on the hyperspectral cube to decompose the highly correlated spectral data and reduce
their dimensionality. New variables called principal components (PC) are formed which are not
correlated to each other and are linear combinations of the original variables [45]. Original information
with minimal loss can be represented by the combination of few principal components. To reduce
computational time and cost of analysis, dimensionality of the image should be reduced which can be
achieved by choosing the most significant wavelengths from the spectral region where the spectral
pattern differs the most [46]. PCA analysis and first derivative was applied on the hyperspectral
image data to select the important wavelength. The PC generated from PCA are used to analyze the
common features between the samples because samples which have similar spectral reflectance tend
to cluster in the score plot of principal components [47]. Loading matrix resulting from PCA indicates
the contribution of each wavelength in the PC which helps in selecting the wavelengths which are
most effective in discriminating different chemical samples.

2.3.2. Establishment of Supervised Classification Model

After acquisition of hyperspectral images, the reflectance values of samples of chemical and soil
were imported into R dataframe and split randomly into a training and testing dataset with the ratio
of 70:30, which were both used to establish the classification model. Various supervised classification
techniques such as artificial neural network (ANN), random forest, and SVM are considered for
classification of multispectral and hyperspectral remote sensing data. To detect traces of chemicals
accurately, a classification model was built using the spectral reflectance data of chemicals. In this
study, SVM was used over other classification models for identifying the traces of chemicals in the
hyperspectral image because of its simple architecture, better performance with low number of inputs
to the model, lower proneness to overfitting and requirement of less time and memory to store the
predictive model [48–51]. Two SVM models were established in this study; the first model used all the
144 wavelengths in the spectral range of 400–1000 nm as the input, whereas the second model was
based on optimal wavelengths selected. The SVM algorithm determined an optimal surface called
a hyperplane which separates the classes from each other [38]. The algorithm selects the most suitable
hyperplane on the basis of the maximum margin between each class. SVM is a suitable technique to
work efficiently with both linear and nonlinear data with good generalization ability. For classification
of spectral data, SVM had been proved as a reliable and efficient method. In this study, SVM was
performed on R studio by defining the kernel functions and by determining the parameters.

The kernel function used here was radial basis function (RBF) which can make explicit the relation
between the target variable and independent variable, and grid search procedure along with 10-fold
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cross validation was used to optimize the parameters of SVM. Classification accuracy is used to assess
the performances of SVM models.

3. Results and Discussion

3.1. Spectral Reflectance Profile

Mean spectral reflectance of 20 chemical samples of AN, C4 and TNT along with soil and
vegetation in the spectral range 400–1000 nm is illustrated in Figure 5. Spectral reflectance of the
chemicals AN, C4 and TNT behave differently from soil and vegetation in the spectral range of
400–1000 nm which makes it easy to distinguish between explosives and non-explosives (soil and
vegetation). In order to find the type of explosive used, spectral reflectance of all the three chemicals
need to be analyzed. Samples of C4 and TNT showed similar trends of spectral reflectance from 400 nm
till around 540 nm. From 580 nm onwards, reflectance of C4 gradually increases as compared to TNT
and AN. After 572 nm there is a sharp drop in spectral reflectance of TNT, small drop for AN and
it forms a valley in between 597 nm and 625 nm and remains almost constant with small change in
reflectance value till 970 nm. As shown in Figure 5, chemical C4 can be differentiated from TNT and
AN in the spectrum window of 580–1000 nm. Similarly, AN and TNT can be differentiated as spectral
reflectance of AN is always higher than TNT.
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3.2. Principal Component Analysis

PCA was applied on the hyperspectral image acquired by the imaging system to perform
dimensionality reduction by obtaining major PCs. To construct a PCA model for the possible
60,000 spectra of each sample was computationally expensive. Therefore, to reduce the computation
load, a random sample of 40,000 spectra for each sample was selected for the construction of PCA
model. No significant change in the PC was observed when the number of random points were
increased. PCA was performed over 144 bands and 10 PC were generated; the first four PC are listed
in Table 2 for the spectrum profile between 400 and 1000 nm. PC1, PC2 and PC3 explained variance of
87.97%, 0.53% and 0.39%, respectively. The first 10 PC explained cumulative variance of 90.9% of the
raw information as shown in Figure 6.
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Table 2. Variance of individual principal components (PCs).

