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Abstract: Land cover change detection based on remote sensing has become increasingly important
for protecting the ecological environment. Spatial features of images can be extracted by object-level
methods. However, the computational complexity is high when using many features to detect
land cover change. Meanwhile, single-constrained change detection (SCCD) methods produce
non-objective and inaccurate results. Therefore, we proposed a land cover change detection method:
the object-level double constrained change detection (ODCD) method. First, spectral and spatial
features were calculated based on multi-scale segmentation results. Second, using the significant
difference test (SDT), feature differences among all categories were calculated, and the features with
more significant differences were considered as the optimal features. Third, the maximum Kappa
coefficient was used as the criterion for determining the optimal change intensity and correlation
coefficient. Finally, the ODCD was validated using GF-1 satellite images on March 2016 and February
2017 in north Beiqijia Town, Beijing. Using optimal feature selection, the dimension of features was
reduced from 26 to 12. Compared with SCCD methods, the result of the ODCD was more reliable
and accurate. Its overall accuracy was 10% higher, overall error was 27% lower, and the Kappa
coefficient was 0.22 higher. In conclusion, the ODCD is effective for land cover change detection and
can improve computational efficiency.

Keywords: land cover change detection; object-level; multi-scale segmentation; optimal features
selection; change vector analysis; correlation coefficient

1. Introduction

Owing to the rapid increase of urban populations and the rapid expansion of urban areas, many
ecological and environmental problems, such as reduced vegetation cover and increased surface runoff,
have become gradually more serious [1]. As the core of ecological environment change monitoring,
land cover change detection has become a hot topic in environmental science and ecology [2]. Remote
sensing technology has the advantages of being macroscopic, comprehensive, dynamic, and rapid, as
well as being the most economical and effective means for detecting land cover changes [3]. Various
remote-sensing methods have been applied to this problem: Yuan et al. used Principal Component
Analysis (PCA) to identify land cover changes based on multi-temporal Landsat5 TM images [4];
Johnson et al. used Change Vector Analysis (CVA) to detect land cover changes in Landsat5 TM
multispectral images [5]; Zhou and Yang used ratios of different images to detect changes in Anshun
City, Guizhou Province [6]; and Li and Ye used PCA to detect changes in Dongguan, Zhujiang
Delta [7]. However, these methods were all on the pixel-level; thus, they cannot use the spatial
characteristics of images and are prone to the serious “pepper and salt phenomenon” [8]. Due to

Sensors 2019, 19, 79; doi:10.3390/s19010079 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s19010079
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/1/79?type=check_update&version=2


Sensors 2019, 19, 79 2 of 21

improvements in spatial resolution, the remote sensing images have become increasingly informative.
Im et al. first introduced the object-level method for land cover classification and change detection [9].
Lobo et al. compared object-level methods with pixel-level methods and found that the results from
the former are more easily interpreted and have better integrity for each patch [10]. Wang and Zhao
detected the land cover changes on the object-level using high-resolution remote sensing images [11].
Moreover, Lu and Scott used object-level methods to detect urbanization changes in high-resolution
images [12]. These results showed that the object-level methods had more advantages than the
pixel-level methods. However, objects generated by object-level segmentation have multi-dimensional
features for remote sensing images, i.e., spectral, texture, and spatial features, and as the number of
bands increases, the number of features also increases, which will increase the computational burden
if all the features are used to perform land cover change detection. That is, as the dimension of the
features increases to a certain number, the change detection accuracy decreases [13]. In addition,
object-level change detection methods include a direct comparison method and a post-classification
comparison method [14]. However, the object-level post-classification comparison method relies on
the effect of classification, which has limitations, whilst the object-level direct comparison method
has better stability and accuracy [15]. In recent decades, many scholars have continuously developed
many object-level detection methods based on remote sensing. Quampby compared the differences of
bands in images to detect urban land-use change [16]; Fan et al. used the image difference method to
detect changes in Panzhihua [17]; and Li et al. used PCA to detect changes in Dongguan of the Pearl
River Delta [18]. Yan proposed an object-level method. The author used the Mean-Shift algorithm to
segment the image and used CVA to obtain the detection result [19]. However, most of these methods
used one threshold to detect change, which rendered the results not objective. Object-level CVA is a
direct comparison change detection method, which can usually obtain good results. For example, Yu
used Landsat TM/ETM+ to compare the object-level CVA with the object-level conventional change
detection methods (spectral vector similarity method, principal component difference method), and
found that the object-level CVA obtained the best results of land cover change detection [20]. Qi et al.
applied object-level CVA to perform land cover change detection with polarized SAR images, which
improved the accuracy of change detection [21]. Wang et al. used object-level CVA for land cover
change detection and they obtained good results [22]. At the same time, J. Im et al. studied the
correlation between image objects based on segmentation and they extracted the change regions based
on this method. The authors’ found that with the improvement in image resolution, the object-level
correlation analysis was suitable for change information extraction of remote sensing images [9].
Given that CVA can directly compare the differences between image features and that the correlation
coefficient can analyze the correlation between image features, the combination of the two methods can
more effectively detect land cover change. However, as the number of bands increases, the judgement
of change using CVA becomes relatively difficult [23,24]. Moreover, the change threshold is usually
determined by empirical judgment that makes the results neither objective nor effective. Therefore,
this study proposed a method of double constrained thresholds for the change intensity threshold
and the correlation coefficient on the object-level (ODCD), which aimed to reduce the number of
dimensions for features and to improve the computational efficiency, objectivity, and accuracy of land
cover change detection.

