
sensors

Article

Have I Seen This Place Before? A Fast and Robust
Loop Detection and Correction Method for 3D
Lidar SLAM

Michiel Vlaminck ∗ , Hiep Luong and Wilfried Philips

Image Processing and Interpretation (IPI), imec research group at Ghent University,
Department of Telecommunications and Information Processing (TELIN), Ghent University,
Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium; hiep.luong@ugent.be (H.L.); wilfried.philips@ugent.be (W.P.)
* Correspondence: michiel.vlaminck@ugent.be; Tel.: +32-473413613

Received: 21 November 2018; Accepted: 19 December 2018; Published: 21 December 2018 ����������
�������

Abstract: In this paper, we present a complete loop detection and correction system developed for
data originating from lidar scanners. Regarding detection, we propose a combination of a global point
cloud matcher with a novel registration algorithm to determine loop candidates in a highly effective
way. The registration method can deal with point clouds that are largely deviating in orientation
while improving the efficiency over existing techniques. In addition, we accelerated the computation
of the global point cloud matcher by a factor of 2–4, exploiting the GPU to its maximum. Experiments
demonstrated that our combined approach more reliably detects loops in lidar data compared to
other point cloud matchers as it leads to better precision–recall trade-offs: for nearly 100% recall,
we gain up to 7% in precision. Finally, we present a novel loop correction algorithm that leads to an
improvement by a factor of 2 on the average and median pose error, while at the same time only
requires a handful of seconds to complete.

Keywords: loop detection; lidar; point clouds

1. Introduction

Mapping an environment using mobile mapping robots is a topic that has been studied for almost
two decades. Still, it can be considered as a highly active research area as the ultimate goal of lifelong
mapping is far from reached. In the ideal case, lifelong mapping comprises a solution in which the
map of the world is continuously updated at a pace equalling the one at which the world is changing
itself. During the past years many techniques have been introduced that can perform incremental
mapping using both regular cameras and depth sensing technologies based on either structured light,
ToF, or pulsed lidar. As novel and more accurate sensors with increasing resolutions are continuing to
come to the market, the performance of these mapping solutions is increasing. However, even though
these sensing technologies are producing more accurate depth measurements, they are still far from
perfect; as a result, the proposed solutions suffer—and will continue to suffer—from the drift problem.
These drift errors could be corrected by incorporating sensing information taken from places that
have been visited before. This requires both algorithms that can recognize revisited areas as well as
algorithms that can close the loop and propagate errors back in the pose graph. Unfortunately, existing
solutions for loop detection and closure for 3D data are computationally demanding. In this work, we
focus on speeding up both loop detection and loop correction in scanning lidar data. We propose a
technique that is able to automatically detect and correct loops in 3D lidar data in a highly efficient
way, thereby exploiting the power of modern GPUs.

Sensors 2019, 19, 23; doi:10.3390/s19010023 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3986-823X
http://dx.doi.org/10.3390/s19010023
http://www.mdpi.com/journal/sensors
http://www.mdpi.com/1424-8220/19/1/23?type=check_update&version=2

Sensors 2019, 19, 23 2 of 18

2. Related Work

Techniques to conduct loop detection in 3D data can roughly be categorized into three main
classes: local keypoint detection and matching in combination with a bag-of-words (BoW) approach,
global descriptor matching, and a remainder category based on geometric primitives or whole objects.
The first class is generally detecting salient keypoints in a point cloud, computing signatures for these
keypoint positions, building a BoW, and finally matching them in different scans [1]. Many keypoint
detectors have been proposed in the literature, such as intrinsic shape signatures (ISSs) [2], Harris 3D [3],
Sift 3D [4], NARF [5], as well as many descriptors such as spin images [6] and SHOT [7]. However,
despite this abundance of choice, the detection of distinctive keypoints with high repeatability remains
a challenge in 3D point cloud analysis.

One way of dealing with this lack of high repeatability is by using global descriptors, which
usually come in the form of histograms: the fast point feature histogram (FPFH) [8] and the viewpoint
feature histogram (VFH) [9] are a couple of examples. Recently, He et al. [10] presented a novel global 3D
descriptor for loop detection, named multiview 2D projection (M2DP), that is very promising regarding
both accuracy and efficiency. However, this global descriptor matching along with its local counterpart
continues to suffer from respectively the lack of descriptive power or the struggle with invariance. As a
result, many loops are not detected or too many false positives are present, which on its turn imposes
a restriction on fast and reliable loop closure. More recently, researchers tend toward the application of
convolutional neural networks (CNNs) to learn both the feature descriptors as well as the metric for
matching them in a unified way [11–14]. A severe limitation of these methods on the other hand is that
they need a tremendous amount of training data. Moreover, they do not generalize well when trained
and applied on data with varying topographies or acquired under different conditions. A model that
was trained on data originating from traffic environments might perform poorly on indoor scenes and
vice versa.

Finally, a third group of methods focus on place recognition based on either complete objects
or planes. In [15], Moral et al. presented a place recognition algorithm based on plane-based maps.
Unfortunately, their approach is only suitable for indoor man-made environments and is not scalable
to outdoor scenes. Dube et al. [16], on the other hand, proposed a method based on segments
for which they compute several descriptors that are integrated in a learning framework. Before
feeding the segment descriptors to the recognition model, they first subject them to a geometric
verification test. As their method is relying on all kinds of segments, it is more scalable than the
work of Moral et al. However, when used in man-made environments such as buildings, some scans
(e.g., parts of corridors) might lack geometrical features and may jeopardize the loop detection. Besides
the three aforementioned categories, there are also 3D lidar SLAM systems that only use visual
information to detect and close the loop [17].

