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Abstract: There have been decades of research on face recognition, and the performance of many
state-of-the-art face recognition algorithms under well-conditioned environments has become
saturated. Accordingly, recent research efforts have focused on difficult but practical challenges. One
such issue is the single sample per person (SSPP) problem, i.e., the case where only one training image
of each person. While this problem is challenging because it is difficult to establish the within-class
variation, working toward its solution is very practical because often only a few images of a person
are available. To address the SSPP problem, we propose an efficient coupled bilinear model that
generates virtual images under various illuminations using a single input image. The proposed
model is inspired by the knowledge that the illuminance of an image is not sensitive to the poor
quality of a subspace-based model, and it has a strong correlation to the image itself. Accordingly,
a coupled bilinear model was constructed that retrieves the illuminance information from an input
image. This information is then combined with the input image to estimate the texture information,
from which we can generate virtual illumination conditions. The proposed method can instantly
generate numerous virtual images of good quality, and these images can then be utilized to train the
feature space for resolving SSPP problems. Experimental results show that the proposed method
outperforms the existing algorithms.

Keywords: single sample per person problem; face relighting; coupled bilinear model

1. Introduction

For the last 30 years, researchers have investigated issues associated with finding and developing
effective methods of face recognition [1,2]. From the results of such efforts, diverse methods of face
recognition have been developed, giving users a certain level of face recognition performance under
both controlled and uncontrolled environments. However, many issues are yet to be resolved in
order to expand the range of effective applications of face recognition. Basically, the difficulty in
face recognition is caused by intrinsic factors, such as varied expressions, aging, makeup, or worn
accessories, and extrinsic factors, such as varied poses or illumination that could change the facial
image to resemble various other facial images.

The methods that have been developed and employed for face recognition thus far can be divided
into two types: those that use three-dimensional (3D) face models [3,4] and those that use the features
from two-dimensional (2D) facial images [5,6]. However, obtaining a 3D face model requires special
equipments or needs numerous computational resources; limitations are therefore unavoidable for
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instruments with small-scaled computational resources, such as mobile devices or for other generally
employed equipments [7].

The appearance-based methods that use 2D images represent images as a 2D array or as 2D vectors
and recognize facial images using statistical information on the pixel density [8–11]. These methods
commonly define diverse objective functions and covariance matrices to extract features available
for the recognition of faces. Appearance-based methods exploit supervised [9], semi-supervised [11],
or unsupervised learning [10]. Among them, the strategy used in discriminant-analysis-based methods
involves reducing the distribution of within-class images. Moving away from the distribution of
different class images is very effective in an ideal case of small within-class variance but large
between-class variance [9,12]. In addition, appearance-based methods can construct compact,
low-dimensional spaces which retain the intrinsic characteristics of the original face [13]. Since the
low-dimensional feature vector is used as an input of the classifier, enabling real-time operation with
less computational resources, these methods can easily be applied to diverse applications, including
mobile devices.

Securing several images of a person’s face is very important to enable the favorable face
recognition performance of appearance-based methods. Since the facial image is generally converted
into high-dimensional data, the dimension of the input (image) space is frequently higher than the
number of available image samples. In such cases, the within-class covariance matrix becomes singular
and thereby restricts various types of discriminant analyses. This problem is referred to as the small
sample size (SSS) problem [14]. Although several methods, such as Fisherface [8] and Discriminant
Common Vector (DCV) [9], have been presented to solve SSS problems, the number of training
samples needed for one person still affects the performance of such appearance-based methods.
The image acquisition environment can be diversified in a practical face recognition system and, owing
to such environmental variation, the images of the same person can appear to have diverse features.
Therefore, in the case of a small number of image samples, the estimation of within-class variance
becomes inaccurate and consequently degrades the generalization performance of the face recognition
system [15].

In particular, as an extreme case of the SSS problem, the case of only one image per person is called
the single sample per person (SSPP) problem [13,16–18]. The SSPP problem often cannot be resolved
with the methods used to solve general SSS problems because the variance of images within the same
class cannot be defined. In addition, in many cases, it is difficult to obtain several face images of one
person for applications requiring face recognition [16]. More specifically, most large-scale identification
applications for the purposes of law enforcement, driver’s license, or passport-photo identification
generally save only one image for each person in each database; thus, the task of securing more than a
single image of one person is difficult to perform due to the increasing cost and time involved, along
with the increasing number of people or objects that need to be recognized. In addition, the collected
images should be taken under various conditions in order to encompass different variations of faces to
effectively improve the performance of face recognition [13,16].

On the other hand, saving only one image of a person can be a significant advantage for real-world
applications if SSPP problems can be solved easily. This can reduce the practical cost of collecting the
training samples required to establish face recognition systems, together with the storage cost of the
database. Accordingly, the scope of the application of face recognition systems can be expanded,
including the surveillance of public spaces of railway stations or airports, etc. [16,19]. Thus,
the resolution of SSPP problems is important with respect to the performance of face recognition,
as well as the utility of the system.

Numerous methods have been suggested to solve the problems arising from having too few
training images for each person. The methods proposed in [20–22] use new representation schemes
to extract more information from a single image. In [20], images were derived from the original
image by perturbing the face matrix’s singular values. Therefore, the derived images and original
images supplemented the lack of training images. In the E(PC)2A of [21], the original image and its
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corresponding half-, first-, and second-order projected images were used to enlarge the training set.
In [22], new samples were synthesized based on the interclass relationship by using the weighted
combination of pairs of original images. However, the images created through the above methods
were highly correlated, and, thus, it is difficult for the system to recognize them as independent
training images [23].