2. Materials and Methods

2.1. Materials

The study area is located at the northern part of Beiqijia Town, Changping, Beijing (Figure 1).
The typical classes of land cover in this area are vegetation, residential, bare land, and waterbody.
The data used in this study were 8-m resolution multi-spectral images of the GF-1 satellite acquired on
24 March 2016 and 23 February 2017.
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Figure 1. Map and GF-1 satellite images of the study area.

GF-1 satellite is a high-resolution earth observation system remote sensing satellite launched by
China on 26 April 2013. GF-1 satellite is equipped with two cameras (PMS) with a 2-m resolution
panchromatic wave band, 8-m resolution multi-spectra band, and four 16-m resolution multi-spectral
wide-format cameras (WFV1–WFV4). Its multispectral sensors have four bands: blue, green, red,
and near infrared. The interview period is 4 days. GF-1 satellite data has the characteristics of high
resolution, wide width, and short return period, and it can be widely used in agricultural remote
sensing, environmental monitoring, and other fields [25,26].

2.2. Methods

This study used object-level CVA and the correlation coefficient to achieve land cover change
detection. To reduce redundancy of data and to improve the quality of selected features, the significant
difference test (SDT) for features was performed to select the most significant difference feature as
the optimal feature. When determining the optimal change threshold, the optimal thresholds of
change intensity and the correlation coefficient were selected based on the maximum Kappa coefficient.
The Kappa coefficient is a consistency test method proposed by Cohen in 1960 to evaluate the
classification results of remote sensing images [27,28]. It is calculated according to Equations (1) and (2).

k =
P0 − Pe

1− Pe
(1)

P0 =
∑n

i=1 Pii

N
(2)

where k is the Kappa coefficient. P0 is the proportion of units in which the judges agreed; Pe is the
proportion of units for which agreement is expected by chance; n is the number of types of classification;
N is the total number of samples; Pii is the number of correctly classified samples of type i.

The flow chart for the ODCD is shown in Figure 2, which includes the following steps. First,
the atmospheric correction, geometric correction, orthorectification, and image registration were
performed to reduce noises and improve image quality. Second, multi-scale segmentation was used
to obtain highly homogeneous objects, and the initial land cover categories, such as classification
of vegetation, bare land, residential, and waterbody. Third, some common spectral features, shape
features, and texture features of objects were calculated based on the multi-scale segmentation results.
Fourth, using SDT, the differences of the above features amongst all the categories were calculated,
and the features with more significant differences were considered as the optimal features. Fifth, the
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change intensity was calculated via CVA using the optimal features, and the correlation coefficient
between corresponding objects in the GF-1 image of 2016 and 2017 were calculated. Sixth, based on
the change intensity and the correlation coefficient calculated in the previous step, the maximum
Kappa coefficient was used as the criterion for determining the optimal thresholds of the change
intensity and the correlation coefficient. Seventh, using the optimal thresholds of the change intensity
and the correlation coefficient, the results of land cover change detection could be obtained. Finally,
for the overall accuracy, the Kappa coefficient and the overall error were selected as the accuracy
evaluation indexes.
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2.2.1. Multi-Scale Segmentation