Regarding the actual loop correction, many solutions have been presented [18–20]. Unfortunately,
a severe drawback of these methods is their high complexity and computational burden, especially
when the optimal solution is sought for. Some algorithms therefore opt to conduct the loop closure in
2D, such as the work of Hess et al. [21] in which they propose a real-time loop closure algorithm for 2D
lidar SLAM and which is part of Google’s cartographer. Another approach was taken in [22], where the
authors propose a heuristic suitable for large-scale 6D SLAM. Their idea is to conduct an optimization
without any iteration between the SLAM front- and back-end, yielding a highly efficient loop closing
method. In this work, we decided to use the same strategy as we want to end up with an online—hence
very fast—solution. In [23], the authors propose the adoption of a hierarchical approach instead by
subdividing the 3D map into local sub-maps. In order to incorporate corrections, the individual 3D
scans in the local map are modeled as a sub-graph and graph optimization is performed to account for
drift and misalignments only at the level of the local maps.

Sensors 2019, 19, 23 3 of 18

3. Contributions

The loop closure method developed in this work is part of an entire 3D mapping system that was
presented in [24] and [25]. As in that work, we use lidar data originating from Velodyne scanners,
including the VLP-16, HDL-32E, and HDL-64E. One of the main contributions of [24] was a scan
matching framework that aligns newly acquired point clouds with an online built 3D map. As stated
in the introduction, this procedure is prone to error accumulation, and for that reason we improve it
by actively detecting loops, i.e., locations that the robot or mobile platform is visiting more than once,
in order to propagate the error back in the SLAM pose graph. The main contributions of this work can
be summarized as follows:

1. We accelerated the computation of a global 3D descriptor to detect strong loop candidates in
lidar data. Compared to many other 3D descriptors, ours does not depend on the estimation
of surface normals in the point cloud. The main motivation for this is the high difficulty of
estimating these normals accurately given the sparse and inhomogeneous point density of lidar
point clouds. Our 3D descriptor thus leads to more robust loop detections. A compiled version of
our algorithm has been made available to the community through a GitHub repository, allowing
future use (https://github.com/Shaws/m2dp-gpu).

2. We propose a global registration technique based on four-point congruent sets, inspired by the
work of Mellado et al. [26]. We improved the efficiency significantly by omitting its randomized
component, which leads to faster execution times. Moreover, our improvements make the
registration technique more robust for sparse and inhomogeneous 3D data.

3. We propose and evaluate a loop correction algorithm that omits the iteration between the SLAM
front- and back-end, leading to very fast computations of the solution.

4. Approach

As mentioned in the previous section, our loop closure pipeline consists of two main steps. Prior
to these two steps, we perform a quick selection of loop candidates by testing for each newly computed
position as to whether or not it is close to a place we already visited. By assuming that the local
registration is quite accurate, we set a threshold on the distance between two poses, equalling 10% of
the total trajectory since the last loop closure. For instance, when we travelled for 100 m since the last
loop closure, we consider a location to be matchable if its computed pose is within 10 m. Once such a
potential loop is detected, the next step deals with the matching of the “start” and “end” point cloud.
As briefly mentioned in the previous section, this matching is done using a global signature that we
compute for each of the two point clouds. The signature is based on the projection of the point cloud
on several 2D planes, similar to the method described in [10]. If the matching residual of this method
is sufficiently low, we consider it a strong loop candidate.

To guarantee that we are not dealing with a false positive, the next step seeks for the transformation
that aligns the two point clouds. In case the loop candidate is a true positive, we expect the overlap
of the two point clouds after registration to be very high. To this end, we adopt a global alignment
technique, based on four-point congruent sets, to obtain a rough estimate of the transformation
between the two ends of the loop. The alignment of the two ends is essential to eventually close the
loop, as it can happen that the same position is revisited from an entirely different direction. Thus,
the lidar scans can be acquired from different viewpoints. The use of an ICP-based method is in this
case not appropriate as it will converge to a wrong local minimum. After the rough alignment, we still
refine the transformation estimate using a variant of the ICP algorithm. After this step, we eventually
do a quick geometric verification check to see if the objects in the two (transformed) point clouds
are relatively still located at the same position. Figure 1 depicts a schematic overview to summarize
our approach.

https://github.com/Shaws/m2dp-gpu

Sensors 2019, 19, 23 4 of 18

Distance between poses
(< threshold)

4-PCS ICP

Geometric verification

Rough
transformation

Correct relative
position of segments

Small residual
Loop correction

M2DP

Loop
candidate

Match found

Figure 1. Our loop detection and correction pipeline, consisting of five main algorithms. The global
descriptor MD2P detects loop candidates, after which the 4-PCS and ICP algorithm try to align both
ends of the loop. Finally, the geometric verification step checks if the different segments in the scene
are relatively still at the same position.

4.1. Multiview 2D-Projection

Our global point cloud descriptor is inspired by the method of multiview 2D-projection (M2DP),
first presented by He et al. in [10]. The design of the descriptor is left unchanged, but we developed a
novel implementation that exploits the GPU to its maximum. The algorithm is summarized as follows.
In order to achieve rotation invariance, we first compute the centroid of the point cloud—denoted
by P—and shift it toward this centroid to achieve zero mean for the points. Second, we define a
reference frame by estimating two dominant directions of the point cloud using PCA. The two principal
components are then set as the x- and y-axes of the descriptor reference frame. The third step consists
of generating several 2D signatures by defining different planes on which we project the 3D data.
Each plane can be represented using the azimuth angle θ and elevation angle φ. Thus, each pair of
parameters [θ, φ] leads to a unique plane Xj with normal vector nj = [cos θ cos φ, cos θ sin φ, sin θ]>.

The projection of a point pi ∈ P on Xj is then given by pj
i = pi −

p>i nj

||nj ||22
nj. To describe the structure of

the points on Xj, the 2D plane is further divided into bins as follows (cfr. Figure 2). Starting from the
projected centroid on Xj, l concentric circles are generated, with radii [r, 22r, l2r] and the maximum
radius is set to the distance of the centroid and the furthest point. Each ring is divided in t bins, hence
defining l × t different bins. For every bin, the number of projected points lying in it are counted,
generating a lt× 1 signature vector vj describing the points projected on plane Xj.

The main benefit of this projection is that it is not relying on the estimation of surface normals
for the points. This latter procedure is usually time-consuming and often times inaccurate for lidar
data given their sparse and inhomogeneous point density. The signature is computed for p different
azimuth angles and q different elevation angles where the stride on azimuth is π

p and the one on
elevation π

2q . Hence, there are pq different planes, leading to a signature matrix A of size pq × lt,
for which each row corresponds with a single signature vector vj. Finally, an SVD decomposition is run
on the matrix A and the first left and right singular vectors are concatenated to form the final descriptor.