In other methods proposed to solve SSPP or SSS, virtual images are created through geometrical
transformation, such as the rotation or bilateral symmetric transformation of the original images.
In [24], virtual images were generated using a symmetry transform and linear combination of the
interclass. The method in [25] exploited the symmetrical structure of a face to generate new training
samples. However, these methods focus mainly on an arithmetic increase of the training set and do
not properly reflect the diversity of facial images, which vary according to environmental changes,
such as illumination, etc.

Sparse representation methods [1,26,27] can also be utilized to solve the SSPP problem. Sparse
representation-based classification (SRC) [26] represents a test image as a linear combination of
training images. However, since it does not consider the case of having one image per person [27], the
performance has been found insufficient for managing the SSPP problem. Extended SRC (ESRC) [27]
learns the auxiliary intraclass variant dictionary and uses the undersampled training images to handle
the intra- and interclass variations. Although ESRC improves the robustness of face recognition,
it necessitates collecting images that contain certain variations of the same person. Gao et al. [28]
proposed semi-supervised sparse representation to solve face recognition when there are only a few
labeled samples.

Recently, there have been more proposals with the aim to solve the SSPP problem. Wei and
Wang [29] proposed robust auxiliary dictionary learning to solve the SSPP problem. They utilized
additional samples that are not relevant to the recognition problem to supplement the training data
and handle unwanted sample corruptions, such as occlusions. Ma et al. [30] proposed a non-rigid
face registration method via a regularized Gaussian field criterion to reduce the non-rigid geometric
variations in face images. Ding and Tao [31] proposed the Trunk-Branch Ensemble convolutional neural
network (CNN) model to retrieve a blur-free face image from video data, which can be efficiently used
in face recognition. Masi et al. [32] used various facial image synthesis techniques to account for pose,
shape, and expression variations when training a CNN model for face recognition. There have also been
some proposed one-shot- or few-shot-learning methods based on CNN models [33,34]. Wang et al. [33]
proposed the balancing regularizer and shifting center regeneration for efficient one-shot learning for
face recognition. Wu et al. [34] proposed the use of a hybrid classifier, comprising CNN and nearest
neighbor, for low-shot-learning-based face recognition.

There are many factors to consider in the SSPP problem, such as illumination, pose, occlusion, and
so forth. Among them, this paper focuses on addressing variations in illumination, i.e., we explore the
possibility of synthesizing virtual images from a single image with various realistic illuminations while
considering quality, efficiency, and practicality. There have been some approaches to the synthesis
of illumination for face recognition [13,35]. For example, a recent SSPP algorithm roughly mimicked
illumination variations to improve recognition performance [13]. In the algorithm, facial images
under various illumination conditions were created from bidirectional integral features captured under
lighting with different orientations. However, the method has a limitation whereby the variations
in illumination in vertical or arbitrary directions, except for lateral moves, are difficult to manage.
Another possibility is using GAN [36] to generate synthetic images, and there have been some successes
reported for this task in the recent literature. It is true that GAN can be a viable path; however, it comes
with prices of its own, e.g., it requires a lot of data to train it, a lot of efforts to stabilize the training
procedure, etc.

On the other hand, we may grasp the possibility of using existing face relighting methods for
the SSPP problem, because face relighting itself has been an active area of research for some time.
In some approaches [37,38], the morphable model [39] is modified to handle illumination changes.
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These models are fit to the input image to acquire the 3D shape and illumination, and then the
illumination parameter is replaced to synthesize a novel relit image. These methods tend to give
realistic results due to the power of the morphable model; however, they require a significant amount
of computing power. Another common approach is to utilize 2D illumination models, in which texture
information may be included, that are trained from exemplars [40–43]. These 2D methods approximate
illumination changes based on some representations, such as spherical harmonics [44], and they are
often represented by linear subspaces. These methods are much simpler than those using morphable
model approaches and are less computationally demanding. Although they lack the estimation of
accurate shape information, this can be efficiently counterbalanced (in real time) by normalizing 2D
geometric variations based on recently developed facial feature localization methods [45]. However,
the image qualities of these 2D methods have been usually very poor (i.e., mostly blurry) due to the
limitations of linear subspaces, which were later addressed in patch-based approaches [46,47] with
increased complexities. Other than these, some methods have been proposed that utilize only a single
3D reference [48] or a logarithmic total variation model [49] to generate rough relit images, although
the qualities of their results are poor.

Overall, there is a trade-off between the computational cost and the quality of virtual images and,
accordingly, the recognition performance. These days, face recognition is being realized in various
mobile devices for security purposes, so computationally heavy algorithms are not adequate for
practical situations, but, at the same time, performance should be guaranteed to ensure reliability.
In order to reduce the gap between these two conflicting goals, in this paper, we propose a novel
face relighting method for SSPP problems which instantly synthesizes various relit images with good
qualities. Our proposed model is based on some observations. It has been long observed in the
literature that high-frequency components in an image are related more to the reflectance (or texture)
of an object than to the illuminance. On the other hand, it has been also shown in the literature
that illumination components can be effectively approximated by up to 99% of the total energy
by a low-dimensional subspace [44]. Hence, using a 2D subspace model only for the illumination
components can be a good alternative for generating virtual images. However, in this case, we need to
estimate a dense reflectance map during the illumination synthesis process, which can overcomplicate
the algorithm. In [50], on the other hand, it was shown that facial features extracted from an image
strongly correlate to its 3D shape. A subspace model for facial images, even one that produces blurry
images from image synthesis, is effective for estimating the ‘state’ of the images, such as light conditions
and facial attributes, and the method in [50] utilizes this fact to bridge between the input image and
the output 3D shape. This suggests that, since a 3D shape strongly affects its illuminance, facial
illuminance can also strongly correlate with the corresponding facial features. In fact, we can expect
an even stronger correlation between the illuminance and the facial features, because illuminance is
qualitatively more similar to an image than a 3D shape.