Multi-scale segmentation is a widely used image segmentation method that exhibits good results
for object-level remote sensing image analysis. It comprehensively considers the spectral features
and spatial features of remote sensing images, and it uses a bottom-up iterative merging algorithm to
segment an image into objects with high homogeneity [29]. The homogeneity of objects is calculated as
the standard deviation of the objects’ internal pixels, whilst the heterogeneity includes the spectral and
shape heterogeneity of objects [30]. In this study, both images underwent multi-scale segmentation
simultaneously to obtain the same segmentation objects. This ensured that the homogeneous objects
did not include multiple objects or mixed objects in the other image, if only a single image was
used for segmentation. Furthermore, the segmentation results should not be too fragmented and
the differences between neighboring objects are demonstrated by setting the segmentation scale.
The objects should have high internal homogeneity and be consistent with the actual boundaries
of features. The main parameters of multi-scale segmentation include the segmentation scale and
homogeneity factor. The homogeneity factor includes spectral features and shape factors, and the
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sum of the weights of the spectral features and shape factors is 1. Spectral features are typically the
most important, being important factors for image object generation. When the weight of the shape
factor is higher than 0.5, the generated polygons are too regular and have no practical meaning, and
therefore, do not conform to the actual features of the objects [31]. Thus, the weight of the spectral
features should be greater than 0.6 [32,33].

2.2.2. Optimal Feature Selection

Feature Construction

Object-level change detection can not only utilize the spectral features, but also the spatial features
of images, including texture features and shape features, to obtain more descriptive information.
In traditional change detection methods, spectral features are the most important factor due to visual
expression of image information [34]. In this study, four commonly used spectral features, including
the mean, standard deviation, normalized difference vegetation index (NDVI), and the normalized
difference water index (NDWI) were selected, and the features’ calculation formulas are shown in
Table 1.

Table 1. Spectral features.

Feature Parameters Formula Formula Description

Mean µ = 1
n

n
∑

i=1
Vi

µ is the sum of all pixel values Vi divided
by the total number of pixels in one object.

Standard deviation δ =

√
1

n−1

n
∑

i=1
(Vi − µ)2 Vi is the value of all pixels in the object, µ

is the mean of the object.

NDVI NDVI =
ρNIR − ρR
ρNIR + ρR

ρNIR is the reflectance for the
near-infrared band, ρR is the reflectance

for the infrared band.

NDWI NDWI =
ρGreen − ρNIR
ρGreen + ρNIR

ρGreen is the reflectance of the green band,
and ρNIR is the reflectance of the

near-infrared band.

Texture features can reflect the regional characteristics of a remote sensing image. In 1973, Haralick
proposed the characteristic parameters for analyzing the Gray Level Co-occurrence Matrix (GLCM) [35].
The GLCM is a widely used method for calculating texture features. In this study, three common
features, including correlation, dissimilarity, and energy were selected, and the calculation formulas
are shown in Table 2.

Table 2. Texture features.

Features Parameters Formula Formula Description

Correlation Correlation =
k
∑

i=1

k
∑

j=1

(ij)P(i, j)− uiuj

SiSj

i is the gray value of any point in the image; j is the gray
value of another point deviating from the point; P(i, j) is
the frequency of occurrence of the gray pair in the gray

level co-occurrence matrix, ui and uj represent the mean
values in the row and column direction, respectively, and

Si and Sj represent the variance in the row and column
direction, respectively. It reflects the consistency of image
texture and the degree of similarity of metric co-occurrence

matrix elements in the row or column direction.

Dissimilarity Dissimilarity =
n−1
∑

i,j=0
P(i, j)|i− j|

P(i, j) is the frequency of occurrence of the gray pair in the
gray level co-occurrence matrix. The higher the local

contrast, the higher the similarity.

Energy Energy =
n−1
∑

i,j=0
P(i, j)2

P(i, j) is the frequency of occurrence of the gray pair in the
gray level co-occurrence matrix. Energy is also called “the
angle second moment.” When the image is a homogeneous

area with a consistent texture, its energy is greater.
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Shape features can reflect the shape information of an object in a remote sensing image and
describe the assemblage of its shape features, which helps to avoid the phenomena of “same object
with different spectra, different objects with same spectrum” [36]. The area, length, width, shape index,
and aspect ratio are generally used to describe shape features. In this study, the area, shape index, and
aspect ratio were selected. The calculation formulas are shown in Table 3.