Principal Component Variance

PC1 87.97
PC2 0.53
PC3 0.39
PC4 0.30
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3.3. Optimal Wavelength Selection

The aim of optimal wavelength selection is to select only those wavelengths from a set of
144 wavelengths which carry the most important information. In this study, loading values from PCA
and first derivative of spectra were used to select the optimal wavelengths.

As discussed in the previous section, the hyperspectral image consists of large amounts of data
and it also suffers from the curse of dimensionality. In this study, the dimensionality of the image was
144 and operation on all 144 bands would decrease the system performance. The spectra of the image
obtained had high correlation with the neighboring bands resulting in a complex model [52]. To solve
the problem of high dimensionality of the image, it was important to select the wavelengths which carry
the most valuable information, so that analysis could be performed on these selected wavelengths later
to improve the performance. In Table 2 and Figure 6, it was shown that variance of PC1, PC2, and PC3
explained variance of 87.97, 0.53, and 0.39, respectively and cumulative variance of first ten principal
components is 90.9. To select the optimal wavelengths, loading plots of first 3 PC were analyzed. Peaks
and valleys in the loading plot of PC1 and PC3 as shown in Figures 7 and 8, which explain that high
absolute (abs) loading values, were selected as optimal wavelengths for identifying the chemicals
effectively [53,54]. The first derivative method processed the spectral reflectance of the chemical to find
the wavelengths where the value of first derivative becomes zero, and these wavelengths were selected
as optimal wavelengths as shown in Figure 9 [55]. Also, 22 optimal wavelengths were selected in the
spectral range of 400–1000 nm using the first three PC and first derivative and are listed in the Table 3.Sensors 2019, 19, x FOR PEER REVIEW 10 of 16 
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Table 3. Selected optimal wavelength.

Spectral Range (nm) Wavelengths Selected (nm)
(Combining Loading and First Derivative) Number of Wavelengths

400–600 426, 451, 467, 479, 508, 520, 536, 556 8
600–800 665, 693, 717, 729, 733, 761, 765 7

800–1000 805, 829, 845, 853, 865, 925, 961 7

3.4. SVM Classification Model

The spectral library generated from hyperspectral image data was used to develop a SVM model
that can be used for identifying traces of chemicals and type of chemical present more accurately.
The SVM model was built using caret package in R studio on the training dataset and tested on the
testing dataset to check the accuracy. For developing the SVM model A, the spectral sample dataset was
split into training and testing dataset with the ratio of 70:30. After splitting, 4200 spectral observations
were made in the training dataset whereas 1800 observations were made in the testing data. In the
spectral range of 400–1000 nm, the SVM model A achieved a discrimination accuracy and kappa
coefficient of 86.48%, 81.97% for the training dataset and 81.11%, 74.81% for the testing dataset. SVM
model B was developed using the optimal wavelengths selected as shown in Table 3 and it achieved the
discrimination accuracy, kappa coefficient of 86.71%, 74.81 in the training dataset and 77.17%, 69.59 in
the testing dataset. An accuracy assessment for both SVM models are shown in Figure 10 and class wise
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classification results and confusion matrix for model established on 144 wavelengths (SVM model A)
and on selected wavelengths (SVM model B) are shown in Tables 4 and 5, respectively. With the pixel
size of 0.012 cm, the traces of AN, C4 and TNT were identified successfully while some pixels of soil,
C4 and TNT were misclassified. Misclassification might have occurred because the difference of the
spectral reflectance at certain wavelengths was not significant.
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Figure 10. Accuracy assessment of Support Vector Machine (SVM) model on full spectra (SVM Model A)
and SVM model on optimal wavelength (SVM Model B).