Therefore, in this study, we built a coupled model of image bases (including texture) and
illumination bases (without texture). While facial image bases (including texture) yield poor qualities
in image synthesis, they can provide fairly good information on light conditions and facial attributes.
This information can be combined with the illumination bases to produce virtual illuminance (without
texture), which is relatively insensitive to poor resolution, and they can be used afterward to efficiently
estimate a dense texture map (or reflectance map) of the input image. In this way, we can synthesize a
realistic image without the need for any complicated 3D fitting procedure.

The proposed method constructs a feature space based on these synthesized images to recognize
a face image in order to secure robust face recognition performance and to solve the problems of SSPP.
The experimental results show that the proposed method improves face recognition performance with
a single training sample per person, even in the presence of illumination variation. The proposed
virtual image synthesis method can also be used in deep learning for data augmentation. In order
to fully handle the SSPP problem, there are many factors, such as pose, occlusion, makeup, facial
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variation, as well as illumination, that have to be considered. However, solving all of these components
with a single algorithm is very challenging, so we left it as future work.

The remaining content of this paper includes the following sections. Section 2 presents the
proposed coupled bilinear model, which is used to create virtual images under various light conditions.
Then, we describe the construction of the feature space based on the synthesized images for robust
face recognition under environmental variations. In Section 3, the face recognition performance of the
proposed method is evaluated on various face databases. Section 4 then provides the conclusions of
this study.

2. Proposed Method

2.1. Training Coupled Bilinear Model

The goal of the paper is to solve the SSPP problem in face recognition based on the efficient
generation of virtual images for novel illumination conditions. First, we define some terms that are
used in the rest of the paper. The term “image” represents the actual image of a human face for a certain
person under a certain light condition. On the other hand, “illuminance” represents the brightness of
the corresponding image, excluding the effect of reflectance or albedo, which roughly represents the
natural color of the surface for each pixel. This concept is depicted in Figure 1. To generate a virtual
image with a novel light condition, first we have to separate the illuminance and the reflectance from
the input image, and then we synthesize adequate illuminance for the new light condition. In this work,
this procedure is performed based on a pre-trained coupled model of facial image and illuminance.
The proposed relighting method utilizes this coupled model to efficiently retrieve the illuminance
from a given face image. The overall procedure for training the coupled model and generating virtual
images is summarized in Algorithms 1 and 2, respectively.

Figure 1. Examples of reflectance and illuminance of face images (synthesized from the FRGC 2.0
database [51]): (Top) Reflectance (or albedo); (middle) illuminance; and (bottom) corresponding images.

The coupled model consists of two bilinear models: the image model and the illumination model.
Each model is represented by bilinear bases in order to handle both lighting variations and facial
attributes, both of which are variables for the bilinear models that are explained later. These bilinear
bases can be described using tensors; before proceeding further, we briefly introduce two basic tensor
operations. (For more details on tensor algebra, please refer to [52].) A tensor is a multidimensional
extension of vectors (first-order tensors) and matrices (second-order tensors). Let A ∈ Rn1×n2×···×nN

be an Nth-order tensor and M ∈ Rn′k×nk be a matrix. Then, the mode-k product, a generalization of the
matrix-vector product, of these can be expressed as

B = A×k M, (1)
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where an element of B ∈ Rn1×n2×···×n′k×···×nN is defined as

Bi1i2···i′k ···iN
= ∑

ik

Ai1i2···ik ···iN Mi′k ik . (2)

The N-mode singular value decomposition (SVD) [52], or the Tucker decomposition, is a generalization
of the SVD for tensors. For example, A can be decomposed as

A = C ×1 U1 ×2 U2 ×3 · · · ×N UN , (3)

where C is a (Nth-order) core tensor and Ui is an orthogonal mode matrix. Note that the core tensor
does not necessarily have a diagonal structure, but its elements usually have much higher magnitudes
for lower indices, like the singular values in SVD.

Here, we adopt a popular assumption about images, i.e., an image is a combination of illuminance
and reflectance. Let L ∈ Rny×nx be the illuminance of an image (size of ny × nx) and T ∈ Rny×nx be the
texture (i.e., reflectance). Then, the image Ψ can be represented as Ψ , T�L, where� is the Hadamard
product or the element-wise product. Accordingly, the illumination and image models used in this
paper are the models for L and Ψ, respectively. Both models have two variables: the light condition
and the facial attributes. The light condition variable, which is denoted by the symbol l, determines
the light condition. Changing the values of l will change the light condition of the resulting image
or illuminance without changing the identity of the person. On the other hand, the facial attributes,
denoted by φ, represent the characteristics that are different for each person. Hence, modifying φ

will change the personal identity of the resulting image or illuminance. These variables are feature
vectors (as those in feature extraction techniques) and are not explicitly represented in a physically
meaningful way.