Table 3. Shape features.

Feature Parameters Formula Formula Description

Area A =
n
∑

i=1
xi

xi is the value of pixel i. This describes the size of the
object. For non-geographically referenced data, the area

of the pixel is 1.

Aspect ratio γ =
l
w

=
eig1(s)
eig2(s)

S is the covariance matrix composed of the coordinates
of points after object vectorization, w is the width, and l

is the length of each object.

Shape index SI =
p

4×
√

A

The variable p is the perimeter of the image object, A is
the area of the image object. This describes the

compactness of an object. The higher the compactness,
the greater the density, and the more similar the shape is

to a square.

Feature Selection

Considering the spectral, texture, and shape features of objects and multi-band characteristics,
data redundancy is inevitable. To reduce this redundancy and improve feature quality, it is necessary
to select features that effectively describe the information of each object. The SDT is used to test
the difference between the experimental group and the control group, or the effect of two different
treatments, and whether the difference is significant or not [37]. Therefore, we used the SDT to calculate
the significance difference for different land cover types amongst the selected category features in
each band for feature optimization. The greater the difference in features, the more significant the
band features. This also demonstrates that the features of this band can be selected as optimal
features. Variance analysis was applied to perform the SDT in this study. The significant difference
was calculated according to Equation (3).

F = MSb/MSw (3)

where,
MSb = SSb/Vb (4)

MSw = SSw/Vw (5)

SSb = ∑i

(
∑j Xij

)2

b
−
(
∑i ∑j Xij

)2
/N (6)

SSw = SS− SSb (7)

SS = ∑i ∑j Xij
2 −

(
∑i ∑j Xij

)2
/N (8)

Vb = k− 1 (9)

Vw = N − k (10)

where F is the statistic calculated by the analysis of variance, MSb is the variance between groups, MSw

is the variance within group, SSb is the sum of squared deviations between groups, SSw is the sum of
squared deviations within group, SS is the total sum of squared deviations, Xij is the j-th sample value
of the i-th group, N is the total number of samples, b is the total number of samples of each group, Vb
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is the degree of freedom between groups, Vw is the degree of freedom within the group, and k is the
total number of groups.

F Distribution is F~F(vb, vw) as in Reference [38]. According to the F threshold table, Fα(vb, vw)

can be found. Generally, the value of α is 0.05 or 0.01. By comparing F with Fα(vb, vw), the significant
difference can be found. For example, when F < F0.05(vb, vw), the difference is not significant; when F≥
F0.05(vb, vw), the difference is significant; when F ≥ F0.01(vb, vw), the difference is extremely significant.

2.2.3. Change Vector Analysis

CVA was first proposed by Malila in 1980 [39]. It can express multiple characteristics of each
object using one-dimension vectors of n bands for an image. In this study, because the dimension
and magnitude of the features used were quite different, standardization [40] was performed for each
feature prior to its use in change detection. The change vector contains all the change information for a
given object between two images and can be expressed as Equation (11).

∆G = H − G =


x1

i (t1)− x1
i (t2)

x2
i (t1)− x2

i (t2)

. . .
xn

i (t1)− xn
i (t2)

 (11)

The feature vector of an object in a remote sensing image at time t1 and t2 is represented as
G =

(
x1

i (t1), x2
i (t1), . . . , xn

i (t1)
)T and H =

(
x1

i (t2), x2
i (t2), . . . , xn

i (t2)
)T , respectively, where n is the

feature number and xk
i (t) represents the normalized value of the k-th feature of object i at time t.

The change intensity can be calculated using the Euclidean Distance as in Equation (12):

‖∆G‖ =
√

∑n
k=1

(
xk

i (t1)− xk
i (t2)

)2 (12)

where ‖∆G‖ characterizes all the feature differences between two remote sensing images. The larger
the ‖∆G‖, the more likely the object is changed. Detection for changed and non-changed objects
can be completed by setting the change threshold according to the value of the change intensity.
By determining the change threshold, the change area can be determined from the change intensity
map easily and accurately.