Sensors 2019, 19, 23 5 of 18

furthest point

x-axis

y-axis

1

2
3

t

…

t+1
r

22r

l2r

(l-1)t+1

Figure 2. The generation of a 2D signature by projecting the 3D data onto a plane. The plane is
divided into bins as follows: starting from the projected centroid, l concentric circles are generated and
the maximum radius is set to the distance between the centroid and the furthest point. Each ring is
subsequently subdivided into t bins, generating a lt× 1 signature vector. Finally, the number of points
lying in each bin are counted.

Many parts of this algorithm can be computed in parallel, allowing us to exploit the multi-core
nature of modern GPUs. To ease the implementation, we made use of Quasar, a language and
computing platform facilitating GPU programming that was presented in [27]. Specifically, three
major parts were accelerated, the first one being the determination of the two dominant directions
of the point cloud computed using PCA. Our PCA implementation uses a parallelized version of
the SVD algorithm. The second part deals with the projection of the points on the different planes
Xj, j = 1, . . . , pq, all of which can be computed in parallel. This leads to a speed up for this part of
pq× N, N being the number of points in P , compared to a serial version of the algorithm. Finally,
once the projections are computed for all planes and all points, the numbers of points belonging to
each bin can also be determined in parallel.

4.2. Four-Point Congruent Sets

The algorithm described in the previous section provides loop candidates. However, its outcome
is insufficient for the loop to close. As the descriptor is rotation-invariant, we need to find out the
transformation between the two point clouds in order to discard it from the error back propagation.
To this end, we need a registration algorithm that can deal with large variations in orientation. Figure 3
depicts a bird’s-eye view of the point clouds at both ends of the loop and demonstrates why the
registration is necessary. The black and gray point clouds are respectively the start and end point of a
loop. The green point cloud is the transformed version of the gray one. If after registration the overlap
between the two point clouds (green and black) is sufficiently high, we accept it is a true loop.

Sensors 2019, 19, 23 6 of 18

Figure 3. Two different examples of registered point clouds seen from a bird’s-eye view, originating
from the KITTI ‘00’ sequence. The black and gray scans have been selected by the M2DP algorithm
as the start and the end point of a potential loop. The two point clouds are, however, slightly
rotated. Our registration technique aligns both (the green point cloud is the transformed version
of the gray one) and determines their overlap. When the overlap is sufficiently high, the loop candidate
is eventually selected as a true loop. Here, one can see that the green and black point cloud are
sufficiently overlapping.

Another key thing to keep in mind is that it can happen that a part of the scene has been changed
in the meantime. Think about parked cars along the road that disappear or other ones that have taken
their place. The use of local feature descriptors in a BoW approach would most likely fail in these
cases. For that reason, our global registration technique takes into account the main geometry of the
scene instead of relying on keypoint positions. The core of our registration technique is based on
four-point congruent sets (4-PCS), an idea initially proposed by Aiger et al. [28] and later improved by
Mellado et al. [26]. Our 4-PCS method is thus a global point cloud registration technique that does not
rely on the extraction of features. Instead it is matching congruent sets in both point clouds, thereby
adopting a generate-and-test paradigm, known from random sample consensus (RANSAC) solutions. In its
most simple form, RANSAC randomly selects three points from both the source point cloud P and the
target point cloud Q and subsequently computes the rigid transformation using these points. Next,
it tries to verify this transformation by determining how many points from P are within a δ-distance
from points in Q after applying the transformation. If this count—usually referred to as the size of
the consensus set—is sufficiently high, the transformation is accepted as a good solution. Otherwise,
the process is repeated by randomly selecting another triplet of points. The transformation with the
largest consensus set is finally accepted as the best fit. The 4-PCS method builds on this randomized
alignment approach, but instead of exhaustively testing all the triplets from Q, it introduces the
concept of planar congruent sets to select only a small subset of bases from Q that can potentially
match a given base from P . The first step in the 4-PCS method thus consists of selecting a four-point
coplanar base B from the source point cloud P . Next, from the target point cloud Q, all four-point
sets {U1, . . . , UN} = U that are approximately congruent to B are determined. Third, for all sets Ui,
the rigid transformation Ti that aligns B and Ui is computed and verified according to the largest
common point set (LCP) criterion. This latter criterion denotes the set of points Si ∈ P that are within
δ-distance from a point in Q after applying the transformation. Finally, the best transformation Topt,
i.e., the one leading to the set Sk with the highest cardinality, is kept. In summary, the aforementioned
algorithm consists of four major steps: (1) selecting a coplanar base in one point cloud, (2) finding the
(approximate) congruent sets in the second point cloud, (3) computing the rigid transformations, and
(4) testing the rigid transformations and selecting the best one.

4.2.1. Selecting a Coplanar Base

One of the main limitations of the original method by Aiger et al. [28] is its random search
for coplanar points, which is leading to substantial unnecessary computational burden. Instead, we
propose clustering the 3D points and subjecting them to a plane fitting process. As the point clouds

Sensors 2019, 19, 23 7 of 18

are generated by a scanning lidar device with 16–64 colinear lasers, we can project the 3D laser points
onto a regular 2D grid, as described in [24]. Doing so, we can exploit the known adjacency of the
points to quickly perform clustering. More specifically, we adopt a region growing algorithm using
two comparator functions to determine whether or not two neighboring points belong to the same
cluster. The first one is the Euclidean 3D distance between the two points, the second one the deviation
of their surface normal. After applying this region growing process, we obtain a set of clusters, which
we subsequently feed to a plane-fitting algorithm. Once we have eventually found some clusters to be
part of a plane, we can extract coplanar bases very easily, as any four points lying in the same plane are
by definition coplanar. Following this procedure, we can omit the randomized base selection process
of the original 4-PCS method. Obviously, it is still beneficial to pick wide bases (by selecting points that
are located far from each other), as they are in general leading to more stable alignments. To this end,
we prioritize points lying at the boundaries of the planar cluster to serve as a base. Of course, the base
should still lie in the overlap region between the two point clouds in order not to miss the desired
solution. As we are considering point clouds that are captured at more or less the same position (but at
different moments in time), we assume that the overlap will be quite large. Only in the case that a large
object close to the scanner is causing a huge occlusion in one of the point clouds, this assumption might
be violated. Therefore, we propose computing for each planar region its convex hull and selecting
a coplanar base by picking four points that are close to this convex hull. Figure 4 depicts two point
clouds from sequence “05” of the KITTI benchmark together with the convex hulls of the estimated
planar regions.