First, the image model can be described as

Ψ(φΨ, lΨ) =
(
MΨ +HΨ ×4 φT

Ψ

)
×3 lT

Ψ, (4)

where lΨ ∈ Rnl and φΨ ∈ Rnl are the light condition vector and the facial attribute vector, respectively.
MΨ ∈ Rny×nx×nl is the mean tensor, which can be regarded as the model of the average face for various
light conditions, andHΨ ∈ Rny×nx×nl×nφ is a quartix (fourth-order tensor) that contains the bilinear
bases. This kind of model has been often used for face images in the literature [50], but what is different
here is that we define another model for illuminance: the illumination model. This model is defined
similarly as

L(φL, lL) =
(
ML +HL ×4 φT

L

)
×3 lT

L . (5)

Note that we deliberately avoid defining an explicit model for T in this setting. This is because T
is likely to be sensitive to the resolution of the model, i.e., T represented by a subspace model can be
blurry, unlike L, which is more robust to poor resolutions. As explained in Section 1, our goal is to
retrieve the less-sensitive illuminance information rapidly and to calculate the texture based on this
information robustly. The image model is used to extract the information about the light condition and
the facial attributes effectively: if we only have the illumination model, then T needs to be explicitly
estimated along with other parameters, which will complicate the algorithm.

Algorithm 1 Training the coupled bilinear model.

1: Given training image data Ψ′ and its corresponding illuminance data;

2: CalculateMΨ,HΨ,ML, andHL based on Equations (6) and (7).

3: Calculate WΨ based on Equation (8).

4: Calculate Pφ and Pl based on Equation (9).
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Algorithm 2 Synthesizing virtual images.

1: Given an input image Q and novel light condition vectors lL,i’s;

2: Retrieve φΨ and lΨ from Q based on Equation (10).

3: Convert φΨ and lΨ to φL and lL, respectively, based on Equation (11).

4: Retrieve TQ based on Equation (12).

5: Synthesize virtual images as Qi = TQ � L(φL, lL,i).

The above models can be trained based on exemplars synthesized from a 3D face database. In this
study, we used the FRGC 2.0 database [51] to train the models. mφ = 500 3D shapes were selected and
preprocessed, similar to the approach used in [53], and were subjected to ml = 100 evenly distributed
artificial point light sources to collect the training samples for both models, which were then resized to
120× 100. Finally, N-mode SVD was applied to the training samples and unimportant dimensions
were truncated to yield

Ψ′ −M′
Ψ ×4 1 ≈ GΨ ×1 Uy ×2 Ux ×3 Ul ×4 Uφ, (6)

where Ψ′ ∈ Rny×nx×ml×mφ is a quartix consisting of training image samples of various light conditions
and faces, andM′

Ψ ∈ Rny×nx×ml is the average of Ψ′ along the fourth mode. GΨ is the truncated core
tensor, and Ui is the ith truncated mode matrix. Based on this result, the terms in Equation (4) can be
calculated as

HΨ = GΨ ×1 Uy ×2 Ux,

MΨ =M′
Ψ ×3 UT

l .
(7)

The same procedure was applied to the illuminance samples to yield the illumination
model (Equation 5). The illuminance samples were created by excluding the textures during the
same synthesis procedure. The sizes of the core tensors were 40× 30× 10× 150 for the image model
and 40× 30× 100× 150 for the illumination model. Note that, in this work, the images were rendered
based on the Lambertian assumption, and cast shadows were also rendered based on the underlying
3D shapes, although it is possible to use more complicated lighting models. To normalize the geometric
variations, recently developed facial feature localization methods [45] can be used, but, in this study,
normalizing based on eye and mouth coordinates was sufficient for the performance of the proposed
SSPP method.

Much evidence in the literature implies that the above two models likely have a strong correlation
with each other [50]. Hence, we can define the relationships between the parameters of these two
models, i.e., φΨ to φL and lΨ to lL. Before finding the relationships, we extract only the components
that have strong correlations in the parameters, because there may be some noise in the models, based
on the canonical correlation analysis (CCA) [54]. The CCA problem for φΨ and φL can be defined as

max
wΨ ,wL

wT
ΨCΨLwL,

s.t. wT
ΨCΨwΨ = wT

L CLwL = 1,
(8)

where CΨL is the cross-covariance of φΨ and φL, while CΨ and CL are the covariances of φΨ and φL,
respectively. This problem can be efficiently solved by the generalized eigenvalue decomposition.
In this way, we can find those components with the strongest correlations.

Based on the strongly correlated components extracted by the CCA, we find a linear mapping to
convert a given φΨ to the corresponding φL. First, we project all the φΨ of the training samples to the
CCA components to extract only the strongest components, and we then find a direct linear mapping
from the projected samples to the corresponding φL. Let WΨ be a matrix composed of different vectors
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of wΨ (100 components were extracted for the proposed method); then, linear mapping from φΨ to φL
can be found as Pφ = CΨLWT

Ψ, which is the least-squares estimate of

min
P

E
[∥∥∥φL − PWT

ΨφΨ

∥∥∥2
]

, (9)

based on the knowledge that WT
ΨCΨWΨ = I. This Pφ will be used later in the virtual image synthesis

to convert φΨ of a given test image to the corresponding φL.
Although we could also apply the CCA to lΨ and lL, this would not be useful because the

dimension of lΨ is small (value of 10) in our algorithm. Hence, we directly find the linear mapping Pl
based on least squares. Note that the samples of φΨ, φL, lΨ, and lL for these procedures can be found
during the N-mode SVD steps of both models.

2.2. Synthesizing Novel Illuminations

Based on the coupled model, we can synthesize novel illuminations for a new input image. First,
we need to extract the ‘state’ of the image. This can be achieved by fitting the image model to the image:

min
φΨ ,lΨ

∥∥∥Q−
(
MΨ +HΨ ×4 φT

Ψ

)
×3 lT

Ψ

∥∥∥2
+ λ‖φΨ‖

2, (10)

where Q is the input image. Here, a ridge regularizer is introduced for robustness. This regularization
can also ensure that the model is working in the ‘effective’ region [50]. This problem can be solved by
alternating least squares (ALS) as for any other bilinear model [50]. Even though this is a non-convex
problem that requires iterations, in [50], a method was provided to reduce the computation dramatically
by utilizing the mode matrices Uy and Ux, which makes it possible to estimate φΨ and lΨ instantly.