2.2.4. Correlation Coefficient Calculation

According to pattern recognition theory, multiple unrelated constraints should be used for
recognition to avoid the limitations of single constraints [41]. In the traditional land cover detection
method, only single change intensity is utilized to determine the change and unchanged areas, and its
accuracy is not ideal. This study introduced the correlation coefficient and combined it with the change
intensity to determine the change area. Based on the multi-scale segmentation results, we calculated
the correlation coefficient between objects. When the object changes, the correlation coefficient is
low; when the object does not change, the correlation coefficient is high. The correlation coefficient is
calculated using Equation (13).

R =
∑n

k=1

{[
xk

i (t1)− xi(t1)
]
·
[

xk
i (t2)− xi(t2)

]}
√

∑n
k=1
[
xk

i (t1)− xi(t1)
]2 ×∑n

k=1
[
xk

i (t2)− xi(t2)
]2 (13)

where n is the number of bands, xk
i (t) represents the average gray value of all the pixels of object i in

band k in the t-phase image, and xi(t) represents the mean gray value of object i of the n bands in the
t-phase image.
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2.2.5. Optimal Threshold Determination for Change Detection

According to the research of Tung Fung et al. [42], the Kappa coefficient based on a confusion
matrix may be the most appropriate for determining the optimal change threshold among various
indexes. Therefore, in this study, samples with changes and samples with no changes were selected.
The change intensity and correlation coefficient with the maximum Kappa coefficient were selected as
the optimal change thresholds. Then, the two thresholds were applied to detect the land cover changes.
Finally, the change detection result image was generated. The confusion matrix [43] for the land cover
change detection results is shown in Table 4. The misjudgment error, omission error, detection accuracy,
overall accuracy, and the Kappa coefficient are calculated according to Equations (14)–(18).

Misjudgment error = Nnc/Ntc (14)

Omission error = Ncn/Nct (15)

Detection accuracy = Ncc/Nct (16)

Overall accuracy = (Nnn + Ncc)/N (17)

khat =
N·(Nnn + Ncc)− (Ntn·Nnt + Ntc·Nct)

N2 − (Ntn·Nnt + Ntc·Nct)
(18)

where Nnn represents the number of samples where the detection results are unchanged and have not
changed in practice, Ncn represents the number of changed samples incorrectly identified as unchanged
samples, Ntn is the total number of unchanged samples in the test results, Nnc represents the number of
unchanged samples incorrectly identified as changed samples, Ncc represents the number of samples
where the detection results are changed and have changed in practice, Ntc represents the total number
of changed samples in the test results, Nnt represents the total number of unchanged samples in
practice, Nct represents the total number of changed samples in practice, and N represents the total
number of samples. khat is the Kappa coefficient.

Table 4. Confusion matrix for land cover change detection.

Assessment Data

Unchanged Changed Total

Test results
Unchanged Nnn Ncn Ntn

Changed Nnc Ncc Ntc
Total Nnt Nct N

3. Results and Discussion

3.1. Multi-Scale Segmentation

The optimal parameters for multi-scale segmentation of the remote sensing images were
determined by comparison experiments. Different parameter segmentation results are shown in
Figures 3–5.

Figure 3 shows that when the segmentation scale is 15, the result is too fine, which makes the
result complex, and when the segmentation scale is 35, the result is too rough, which will not make a
clear difference. The segmentation scale was 25, which can segment the image into patches with high
internal homogeneity.

Figure 4 shows that when the weights of the shape and spectral feature are 0.2 and 0.8,
respectively, the result provides a clearer difference and can segment the image into patches with high
internal homogeneity.

Figure 5 shows that when the weight of compactness is 0.5, the result is too fine, which makes
the result complex, and when the weight of compactness is 0.9, the result is too rough, which will not
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make a clear difference. The weight of compactness was 0.7, which can segment the image into patches
with high internal homogeneity.
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factor is 0.6, the weight of the spectral feature is 0.4, the segmentation scale is 25.

Sensors 2019, 19, x 9 of 21 

 

Figure 3 shows that when the segmentation scale is 15, the result is too fine, which makes the 
result complex, and when the segmentation scale is 35, the result is too rough, which will not make a 
clear difference. The segmentation scale was 25, which can segment the image into patches with high 
internal homogeneity. 

   
(a) (b) (c) 

Figure 3. Different segmentation scale. (a) The weight of the shape factor is 0.2, the weight of the 
spectral feature is 0.8, the segmentation scale is 15. (b) The weight of the shape factor is 0.2, the 
weight of the spectral feature is 0.8, the segmentation scale is 25. (c) The weight of the shape factor is 
0.2, the weight of the spectral feature is 0.8, the segmentation scale is 35. 