Figure 4. Two different examples showing how to select a coplanar base. First, several objects in the
scene are clustered, after which they are subjected to a plane-fitting algorithm. In case a few planes
have been detected, their convex hulls are computed. A coplanar base is then selected by picking four
points close to the convex hull.

4.2.2. Finding Congruent Sets

Once a coplanar base is selected, the next step consists of finding four-point sets in the other
point cloud that are congruent to this base. This matching step is based on a specific property of
affine invariants of four-point congruent sets. In a nutshell, given four points, we can compute
two independent ratios between the line segments they are defining that are preserved under affine
transformations. Given a set of coplanar points B = {a, b, c, d} from point cloud P that are not all
collinear. Let ab and cd be the two lines that intersect at an intermediate point e. The two ratios

r1 =
||a− e||
||a− b|| r2 =

||c− e||
||c− d|| (1)

are invariant under affine transformation and uniquely define four points up to affine transformations.
Now, for each point q1, q2 ∈ Q, we can compute two intermediate points:

e1 = p1 + r1(p2 − p1) e2 = p1 + r2(p2 − p1). (2)

Any two pairs whose intermediate points e1 and e2 are coincident potentially correspond to a four-point
set that is an affine transformed copy of B. Of course, as these four-point sets are the affine invariants

Sensors 2019, 19, 23 8 of 18

of the base B, it is a superset of the four-point set that are a rigid transformation of the base. For that
reason, we also check the angle between the two line segments to determine if the four-point set is
a rigid transformation of the base B. Naturally, the intermediate points e1 and e2 will never exactly
be coincident due to noise and other inaccuracies. Instead, they will end up on being nearby points.
For that reason, we set up a k-d tree search data structure that allows for fast spatial queries. We then
accept the set as being congruent to the base B in case the distance of the two intermediate points e1

and e2 are within δ-distance from each other. Another limitation of the original method of [26] is that it
computes and tests for all possible combinations of points their intermediate points e1 and e2. This is
leading to a tremendous amount of unnecessary computations. Instead, we propose only processing
the points of clusters that are lying in a physical plane, i.e., a plane that is present in the scene. Only
these points qualify as matchable with a given coplanar base, as the bases themselves were picked on
the detected planar regions.

4.2.3. Test Rigid Transformation

The final step in the 4-PCS method is to test the rigid transformation computed using the base
and its congruent sets. One way of verifying the transformation is by using the largest common point
set (LCP) criterion. This criterion states that one should count the number of points from the source
point cloud that are within a δ-distance from any point from the target point cloud after alignment.
The transformation that yields the largest LCP is considered the true transformation. We emphasize
that we only compute the transformation and LCP criterion for the congruent sets that we have
selected in the previous step. This group of congruent sets is thus a lot smaller than the original
method proposed by [26] et al. Our algorithm can thus be summarized as follows. First, select
a few strong coplanar bases from P based on the estimated planes in the scene. Second, given a
selected coplanar base from P , determine only a few strong four-point sets inQ that are approximately
congruent. For all these selected four-point sets, compute the transformation that aligns the two point
clouds and eventually pick the transformation with the largest common point set. In other words, pick
the transformation for which the most points of P are within δ-distance from a point in Q.

4.3. Verification through ICP and Geometrical Consistency

The 4-PCS method yields a rough transformation from source to target point cloud, but it will
not perfectly align them. We therefore refine the transformation by using an ICP-based algorithm
that was described in [24]. This ICP algorithm offers additional verification to conclude that the two
point clouds yield a true loop. If the residual of ICP—defined as the average distance between all
corresponding points—is too large, we still discard the loop candidate. Finally, the object clustering
mentioned in the previous section also provides a means of verification, as we can check if all the
object clusters are relatively still at the same position. To that end, we compute for each cluster its
centroid and compute a bipartite matching using the Hungarian algorithm. If these two verification
steps are positive, we can eventually proceed to the actual loop correction.

4.4. Loop Correction

As stated in the introduction, our goal is to implement loop closure as an online process. Therefore,
we adopted a heuristic approach that is extremely fast, though leading to a sub-optimal solution.
The idea is to avoid the iteration between the SLAM front- and back-end. The front-end refers to the
scan matching process whereas the back-end deals with the global consistency of the 3D map and
hence the correction of the loops. In that iteration, the outcome of the SLAM back-end, being the pose
error, is given to the front-end to re-investigate its outcome, thereby taking into account all the known
relations between neighboring poses and matched correspondences. After this, the outcome is fed back
to the back-end to check if this re-investigation has led to a better result. This process is repeated for all
poses and all correspondences, up until the optimal solution is found. It goes without saying that all
this is inherently time-consuming, so we propose bypassing this iterative behavior. Instead, we pass

Sensors 2019, 19, 23 9 of 18

the local information from the scan matching just once to the back-end, but not the other way round. In
a nutshell, we investigate how much each pose is contributing to the final accumulated error, thereby
considering the residual score of the scan matching process. The actual correction is then performed as
follows. Consider the mapping platform travelling along the trajectory V0, . . . , Vi, . . . Vn, where at each
pose Vi the lidar scanner is capturing a point cloud Pi during a full rotation of its head, also referred to
as a sweep. We assume that the loop detection method provides us with two point clouds, i.e., the
start and end of the loop. Let us denote their poses as, respectively, Vs and Ve. Next, the difference in
pose, i.e., the loop transform, is given by ∆ = (Rs,eVe)