After finding the solutions of φΨ and lΨ, they are translated to the parameters of the illumination
model as

φL = PφφΨ,

lL = PllΨ.
(11)

Then, the illuminance LQ of the input image can be estimated by Equation (5).
Now, the texture TQ of the input image can be found by the relation Q = TQ � LQ; however,

this incurs a problem: as pointed out in [37], finding TQ based on this equation can be ill-posed if the
light condition in the image is extreme (i.e., contains large shadows), as this results in division-by-zero
problems. To handle this robustly, in this work, we utilized the image model to compensate for the
shadow area. At this point, we define the canonical light conditions, lΨ,i (for the image model) and lL,i
(for the illumination model), which represent a set of standard light conditions. In this study, the 100
light conditions used for training the coupled model are reused as the canonical light conditions. Then,
by supplementing information from the image model for these canonical conditions, we can have a
robust estimate of TQ:

min
T

∥∥Q− T� LQ
∥∥2

+

γ

ml
∑

i
‖Ψ(φΨ, lΨ,i)− T� L(φL, lL,i)‖2 ,

(12)

where ml is the number of canonical light conditions, and γ > 0 is a constant. This least-squares
problem obviously has a closed-form solution. Note that since this formulation does not have a matrix
multiplication but only has element-wise multiplications, the solution can be calculated separately
for each pixel. After finding TQ, the ith relit image Qi can be synthesized as Qi = TQ � L(φL, lL,i),
which can be used as a virtual image for robust SSPP recognition. Figure 2 shows the directions
corresponding to the 100 canonical light conditions.
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Figure 2. One-hundred light conditions. Synthesized images in the directions indicated by blue arrows
are used in the proposed face recognition system.

2.3. Face Recognition Using Synthesized Images

To construct a feature space for face recognition, the DCV method was selected among the
appearance-based methods for this study. DCV, which is a representative supervised method based on
discriminant analysis, demonstrates a favorable performance in the classification of high-order data
containing abundant null space, such as face images [9,12]. (Feature extraction methods other than
DCV can also be employed for this purpose; DCV was selected in this study for convenience). Let
the kth image of the cth class be xc

k, and let µc and µ be the average of all images belonging to the cth
class and the average of whole images, respectively. Most appearance-based methods, including DCV,
define a within-class scatter matrix (SW) and between-scatter matrix (SB) for the discriminant analysis.
A discriminative feature space is then constructed with the projection matrix (W), which comprises
projection vectors (w), that satisfies the predefined objective function.

SB =
1
K

c

∑
i=1

Ki(µi − µ)(µi − µ)T ,

SW =
c

∑
i=1

∑
xc

k∈{ci}
(xc

k − µi)(xk − µi)
T .

(13)

For the case of the DCV method, since the null space of SW contains sufficient discriminative
information, it finds the projection matrix WDCV that satisfies the following objective function in the
space, where |WTSWW| = 0 and |WTSBW| 6= 0.

WDCV = arg max
|WTSWW|=0

|WTSBW|. (14)

By using WDCV , an image sample xc
k is represented as a feature vector yc

k = WT
DCVxc

k in the DCV
feature space.

However, despite the excellent discriminative power of the null space of SW , methods such as
DCV cannot be used in problems of SSPP that have only one image per person, because SW cannot be
defined. In addition, since information about the variation in a face caused by environmental change is
unavailable, the within-class variation cannot be reflected in the training process. As a solution to such
problems, the proposed method improves the feasibility of appearance-based face recognition methods
by synthesizing several images from one image, and it enhances the generalization performance of
face recognition to handle the environmental changes by modeling the within-class variation.

If the synthesized images are to be effective in constructing the robust face recognition system
to cope with environmental changes, the changes in facial appearance attributable to illumination
conditions should be reflected in the synthesized images. In order to arrange the synthesized images
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for use in constructing the feature space for face recognition, we compared the distribution of the
images synthesized from 100 light conditions (Figure 2) in the DCV feature space with that of real
images captured in various illumination conditions.

Figure 3 shows the distribution of images from the CMU database, which is widely used in face
recognition studies that deal with illumination variation. The CMU database contains face images of
65 subjects captured under 21 different illumination conditions. Among them, 7 images of 40 subjects,
who were imaged under different illumination conditions, were used to construct the 39-dimensional
DCV feature space. Then, for the remaining 25 subjects, the 21 real images captured from different
light conditions and the 100 images which were synthesized, using the proposed method, from one
image taken under frontal lighting were projected to the DCV feature space.

Figure 3a,b show the projection of 105 real images (5 subjects × 21 images) and 500 images
(5 subjects × 100 images), which were synthesized by using the proposed method on 5 subjects among
all 25 subjects into a 2D DCV feature space. In Figure 3a, for the case of real images from the CMU-PIE
database, the images of each subject captured in different illumination conditions were formed into
clusters, and each cluster was distributed separately in the feature space. Five-hundred synthesized
images in Figure 3b were also clustered together for each subject; however, clusters partially overlap
with each other due to the greater variance of each cluster. Thus, in this study, some of the illumination
conditions among all 100 light conditions were limitedly selected based on the distribution of real
images, and their corresponding synthesized images were used to construct an effective feature space
for the face recognition system.

Figure 3. Distributions of samples for five subjects in the two-dimensional Discriminative Common
Vector (DCV) feature space: (a) real images; and (b) synthesized images (proposed method).