Figure 4 shows that when the weights of the shape and spectral feature are 0.2 and 0.8, 
respectively, the result provides a clearer difference and can segment the image into patches with 
high internal homogeneity. 

   
(a) (b) (c) 

Figure 4. Different weights of the shape and spectral feature. (a) The weight of the shape factor is 0.2, 
the weight of the spectral feature is 0.8, the segmentation scale is 25. (b) The weight of the shape 
factor is 0.4, the weight of the spectral feature is 0.6, the segmentation scale is 25. (c), The weight of 
the shape factor is 0.6, the weight of the spectral feature is 0.4, the segmentation scale is 25. 

Figure 5 shows that when the weight of compactness is 0.5, the result is too fine, which makes 
the result complex, and when the weight of compactness is 0.9, the result is too rough, which will not 
make a clear difference. The weight of compactness was 0.7, which can segment the image into 
patches with high internal homogeneity. 

   
(a) (b) (c) 

Figure 5. Different weights of compactness and smoothness. (a) The weight of smoothness is 0.5, the 
weight of compactness is 0.5, the segmentation scale is 25. (b) The weight of smoothness is 0.3, the 
weight of compactness is 0.7, the segmentation scale is 25. (c) The weight of smoothness is 0.1, the 
weight of compactness is 0.9, the segmentation scale is 25. 

Therefore, the segmentation scale was 25, the spectral and shape weights were 0.8 and 0.2, and 
the smoothness and compactness weights were 0.3 and 0.7, respectively. The results of the 
multi-scale segmentation are shown in Figure 6. The scale and weight set for the multi-scale 

Figure 5. Different weights of compactness and smoothness. (a) The weight of smoothness is 0.5, the
weight of compactness is 0.5, the segmentation scale is 25. (b) The weight of smoothness is 0.3, the
weight of compactness is 0.7, the segmentation scale is 25. (c) The weight of smoothness is 0.1, the
weight of compactness is 0.9, the segmentation scale is 25.

Therefore, the segmentation scale was 25, the spectral and shape weights were 0.8 and 0.2, and
the smoothness and compactness weights were 0.3 and 0.7, respectively. The results of the multi-scale
segmentation are shown in Figure 6. The scale and weight set for the multi-scale segmentation was
reasonable, since it could avoid too much fragmentation of the segmentation results, and effectively
reflect the differences between the different patches, which were consistent with the feature boundaries.
Therefore, the results were satisfactory.
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3.2. Optimal Feature Selection

Some of the differences within features, e.g., the differences in the mean grey value and the energy
of each band, are shown as follow. Figure 7 showed the differences in the mean grey value of each
band. F0.05(1, 9) was the limiting value and its value was 5.1174. Bands 1, 2, 3, and 4 represented
blue, green, red, and near-infrared band, respectively. Generally, when F was higher than F0.05(1, 9),
the corresponding difference between the two categories was more significant. Compared with the
differences in the mean of the spectral features (Figure 7), it showed that the differences between
the residential and bare land in band 1 (Figure 8) and the differences between the vegetation and
residential land in bands 3 and 4 (Figure 9), were not significant, because F was much lower than
F0.05(1, 9). The differences between all the categories in band 2 were more significant for F which it
was higher than F0.05(1, 9).
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Using the SDT, the most distinctive features among the categories were finally selected (Figure 11).
The most distinctive spectral features were the mean of band 2, the variance of band 1, the NDVI,
and the NDWI. The most distinctive texture features were the correlation of band 3 and band 4, the
dissimilarity of band 1 and band 3, and the energy of band 1. The shape features were the length–width
ratio, area, and the shape index. In total, 12 features were selected as the optimal features for land
cover change detection.
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3.3. Change Intensity and the Correlation Coefficient

According to the multi-scale segmentation results, we calculated the change intensity and
correlation coefficient of the objects. The change intensity map for the GF-1 images in 2016 and
2017 is shown in Figure 12. When the patch was changed, its change intensity value was greater
and the color was brighter. When the patch was unchanged, the change intensity value was smaller
and the color was darker. The correlation coefficient map for the GF-1 images in 2016 and 2017 is
shown in Figure 13. When the patch was changed, its correlation coefficient was smaller and its color
was brighter. When the patch was unchanged, the correlation coefficient was larger and the color
was darker.
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3.4. Land Cover Change Detection

Using visual interpretation, 213 samples were selected for model training, including 87 changed
samples and 126 unchanged samples. These training samples were used to analyze the changed
binary map generated during the loop computation. By calculating the Kappa coefficient, the optimal
change intensity threshold and the optimal correlation coefficient threshold with the maximum Kappa
coefficient were calculated. The ODCD and SCCD methods were both used for land change detection.