−1Vs. Note that the rotation Rs,e denotes the one
we have computed using our registration algorithm. It should be discarded from the loop correction
process as it does not yield an error. This loop transform ∆ is considered as an error as both poses Rs,eVe

and Vs should be equal. It should thus be projected back in the pose graph. As mentioned before, we
use the residual of the scan matching process, i.e., final cost after transformation, to assign a weight ci,j
to each edge in the pose graph. We assign a higher weight for those transformations that yield a high
residual in the scan matching step. The idea is that a high residual indicates that two consecutive point
clouds were potentially inaccurately aligned. In addition, we assume that the scan matching process
will have already been converging in the right direction. Next, we define the distance between two
poses Vk and Vl as d(Vk, Vl) = ∑i,j ci,j. Herein, {i, j} denotes the set of all edges in the path from Vk to
Vl . Finally, we define a weight

wi =
d(Vs, Vi)

d(Vs, Ve)
(3)

for each pose in the graph that specifies the fraction of the matrix ∆ by which the pose has to be
transformed. The poses Vk are then updated replacing tk by tkwk∆ and Rk by slerp(Rk, wk∆), slerp
denoting the spherical linear interpolation function as described in [29].

5. Evaluation

The evaluation covers three main parts. First, we conduct an analysis to qualify the speed-up of
our GPU-accelerated descriptor computation. Second, we compare our loop detection accuracy to other
state-of-the-art methods. Finally, the quality and the speed of the loop closure module are analyzed.

5.1. Speed Analysis Global Descriptor Computation

In order to compare our GPU implementation of the M2DP descriptor against the CPU version
implemented in Matlab by [10], we ran several experiments using data from several Velodyne scanners.
To indicate the performance on point clouds of different sizes, we used data from both the VLP-16,
HDL-32E, and HDL-64E containing, respectively, 16, 32, and 64 lasers. More specifically, we used
several sequences from the KITTI benchmark [30], which are all captured by an HDL-64E in urban
environments. We extended this dataset with own recorded sequences in both indoor and outdoor
scenes using the HDL-32E and VLP-16. The experiments were conducted on a computer with an
Intel Core i7-7820X @ 3.60Ghz, 128GB RAM, and an nVidia GeForce GTX 1080ti inside. The results
are summarized in Table 1. As can be seen, our GPU implementation scales well for larger point
clouds. The overhead of copying data to the GPU memory is relatively low for larger point clouds,
hence yielding a larger speed-up. For point clouds originating from the HDL-64E scanner, our
implementation only takes 127 ms on average compared to 476 ms for the Matlab implementation
of [10], which is a speed-up factor of nearly 4. For smaller point clouds—captured with the VLP-16 or
HDL-32E—we notice a speed-up factor of almost 2.5.

Sensors 2019, 19, 23 10 of 18

Table 1. Computation times of our GPU implementation of the M2DP descriptor compared to the CPU
version implemented in Matlab by [10]. The speed-up factor for data originating from the HDL-64E is
almost ×4, whereas for the VLP-16 and HDL-32E the speed-up factor is ×2.5.

Sensor avg. |P| Matlab ([10]) in ms GPU (ours) in ms

VLP-16 25,446 250 110
HDL-32E 51,687 273 121
HDL-64E 62,594 476 127

5.2. Speed Analysis Global Registration

Regarding the speed of the global registration, we computed the alignment for all the loop
candidates determined by the global descriptor for the KITTI sequences as well as for our own recordings
in Ghent. We did this experiment for our own registration algorithm and for the original method
of [26]. For all the experiments the value for δ was set to 0.5 m. This value is rather high, but due to
the sparse point density, it turns out that this value is leading to the best results. The implementation
of the algorithm of [26] also requires a parameter representing the number of “samples” taken per
point cloud. This sub-sampling is necessary as the execution of the method is too slow when all
points are used to select and match several bases. We have set the value to 2000 samples, as this
turned out to lead to similar results compared to our implementation. The results are summarized
in Table 2. It is important to note that our method and the one of [26] do not produce the exact same
result, so the comparison of the computation time is purely indicative. As can be seen, the average
processing time per alignment for our method is 184 and 159 ms for the KITTI and Ghent dataset,
respectively. The KITTI dataset has been acquired with the Velodyne HDL-64E, hence consisting of
four times as many lasers compared to the VLP-16E, but the computation time of our method is only
20% higher. The original method of [26] needs respectively 875 and 415 ms for the same datasets.
Hence, for HDL-64E data, the original method needs approximately twice as much time to compute
the alignment.

Table 2. Processing times for our registration algorithm and the one of [26] on the KITTI dataset as
well as on our own dataset recorded in Ghent.

Dataset Sensor δ Time (ms) Ours Time (ms) [26] Num. Samples in [26]

Kitti Velodyne HDL-64E 0.5 184 875 2000
Ghent Velodyne VLP-16 0.5 159 415 2000

5.3. Loop Detection Accuracy

In order to evaluate the accuracy of our final loop detector against the state of the art, we conducted
several experiments on the Kitti benchmark [30]. More specifically, we used the sequences “00”
and“05”, as these contain the most “revisited” locations. To generate ground truth, we used the known
trajectories and considered a loop to be present when the distance between two poses was less than
1 m. Thereby, we used a threshold of 100 poses to prevent two subsequent poses from being wrongly
classified as a loop. In Figure 5, the “ground truth” revisited locations in the two trajectories are
depicted as green dots.

For some sequences, the same road was taken multiple times, so the whole part of the road was
considered as a loop. However, as can be seen, sometimes there are green dots missing along a road
that has been taken multiple times, meaning that the difference in pose is larger than 1 m. This could
be due to the fact that some roads consist of multiple lanes and that a different lane was taken.

Sensors 2019, 19, 23 11 of 18

 0

 100

 200

 300

 400

 500

-200 -100 0 100 200 300

z
[m

]

x [m]

Trajectory
Loops

-100

 0

 100

 200

 300

 400

-200 -100 0 100 200

z
[m

]

x [m]

Trajectory
Loops

Figure 5. The ground truth loops in the “00” (left) and “05” (right) sequences of the Kitti
benchmark [30]. We consider a loop to be present when the distance between two poses is less
than 1 m.