Let the index for light condition and the DCV feature vector for the synthesized image of the cth
subject be l(l = 1, . . . ., 100) and y(syn)c

l , respectively. First, we calculated the standard deviations of
y(syn)c

l for the real images of each subject (σc, c = 1, . . . , 25) and the maximum value σmax among them.
Then, each y(syn)c

l , which is within a distance of κ · σmax from the corresponding mean (mc
syn) of the

synthesized image for each subject, was distinguished as a set Candic.

Candic = {y(syn)c
l |‖y(syn)c

l −mc
syn‖2 < κ · σmax}. (15)

The light condition indices in Candic differ for each subject c. Thus, we selected 26 light conditions,
all of which were included in each Candic, for the construction of the feature space for face recognition.
The selected light conditions are marked in blue in Figure 2. The images under these light directions
contain the most representative facial appearances under light variations; on the other hand, those
under the other light directions, which have large areas of shadows, provide relatively little information
about the person.

Figure 4 shows the distributions of five subjects that were generated from a single image using
several methods addressing with SSPP problems: E(PC2)A2+ [21], SPCA+ [20], BIF [13], and SLC [24].
After generating images from a single image taken in the normal condition (frontal illumination) using
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several methods, we plotted the image samples in the 2D DCV feature space for five subjects from the
CMU-PIE database.

Figure 4. Distributions of image samples that were generated from a single image in the two-dimensional
DCV (Discriminative Common Vector) feature space: (a) synthesized images (proposed method);
(b) E(PC2)A2+; (c) SPCA+; (d) BIF; and (e) SLC.

Figure 4 shows that the distribution of the synthesized images (Figure 3b) is similar to that of the
real images (Figure 3a). In both subfigures (Figure 3a,b), the samples are favorably clustered according
to each subject, and there is less overlap between samples for the different subjects. Meanwhile, in
the distributions resulting from other methods, some of the samples belonging to the same subject
are widely distributed or overlap with those of other subjects. Although the samples obtained
by BIF (Figure 4d) show favorably distinguished clusters, BIF is limited when expressing diverse
changes in images owing to a limited number of synthesizable images (approximately seven images);
it also requires front-lighted images to generate new images. In contrast, the proposed method can
generate considerably more illumination conditions, resulting in its effectiveness in dealing with
possible changes in the actual illumination environment. It can also produce images containing diverse
illumination conditions using a single image captured under an arbitrary illumination condition.

3. Experimental Results

3.1. Image Generation Results

We tested the proposed relighting method for well-known face databases. As mentioned earlier,
the coupled bilinear model was constructed based on 500 3D shape–image pairs from the FRGC 2.0
database [51]. We generated 100 illumination images for each 3D sample, which were used to train
the proposed model. The sizes of the core tensors were 40× 30× 10× 150 for the image model and
40× 30× 100× 150 for the illumination model. The parameters for the proposed method were set as
λ = 0.3 and γ = 0.8. First, we performed 10-fold cross-validation on the 500 samples of the FRGC 2.0
database to confirm the processing speed and errors. Synthesizing 100 relit images from a single input
took 0.24 seconds on average (in MATLAB), and the root mean square (RMS) errors of the relit images
(from the ground truth images) was 0.086 on average.

The proposed method was applied to the Yale [55] and Multi-PIE [56] databases for qualitative
evaluations. Figures 5 and 6 show some of the reconstruction results. Here, we can see that the method
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can generate relit images robustly, irrespective of the input light condition, and it can fill areas under
heavy shadows. Moreover, the results are unaffected by small outliers, such as the glasses in the
examples. Textures are robustly recovered without degrading the resolution, which makes the relit
images more realistic, even though the method does not involve any 3D reconstruction procedures.

Figure 5. Relit images based on the Yale database (1st column: input image; 2nd: recovered texture;
3rd: estimated illuminance; and 4–8th: relit images).

Figure 6. Relit images based on the Multi-PIE database (1st column: input image; 2nd: recovered
texture; 3rd: estimated illuminance; and 4–8th: relit images).

To confirm whether the coupled model can indeed provide better-quality images than the virtual
images generated by a single subspace model, we also synthesized relit images using only the image
model (Equation (4)) as was performed in the early subspace-based approaches [40–43]. Figure 7
compares the results of the coupled model and the single image model for the same inputs. From this,
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we can confirm that the images from the coupled model are better quality. The results from the single
image model are poor and blurry, unlike those of the proposed method.

Figure 7. Comparison between the coupled bilinear model and the single image model (1st row: input
image; 2nd: coupled bilinear model; and 3rd: image model only).

3.2. Performance of Face Recognition in SSPP Problems

To build a face recognition system that can robustly handle diverse changes in the actual
environment, we synthesized images under several illumination conditions based on a single image
by using the proposed method, and we constructed a feature space for face recognition, together with
the synthesized images. In order to confirm the effectiveness of the proposed method, we compared
the face recognition performance of the proposed method with those of other methods (E(PC2)A2+,
SPCA+, BIF, SLC, SRC, ESRC, RADL [29]), which were developed to solve the SSPP problem. For BIF,
7 images of 40 subjects contained in the CMU-PIE database [57] were used to synthesize the virtual
images given in [13].

For feature extraction, we employed DCV [9] in the experiments; the one-nearest-neighbor
rule was employed as a classifier, and the Euclidean distance was used as a measurement between
samples [58,59].

The face recognition performance was evaluated by the recognition rates for the images in the
Multi-PIE, Yale B [60,61], Postech Face07(PF07) [62], and CAS-PEAL-R1 databases [63]. The characteristics
and the sample images from each database are presented in Table 1 and Figure 8, respectively.