3.4.1. Results from SCCD

When SCCD was applied for land cover change detection, only the change intensity was used.
According to the training samples, the maximum value of the Kappa coefficient was 0.80 and the
optimal threshold of change intensity was 0.30. That is, the object changed when the change intensity
value was greater than 0.30. Based on the optimal threshold of change intensity, a final binary map
was acquired as shown in Figure 14. The maximum Kappa coefficient corresponding to the confusion
matrix is shown in Table 5. By overlaying the land cover change map on the GF-1 image in 2017, as
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shown in Figure 15, it was clear that most of the changed features involved changes from bare land
and vegetation to residential, and small parts involved changes from waterbody to bare land. SCCD
change detection was sensitive to seasonal changes in vegetation, spectral changes in the roofs of
buildings, and spectral changes in bare land, so they are easily misclassified as changes by SCCD.
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Table 5. Confusion matrix for the maximum Kappa coefficient of single-constrained change detection (SCCD).

Verification Samples
Total User Accuracy (%)

Unchanged Changed

Test Results
Unchanged 121 5 126 96.03

Changed 15 72 87 82.70
Total 136 77 213

Producer Accuracy (%) 88.97 93.50

Overall accuracy = 90.61%; Kappa coefficient = 0.80.
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3.4.2. Results from the ODCD

When the ODCD was applied for land cover change detection, the change intensity and correlation
coefficient were both used. According to the training samples, the maximum Kappa coefficient was
0.87, and the optimal thresholds of the change intensity and correlation coefficient were 0.26 and 0.94,
respectively. That is, when the change intensity was greater than 0.26 and the correlation coefficient
was less than 0.94, the object changed. According to the optimal change intensity and correlation
coefficient thresholds, the change binary image was acquired as shown in Figure 16. By overlaying
the land cover change map on the GF-1 image in 2017 as shown in Figure 17, some typical change
examples are shown in Figure 18. The maximum Kappa coefficient corresponding to the confusion
matrix is shown in Table 6, and it is clear that the overall accuracy and the Kappa coefficient of the
ODCD are higher than that of the SCCD. The ODCD can make up for the shortcomings in the seasonal
sensitivity of SCCD and improve the accuracy of change detection.
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Figure 18. Examples of typical land cover change types: (a(1),b(1),c(1),d(1),e(1)): Worldview 02 Images
in 2016: (a(2),b(2),c(2),d(2),e(2)): Worldview 02 Images in 2017: (a(3),b(3),c(3),d(3),e(3)): land cover
change detection result using GF-1 images.

Table 6. Confusion matrix for the maximum Kappa coefficient of the ODCD.

Verification Samples
Total User Accuracy (%)

Unchanged Changed

Test Results
Unchanged 122 8 130 93.85

Changed 5 78 83 93.98
Total 127 86 213

Producer Accuracy (%) 96.06 90.70

Overall accuracy = 93.9%; Kappa coefficient = 0.87.

Among all the above examples, the ODCD efficiently detected the changed areas. The typical
change detection results in Figure 18a,b show changes from bare land to residential, and the results in
Figure 18c show changes from waterbody to bare land, whilst the results in Figure 18d show changes
from vegetation to bare land. The results in Figure 18e show changes from vegetation to residential.
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Owing to the resolution of the images, some small details were detected as changed areas, such as
shadows between buildings.