We used four different descriptors with which to compare our results. The first one was the
original M2DP method described in [10]. The other descriptors were the ensemble of shape functions
(ESFs) [31], spin images [6], and SHOT [7]. The latter two are local descriptors, so in order to use them
as global descriptors we computed the centroid of the point cloud and estimated the spin image and
SHOT descriptor related to this centroid. Thereby we used the maximum distance from the centroid
to any other point in the cloud as the radius to compute the descriptor. Furthermore, both the spin
images and the SHOT descriptors were based on normal vectors. To compute these, we used a radius
that was five times the average distance of a point to its closest neighbor. Regarding spin images,
the other parameters that needed to be set were (1) the number of bins along one dimension, (2) the
minimal allowed cosine of the angle between the normals of the input cloud and search surface (for the
point to be retained in the support), and (3) the minimal number of points in the support to correctly
estimate the spin image. We set these parameters to, respectively, 8, 0.5, and 16. The SHOT descriptor
did not have any other parameters to be set, and for the ESF we again used the maximum distance of
the centroid to any other point in the cloud. The M2DP method needs the number of bins for each
plane (expressed as the number of circles l and the number of bins in one ring t) and the number of
planes to use (expressed as the azimuth p and elevation q). For our experiments, we set these values to
l = 8, t = 16, p = 4, and q = 16 for all tests.

The ROC curves for the different loop detectors are depicted in Figure 6.
We clearly see that our method along with the methods M2DP and SHOT lead to the best

detections. The performance of the ESF descriptor and spin images turned out to be insufficient
to reliably recognize revisited areas. To obtain a recall of at least 90%, the precision dropped to,
respectively, 45% and 20% for the KITTI sequence “00”, which is unacceptable for an operational
system. For the KITTI sequence “05”, the precisions corresponding to a recall of 90% were even worse,
respectively, 30% and 15%. On the contrary, the M2DP and SHOT descriptors led to a precision of 70%
on the “00”-sequence and were higher than 95% on the “05”-sequence for a 90% recall. In Table 3, the
exact precision is listed that corresponds to a recall of about 99.9%. We observed that our combined
method further improved the performance of the M2DP detector. For the KITTI sequence “05”, to
obtain 99.9% recall, we reached a precision of 90.4%, an improvement of more than 7.1%. For the KITTI
sequence “00”, we obtained a smaller improvement of 0.8%, reaching a precision of 60.5% compared
to 59.7 for the M2DP detector. The lower performance on the KITTI “00” dataset was probably due
to inaccuracies in the ground truth. A higher threshold on the distance for a pose to be considered

Sensors 2019, 19, 23 12 of 18

as a ground truth loop affects the results tremendously. Thus, the value of this experiment is in the
comparison between the different detectors rather than in the absolute numbers on the actual accuracy.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

KITTI 00

esf
m2dp
ours
shot
spin

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

KITTI 05

esf
m2dp
ours
shot
spin

Figure 6. ROC curves for the several loop detection methods on the KITTI sequences “00” (left) and “05”
(right). As can be seen, our method performs better than the original M2DP method, the second-best
performer in our experiments. The SHOT detector also produces acceptable results, whereas the spin
and ESF detectors are too unreliable to be used in practice.

Table 3. Precision at 99.9% recall of the different loop detection methods for the KITTI dataset. Clearly,
only the detectors SHOT and M2DP produce “acceptable” results. Our combined algorithm improves
the original M2DP method by 0.8% and 7% for KITTI sequences “00” and “05”, leading to a precision
of, respectively, 60.5% and 90.4%.

Sequence Spin Image SHOT ESF M2DP Ours

KITTI00 0.025 0.575 0.143 0.597 0.605
KITTI05 <0.01 0.632 0.037 0.833 0.904

Besides experiments on the Kitti benchmark, we acquired a lidar sequence ourselves in the city of
Ghent (Belgium), and mounted the Velodyne VLP-16 lidar scanner on top of a car. While acquiring the
lidar data, we used a Garmin GPS to generate ground truth. The trajectory is shown in Figure 7. As can
be seen, a part of the trajectory was taken twice, making all the poses along this part act as loops.

This time we used 3 m as a threshold for two poses to be considered as a loop, as this threshold
led to more coherent loops along roads that were taken twice. As the sequence was recorded in the
historical city center of Ghent, the GPS signal was often times inaccurate leading to a noisy trajectory.
To deal with these anomalies, we used the Google API to clean up the trajectory by computing the
most likely roads that were taken. This eventually led to 843 loops on a trajectory of approx. 15.7 km
travelled in 47 min. The number of lidar point clouds was 31,745. For this experiment, we used the
exact same parameters as those of the KITTI sequences. The ROC curve is depicted in Figure 7. In this
experiment, our loop detector clearly outperformed the other point cloud matchers. For a recall of
93%, we still obtained a precision of 100%, which is an improvement of 5.2% compared to the SHOT
descriptor. Only the latter along with the M2DP descriptor generated acceptable results. The spin
images performed better than those for the KITTI sequences, but the overall accuracy is still too low to
be used in an operational system. Finally, for the ESF descriptor, it was very difficult to achieve any
acceptable precision, even for recall values. Due to inaccuracies in the GPS data, and hence the ground
truth, it was not possible to reach 100% recall for any of the methods, as was the case for the KITTI.

Sensors 2019, 19, 23 13 of 18

3.720 3.725 3.730 3.735 3.740 3.745
51.0375

51.0400

51.0425

51.0450

51.0475

51.0500

51.0525

51.0550

51.0575 GPS trajectory
Ground truth loops

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Pr
ec

is
io

n

Recall

GHENT 01

esf
m2dp
ours
shot
spin

Figure 7. Left: The ground truth and estimated loops of the sequences recorded in the city center of
Ghent, Belgium. We consider a loop to be present when the distance between two poses is less than
3 m. Right: The ROC curve for the sequence recorded in the city center of Ghent, Belgium. Our loop
detector clearly outperformed the other methods. For a recall of 93%, we still obtained a precision
of 100%, which is a 5.2% gain compared to the SHOT descriptor. The latter along with the M2DP
descriptor were the only two other point cloud matchers that produced acceptable results. The loop
detection quality of the spin images descriptor and ESF are too limited.