Table 1. Characteristics of each database.

Multi-PIE Yale B PF07 CAS-PEAL-R1

No. of subject 249 38 200 28
No. of images per subject 20 64 16 15
Illumination variation large large large large
Expression variation none none none none
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Figure 8. Sample images of each database: (a) Multi-PIE; (b) Yale B; (c) PF07; and (d) CAS-PEAL-R1.

For face alignment, the center of each eye was manually detected in all of the images, and the
subsequent horizontal alignment of the eyes was achieved with rotation, as given in [7,12]. All the
images were cropped and rescaled to ensure that the central point of each eye was statically positioned
in an image with a size of 120 × 100 pixels. Then, the histogram equalization process [6] was applied
to the rescaled image.

The Multi-PIE database contains over 75,000 images captured from 337 subjects, who were
recorded in up to four sessions over a span of 5 months. The number of subjects participating
in each session varied from a minimum of 203 to a maximum of 249. The images of each subject
comprise different viewpoints, illumination conditions, and facial expressions. Among them, images of
249 subjects with a neutral expression captured from frontal viewpoints with 20 different illumination
conditions were used in this experiment. Images with an illumination index of ‘8’ for each subject,
which were captured with the frontal lighting condition, were used as input for virtual image
generation, and the face recognition rates were evaluated for the remaining 19 images (total of
4731 images = 249 subjects × 19 images).

The Yale B database contains images from 10 subjects, each one captured in 64 images with
different illumination conditions, and the Extension Yale B database provides images of an additional
28 subjects. The Yale B database categorizes the images into five subsets (indexed 1, 2, 3, 4, and 5)
according to the lighting angle from the frontal view; a larger index denotes an angle of lighting that is
more distant from the frontal view. For each subject, one image with frontal illumination was selected
for virtual image generation, and the remaining 63 images (a total of 2394 images = 38 subjects ×
63 images) were used to test the recognition performance.

The PF07 database contains a total of 60,000 images captured from every subject (200 subjects).
In this study, we used a total of 3200 frontal inexpressive images of 200 subjects under 16 different
illumination conditions. The CAS-PEAL-R1 database comprises images captured under 15 different
illumination conditions from 8 subjects. Likewise, one image was selected among them to generate
virtual images, and the remaining images were used for the face recognition test.

For the experiments on each database, the BIF method generated six virtual images with different
illuminations for each subject. E(PC2)A2+ generated three images for training from the original image,
which correspond to the half-, first-, and second-order projected images, respectively. In SPCA+,
7 images (which were obtained from different n-order singular values) for each subject were generated
for training, and, in SLC, 11 images for each subject were added to the training set—these were
symmetric images and linear combination virtual images. The auxiliary intraclass variant dictionary
for ESRC was generated with the images used for training BIF [13]. Note that the number of images
and parameters of these compared methods were selected based on their original paper.
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For each database, the face recognition performance was evaluated using the cumulative match
score [64]. For a given probe image pi, the target images tk (k = 1, .., 15) are sorted by their similarity
scores si(·) based on the Euclidean distance. Figure 9 shows the experimental results, where the
horizontal axis represents the rank k and the vertical axis corresponds to the cumulative recognition
rate of the top k matches. In Figure 9, the face recognition performance of the proposed method appears
to be mostly superior to other methods at each database with respect to all features, regardless of the
number of features. For the cases of E(PC2)A2+ and SPCA, face recognition in the presence of actual
environmental change was somewhat ineffective because the images were generated through SVD
perturbation, projection, or linear combination, with no consideration for the variation in the actual face
images caused by environmental changes. Although the images generated by BIF reflect the changes in
illumination conditions, BIF is limited in the number of images that can be created. On the other hand,
the proposed method reflects the probable image changes from the actual environment quite effectively
in the generated image and, consequently, results in better face recognition performance than that of
BIF. RADL shows worse performance than the proposed method, with the exception of experiments on
the PF07 database; in particular, for the Yale B and the CAS-PEAL-R1 databases, RADL’s performance
is far worse than the best performance achieved by the other methods. Note that the Multi-PIE and
PF07 databases contain only horizontal variations of illuminations, such as the CMU-PIE database
used for training all the face recognition methods, unlike the Yale B and the CAS-PEAL-R1 databases,
which also contain vertical variations. Although the RADL method shows a slightly higher recognition
rate than the proposed method for the PF07 database, the difference is not significant, and both the
proposed method and the RADL method demonstrate good performances. However, for Yale B and
CAS-PEAL-R1, which have more varied illumination changes, RADL is not as good as the other
algorithms. This suggests that the proposed method has a better generalization performance.
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Figure 9. Face recognition rates for various databases: (a) Multi-PIE; (b) Yale B; (c) PF07; and
(d) CAS-PEAL-R1.
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The results of face recognition shown in Figure 9 appear consistent with those in Figure 4.
The methods (the proposed method, BIF, and SLC) which show favorable clusters of the synthesized
images by each subject in Figure 4a,d,e have higher face recognition rates than the other methods
(E(PC2)A2+, SPCA+) in Figure 4b,c. For SLC, although it achieves clusters of low variance in Figure 4e,
it has a lower face recognition performance for the other databases, except CAS-PEAL-R1, than those
of BIF and the proposed method because it is unable to properly reflect the actual changes in the image
of one person.