3.5. Precision Comparison

To further confirm the validity and accuracy of the ODCD, a total of 333 samples, excluding
the samples used to determine the optimal change threshold, were selected for validation, including
133 changed samples and 200 unchanged samples. For the analysis of the change detection results, we
compared the results of the ODCD and SCCD. The overall accuracy, Kappa coefficient, and overall
error were selected as the accuracy evaluation indexes. The quantitative evaluation results are shown
in Tables 7 and 8. The accuracy comparison between the ODCD and SCCD is shown in Table 9.
The overall accuracy and the Kappa coefficient of the ODCD were higher than that of SCCD. For
overall accuracy, the overall accuracy of the ODCD was 92.19% while the overall accuracy of SCCD
was 81.98%. The overall accuracy of the ODCD was about 10% higher than that of SCCD. For the
Kappa coefficient, the Kappa coefficient of the ODCD was 0.84 and the Kappa coefficient of SCCD
was 0.62. The Kappa coefficient of the ODCD was about 0.22 higher than that of SCCD. For the error,
misjudgment error, and the omission error, the results for the ODCD were lower than the results of
SCCD. The misjudgment error was 15% lower and the omission error was 12% lower. The total error
of the ODCD was 27% lower than that of SCCD.

Table 7. Confusion matrix of SCCD.

Verification Samples
Total User Accuracy (%)

Unchanged Changed

Test Results
Unchanged 172 28 200 86.00

Changed 32 101 133 75.94
Total 204 129 333

Producer Accuracy (%) 84.31 78.29

Table 8. Confusion matrix of ODCD.

Verification Samples
Total User Accuracy (%)

Unchanged Changed

Results
Unchanged 186 14 200 93.00

Changed 12 121 133 90.98
Total 198 135 333

Producer Accuracy (%) 93.94 89.63

Table 9. Accuracy comparison table between SCCD and ODCD.

Overall Accuracy Kappa Coefficient
Total Error

Misjudgment Error Omission Error

SCCD 81.98% 0.62 24% 22%

ODCD 92.19% 0.84 9% 10%

For testing whether the differences of accuracy were statistically significant, we carried out a
hypothesis statistical test (t-test) to confirm that the differences in accuracy were statistically significant.
An additional total of 121 samples were selected for validation, including 89 changed samples and
32 unchanged samples. The quantitative evaluation results are shown in Tables 10–12. The t-test was
used to test whether the differences were statistically significant. α is the limiting value in the t-test,
and its value is generally 0.05. When the p-value calculated by the t-test was less than α, it could be
concluded that the differences were statistically significant [44]. The results are shown in Table 13.
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Table 10. Confusion matrix of SCCD.

Unchanged Changed Total

Unchanged 73 16 89
Changed 4 28 32

Total 77 44 121

Table 11. Confusion matrix of the ODCD.

Unchanged Changed Total

Unchanged 83 6 89
Changed 4 28 32

Total 87 34 121

Table 12. Accuracy comparison table between SCCD and ODCD.

Overall Accuracy Kappa Coefficient

SCCD 83.66% 0.62
ODCD 91.73% 0.80

Table 13. t-Test for difference.

Overall Accuracy Difference Kappa Coefficient Difference

Training group 3.29% 0.07
Verification group 1 10.21% 0.18
Verification group 2 8.07% 0.22

p value 0.03186 0.02286

Given the p-value was less than 0.05, the differences were statistically significant. The validity
and accuracy of the ODCD could be confirmed.

4. Conclusions

The ODCD proposed for land cover change detection in this study resolved the problem of
computational complexity due to excessive feature variables in feature extraction. However, the
problem of using empirical judgment to determine the change threshold makes the results less objective
and less accurate. The ODCD employs a more objective change threshold determination algorithm
that achieves simultaneous determination of the thresholds of the change intensity and the correlation
coefficient based on maximizing the Kappa coefficient. It is a more effective method for land cover
change detection. The major conclusions are as follows.

(1) Combining change vector analysis with correlation coefficients based on object-level, the ODCD
can reduce the shortcomings of seasonal sensitivity of SCCD and improve the accuracy of land
cover change detection. The ODCD’s overall accuracy was 92.19% and this was 10% higher
than that of SCCD. At the same time, its overall error was 20% and it was 27% lower than that
of SCCD.

(2) ODCD can be used to reduce the number of features and improve the computational efficiency.
The SDT is an effective feature optimization method. Using optimal feature selection, the feature
dimensions were reduced from 26 to 12, which increased the calculation speed.

Therefore, the ODCD can provide a useful reference for ecological environment assessment and
land use planning. At the same time, the ODCD can provide an effective reference for remote sensing
in land cover change detection.

Future studies on the ODCD should involve a greater number of different objects, such as
objects related to residential change detection. In addition, the image resolution in this study led to
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some areas being detected as changed areas; therefore, further studies should also utilize different
resolution images.
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