5.4. Quality and Speed of the Loop Correction

To assess the quality of our loop correction algorithm, we conducted an experiment using data
that we captured in the Belgian city of Hasselt. We mounted a Velodyne HDL-32E on a mobile mapping
van together with a high-precision POS-LV inertial positioning system to acquire accurate ground
truth. In order to obtain the initial trajectory, we used our 3D reconstruction system described in [24].
In Figure 8, two images are depicted showing the result of this reconstruction process.

Figure 8. The two resulting reconstructions for the “Hasselt” dataset, before loop closure (left) and
after loop closure (right). After loop correction, the two ends of the loops were attached, and the error
was propagated back in the pose graph.

In the left image, the resulting point cloud is shown before loop closure, whereas the right picture
depicts the point cloud after loop closure. As can be seen in the left point cloud, the end of the loop
was not connected with the start of the loop. After correction, the two ends were connected, and the
accumulated error was propagated back in the pose graph. In order to evaluate this quantitatively,
we used the POS-LV positioning system as ground truth. Figure 9 depicts both the ground truth and
the final trajectory after performing loop closure.

Sensors 2019, 19, 23 14 of 18

-100

-50

0

50

100

150

-50 0 50 100 150 200

z
[m

]

x [m]

Ground Truth
Lidar Odometry

-100

-50

0

50

100

150

-50 0 50 100 150 200

z
[m

]

Lidar Odometry

x [m]

Ground Truth

Figure 9. The two resulting trajectories for the “Hasselt” dataset corresponding to the reconstructions
in Figure 8, before loop closure (left) and after loop closure (right). The estimated trajectory and
the ground truth trajectory are almost entirely overlapping after loop closure. The pose error before
and after loop correction is, respectively, 5.56 and 3.13 m, hence proving the effectiveness of the
loop correction.

As we do not have a complete ground truth 3D model, we measured the quality by means of
comparing all poses in the pose graph. To this end we computed the average distance from all poses
in the estimated trajectory with its closest pose in the ground truth. The average distance between all
poses before and after loop closure turned out to be, respectively, 5.65 and 3.13 m. Furthermore, the
median pose error before and after loop closure were, respectively, 3.98 and 2.13 m. Hence, the loop
closure process reduced the total error almost by a factor of 2. The total time to correct the loop on an
Intel Core i7-4712HQ CPU @ 2.30 GHz was 11 ms. This is extremely fast thanks to the omission of the
iteration between the SLAM front- and back-end. During the SLAM front-end, a residual score was
computed that is later on used in the loop correction phase. The loop correction itself only involves one
single manipulation of the poses. By means of a second example, we also closed the loop of sequence
“09” of the Kitti benchmark. The result is shown in Figure 10. The trajectory after loop closure (in green)
and the “ground truth” trajectory (in red) are almost entirely overlapping. In the right image, the point
cloud at the start and end-point of the loop are shown. The poses are overlapping, and little to no
artefacts can be seen in the point cloud. For this dataset, we also computed the average pose error
before and after loop correction, which resulted in values of, respectively, 9.89 and 4.80 m. The median
value before and after loop correction was 7.85 and 3.53 m, respectively. In summary, we can conclude
that we reduce the error with a factor 2 after loop closure.

Sensors 2019, 19, 23 15 of 18

0

100

200

300

400

500

-200 -100 0 100 200 300 400

z
[m

]

x [m]

Ground Truth
Before LC

After LC

Figure 10. The resulting trajectory (left) of sequence “09” of the Kitti benchmark, before loop closure
(blue) and after loop closure (green). The estimated and the ground truth trajectory are almost entirely
overlapping after loop correction. (right) the corresponding reconstruction at the start- and end-point
of the loop after correction. Little to no artefacts can be seen in the reconstruction. The pose error before
and after loop correction is, respectively, 9.89 and 4.80 m, hence proving its effectiveness.

The results of both experiments are summarized in Table 4.

Table 4. The average and median pose error before and after loop closure for the Hasselt and Kitti “09”
sequence. Our correction algorithm reduces the error by a factor of approximately × 2 after closing
the loop.

Sequence Total Length (m) Average Error (m) Median Error (m)

before LC after LC gain before LC after LC gain
HASSELT 715 5.65 3.13 ×1.81 3.98 2.13 ×1.87
KITTI09 1705 9.89 4.80 ×2.06 7.85 3.53 ×2.22

5.5. Speed Analysis Entire Loop Closure Process

In this subsection, we summarize the processing time for the entire loop closing process. It is
important to note that, for most use cases, there will only be a few loops present in a sequence. Even in
the case that an entire road is taken multiple times, it often suffices to close the loop only once or twice
along that trajectory. Furthermore, the preliminary check for the presence of a loop is an extremely
efficient operation: it just compares the current position with the previous ones, which only takes up
to a couple of milliseconds. Only when the distance is smaller than 1% of the total distance travelled
since the last loop closure, we consider it as a loop candidate and only in that case we compute the
signatures of both point clouds. Based on the difference in signature, we decide whether or not we
compute the alignment between them. This decision is dependent on a threshold which also affects
the precision, recall, and computation time of the system. It should thus be properly fine-tuned. In the
previous sections, we showed that the execution time for the alignment process is approximately
150–200 ms. Together with the 100–130 ms for the global descriptor computation, we can conclude that
the entire loop detection process leads to a maximum overhead of about 250–350 ms per pose. In most
cases, where there is no loop present, the real overhead is, however, just a couple of milliseconds to
perform the preliminary check. Finally, when a loop needs to be closed, this causes an additional
overhead of approximately 10–20 ms.