3.3. Data Augmentation in Deep Learning

The proposed virtual image synthesis method can also be used in deep learning for data
augmentation. In order to demonstrate the use of the proposed method in deep learning,
SphereFace [65]—a deep network for face recognition—was trained with augmented data sets based
on the synthesis methods used in several of the previous experiments: the proposed method, BIF,
E(PC2)A2+, SLC, and SPCA+. Note that SRC, ESRC, and RADL were not evaluated here because they
are not based on virtual image generation. The original paper presenting SphereFace [65] describes
two protocols for face recognition, so we performed experiments similarly:

• Closed set: In this case, the classes of the training and test data are identical. The classification
result of each sample is derived from the softmax operator of the network. For the closed-set
experiment, we picked one image with frontal illumination from each class and generated virtual
images to construct the training set. The rest of the images in the DB composed the test set.
The network was trained or fine-tuned based on the training set, and the recognition rate was
evaluated based on the softmax results of the test set.

• Open set: This is the case wherein the classes in the training and test data are mutually exclusive.
The classification result of each test sample is determined based on the cosine distances from
gallery samples, where the cosine distance is evaluated based on the features of the final network
layer. For this experiment, we divided the DB into two equally sized sets with disjoint classes.
One set was used for training or fine-tuning (the training samples were generated in a manner
similar to those for the closed set experiment). The other set was used to generate gallery and test
samples (i.e., one sample for each class was picked); virtual images were generated to compose
the gallery set, and the rest of the samples were used as test samples. Performance was evaluated
similarly to the closed-set experiment, except that decisions were made based on the cosine
distances from the gallery samples.

For both cases, we either fine-tuned the network based on a pre-trained model generated by the
authors, or we trained the network from scratch.

Tables 2–5 show the performance results of these experiments. Here, we can see that the proposed
method provides the best result most of the time; in the one exception, the proposed method is the
second best. These results show that the proposed virtual image synthesis method is also effective for
augmenting data for deep learning.

Table 2. Face recognition rate of SphereFace [65] on CAS-PEAL-R1 with various data
augmentation methods.

Algorithm
Closed Set Open Set

Fine-Tuning from Scratch Fine-Tuning from Scratch

Proposed
hltextbf38.27% 32.14% 48.47% 31.12%
BIF 30.36% 11.99% 46.94% 13.27%
E(PC)2A2+ 26.79% 9.18% 44.39% 9.69%
SLC 29.85% 19.90% 37.76% 10.20%
SPCA+ 25.77% 7.40% 43.37% 9.18%



Sensors 2019, 19, 43 17 of 21

Table 3. Face recognition rate of SphereFace [65] on Multi-PIE with various data augmentation methods.

Algorithm
Closed Set Open Set

Fine-Tuning from Scratch Fine-Tuning from Scratch

Proposed 89.24% 85.71% 84.67% 91.92%
BIF 65.00% 44.45% 73.35% 63.62%
E(PC)2A2+ 63.71% 49.27% 71.37% 48.13%
SLC 57.37% 30.56% 54.27% 28.04%
SPCA+ 72.10% 58.19% 88.21% 71.07%

Table 4. Face recognition rate of SphereFace [65] on PF07 with various data augmentation methods.

Algorithm
Closed Set Open Set

Fine-Tuning from Scratch Fine-Tuning from Scratch

Proposed 75.40% 59.67% 69.67% 52.27%
BIF 51.77% 32.37% 67.20% 34.00%
E(PC)2A2+ 42.57% 18.40% 54.73% 29.27%
SLC 49.53% 25.53% 53.47% 33.73%
SPCA+ 35.77% 39.70% 68.27% 41.13%

Table 5. Face recognition rate of SphereFace [65] on Yale B with various data augmentation methods.

Algorithm
Closed Set Open Set

Fine-Tuning from Scratch Fine-Tuning from Scratch

Proposed 63.32% 51.13% 62.49% 41.27%
BIF 47.87% 38.76% 55.72% 34.25%
E(PC)2A2+ 41.10% 13.24% 54.55% 20.22%
SLC 40.43% 30.74% 51.63% 27.40%
SPCA+ 46.95% 35.51% 54.39% 21.22%

4. Conclusions

Ideally, to establish a face recognition system which is robust to a variety of environmental
changes, those changes should be included in the training procedure. However, the task of securing
many images of each person for the pre-training is time-consuming and costly. This is one of the
substantial challenges in the buildup of a practical face recognition system. We propose an image
generation method to solve the SSPP problem, and we designed a face recognition system which is
robust to such environmental changes as illumination. The proposed method, based on a carefully
designed coupled bilinear model, synthesizes numerous realistic virtual images under various light
conditions in a short time. Inspired by the knowledge that illuminance is less sensitive to the poor
quality of a subspace-based model than reflectance (or texture) and that facial illuminance has a strong
correlation to the input image, we designed a coupled model that efficiently extracts the illuminance
from the input image; such a process would normally require a complicated 3D fitting procedure.
The proposed method then estimates the texture information based on the extracted illuminance and
the input image without negatively affecting the high-frequency components, and this operation is
robust to the presence of heavy shadows. Of the 100 images synthesized from a single image captured
under arbitrary light conditions, a portion was selected to construct the feature space by accounting
for the distributions of the real images captured under diverse illumination conditions. Through the
experiments, the distributions of the selected synthesized images in the feature space were found to be
similar to those of real images, and the proposed method achieved better face recognition performance
than the other SSPP methods using various databases. The proposed image synthesis method is
relatively simple and concise, so it can be easily adapted to other larger face recognition frameworks,
such as [32], or it can be used as a data augmentation scheme in recently popular deep-learning-based
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methods. There are factors other than illumination, such as pose, occlusion, makeup, and facial
variation, to consider for the SSPP problem. Attempting to manage many of these factors at once
efficiently is a challenging task and is left as future work.
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