Trade-off between cost and accuracy of the SVM model using radial function was determined by
varying the cost from 0.25 to 128 and it was observed that the accuracy increased from 0.72 to 0.864,
respectively. Tuning parameter sigma was held constant at a value of 4.86. Accuracy was used to select
the optimal model using the largest value. The final values used for the model were sigma = 0.006 and
C = 4.

Classification results of the SVM model using full spectra and optimal wavelength for identifying
AN, C4, TNT and soil were satisfactory as all the four classes achieved an accuracy of more than 76%
in the training and 70% in the testing dataset. Conversely, execution time of SVM model B based
on optimal wavelengths was reduced to almost half than the model A based on full spectra. For all
individual classes: C4, AN, TNT and soil, class accuracy was calculated to measure the performance
of the classification based on the confusion matrix. There were 241, 173, 150, and 4 pixels which
were misclassified during training of SVM model A gave an accuracy of 76.71%, 83.25%, 86.12%,
and 99.61%. During testing of SVM model A, 131, 89, 98, and 22 pixels were misclassified, achieving
an accuracy of 70.36%, 79.59%, 79.19%, and 95.12%. Similarly, individual classes in the SVM model B
gave an accuracy of 76.47%, 84.32%, 86.30%, and 99.71% during training and 70.51%, 73.85%, 77.38%,
and 95.90% during testing.

Table 4. Classification results of SVM model A.

Reference Prediction SVM Model A Training

Class C4 AN TNT Soil Accuracy (%)

C4 794 150 91 0 76.71
AN 145 860 28 0 83.25

TNT 107 40 931 3 86.12
Soil 4 0 0 1047 99.61

SVM Model A Testing

Class C4 AN TNT Soil Accuracy (%)

C4 311 75 51 5 70.36
AN 79 347 10 0 79.59

TNT 56 26 373 16 79.19
Soil 4 2 16 429 95.12
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Table 5. Classification results of SVM model B on optimal wavelengths.

Reference Prediction SVM Model B Training

Class C4 AN TNT Soil Accuracy (%)

C4 806 170 77 1 76.47
AN 135 839 21 0 84.32

TNT 107 41 951 3 86.30
Soil 2 0 1 1046 99.71

SVM Model B Testing

Class C4 AN TNT Soil Accuracy (%)

C4 318 80 53 0 70.51
AN 94 305 14 0 73.85

TNT 70 31 366 6 77.38
Soil 12 0 7 444 95.90

4. Conclusions

In this study, we examined the potential of the HSI for rapid and non-destructive assessment
for standoff trace detection of explosives. For the purpose of collecting hyperspectral images,
halogen and infrared lamp, along with hyperspectral sensor were used. The average spectrum
of different chemical samples was calculated from ROI in order to develop the spectral library of
chemicals used in explosives. PCA along with first derivative method were used to select the optimal
wavelengths. In total, 22 wavelengths were selected from 144 wavelengths which were used for
establishing a simplified SVM model which had similar predictive accuracy as compared to SVM
model developed on full spectra, but the performance of the model was enhanced because the
execution time of the simplified SVM model was nearly half that of the original SVM model due
to which computational load reduced. Models developed using the optimal wavelengths showed
acceptable results for trace detection of chemicals with an accuracy of 77.17%, whereas the SVM model
developed using spectral values from the whole spectrum of 400–1000 nm achieved an accuracy of
81.11%. Therefore, for identifying chemical traces in the large scene of ground images, we need the
SVM model built using the optimal wavelengths due to its less computational load. The results of the
study support the high potential of HIS along with the SVM model for trace detection of explosives by
overcoming the drawbacks of existing techniques (such as being time consuming, heavy equipment,
and destructive processes).

We also conclude that the result obtained in this study can be used for reference. However,
we limited our scope to laboratory conditions, with an artificial light source for trace detection of
three chemicals and keeping soil in the background because trace detection of explosive materials
is encountered in various environmental conditions. Their analysis brings specific challenges which
will be addressed in future work. In order to adapt this system for real ground conditions, a future
study will be conducted under different environmental conditions and natural daylight. In particular,
changing the parameters can further optimize the algorithms and improve the model for more accurate
trace detection HSI in the future.
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