Sensors 2019, 19, 23 16 of 18

6. Conclusions

In this paper, a full loop detection and correction method is presented. The main contributions
of this work are threefold. First, we accelerated the loop detection process by developing a
GPU-accelerated version of a global feature descriptor for point clouds. Second, we present a novel
registration technique to align two point clouds with a large deviation in orientation, and this method
outperforms existing techniques regarding robustness, accuracy, and speed. We explain how the
method can be used to align two point clouds that serve as the two ends of a loop in lidar data.
Furthermore, we show the effectiveness of incorporating this registration technique in the verification
process of loop candidates. Experiments demonstrated that we can gain up to a 7% precision for the
same recall value of 99.9%. Experiments also showed that our method works for data acquired with
different Velodyne scanners, including the one containing 64, 32, or 16 lasers. In addition, we show
that our global feature descriptor is a factor of 2–4 times faster than the original version, depending
on the number of points in the point cloud. Finally, we present a novel loop correction heuristic that
reduces the average and mean pose error—defined as the distance of a pose with its closest neighbor
in the ground truth trajectory—by a factor of 2.

Author Contributions: The research in this work was mainly conducted by M.V., M.Sc. in Computer Science and
PhD candidate. The research is supervised by H.L. and W.P. They provided ideas, inputs and feedback to improve
the work.

Funding: This research was funded by imec, an international research institute active in the fields of
nano-electronics and digital technologies.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Steder, B.; Ruhnke, M.; Grzonka, S.; Burgard, W. Place recognition in 3D scans using a combination of
bag of words and point feature based relative pose estimation. In Proceedings of the 2011 IEEE/RSJ
International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011;
pp. 1249–1255.

2. Zhong, Y. Intrinsic shape signatures: A shape descriptor for 3D object recognition. In Proceedings of the
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, Kyoto, Japan,
27 September–4 October 2009; pp. 689–696. [CrossRef]

3. Sipiran, I.; Bustos, B. A Robust 3D Interest Points Detector Based on Harris Operator; Eurographics Workshop
on 3D Object Retrieval; Daoudi, M., Schreck, T., Eds.; The Eurographics Association: Norrköping, Sweden,
2010; pp. 7–14. [CrossRef]

4. Scovanner, P.; Ali, S.; Shah, M. A 3-Dimensional Sift Descriptor and Its Application to Action Recognition.
In Proceedings of the MULTIMEDIA ’07 15th International Conference on Multimedia, Augsburg, Germany,
25–29 September 2007; ACM: New York, NY, USA, 2007; pp. 357–360. [CrossRef]

5. Steder, B.; Rusu, R.B.; Konolige, K.; Burgard, W. NARF: 3D Range Image Features for Object Recognition.
In Proceedings of the Workshop on Defining and Solving Realistic Perception Problems in Personal
Robotics at the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan,
8 October 2010.

6. Johnson, A. Spin-Images: A Representation for 3-D Surface Matching. Ph.D. Thesis, Carnegie Mellon
University, Pittsburgh, PA, USA, 1997.

7. Salti, S.; Tombari, F.; di Stefano, L. SHOT: Unique signatures of histograms for surface and texture description.
Comput. Vis. Image Understand. 2014, 125, 251–264. [CrossRef]

8. Rusu, R.B.; Blodow, N.; Beetz, M. Fast Point Feature Histograms (FPFH) for 3D Registration. In Proceedings
of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; IEEE
Press: Piscataway, NJ, USA, 2009; pp. 1848–1853.

9. Rusu, R.B.; Bradski, G.R.; Thibaux, R.; Hsu, J.M. Fast 3D recognition and pose using the Viewpoint Feature
Histogram. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems,
Taipei, Taiwan, 18–22 October 2010; pp. 2155–2162.

http://dx.doi.org/10.1109/ICCVW.2009.5457637
http://dx.doi.org/10.2312/3DOR/3DOR10/007-014
http://dx.doi.org/10.1145/1291233.1291311
http://dx.doi.org/10.1016/j.cviu.2014.04.011

Sensors 2019, 19, 23 17 of 18

10. He, L.; Wang, X.; Zhang, H. M2DP: A novel 3D point cloud descriptor and its application in loop closure
detection. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Daejeon, Korea, 9–14 October 2016; pp. 231–237.

11. Dewan, A.; Caselitz, T.; Burgard, W. Learning a Local Feature Descriptor for 3D LiDAR Scans. In Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5
October 2018.

12. Zeng, A.; Song, S.; Nießner, M.; Fisher, M.; Xiao, J.; Funkhouser, T. 3DMatch: Learning Local Geometric
Descriptors from RGB-D Reconstructions. In Proceedings of the 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017.

13. Yin, H.; Ding, X.; Tang, L.; Wang, Y.; Xiong, R. Efficient 3D LIDAR based loop closing using deep neural
network. In Proceedings of the 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO),
Macau, China, 5–8 December 2017; pp. 481–486. [CrossRef]

14. Yin, H.; Wang, Y.; Tang, L.; Ding, X.; Xiong, R. LocNet: Global localization in 3D point clouds for
mobile robots. In Proceedings of the 2018 IEEE Intelligent Vehicles Symposium (IV), Changshu, China,
26–30 June 2018.

15. Fernández-Moral, E.; Mayol-Cuevas, W.W.; Arévalo, V.; Jiménez, J.G. Fast place recognition with plane-based
maps. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe,
Germany, 6–10 May 2013; pp. 2719–2724.

16. Dubé, R.; Dugas, D.; Stumm, E.; Nieto, J.I.; Siegwart, R.; Cadena, C. SegMatch: Segment based loop-closure
for 3D point clouds. arXiv 2016, arXiv:1609.07720.

17. Zhu, Z.; Yang, S.; Dai, H.; Li, F. Loop Detection and Correction of 3D Laser-Based SLAM with Visual
Information. In Proceedings of the CASA 2018 31st International Conference on Computer Animation and
Social Agents, Beijing, China, 21–23 May 2018; ACM: New York, NY, USA; pp. 53–58. [CrossRef]

18. Kümmerle, R.; Grisetti, G.; Strasdat, H.; Konolige, K.; Burgard, W. G2o: A general framework for graph
optimization. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation,
Shanghai, China, 9–13 May 2011; pp. 3607–3613.

19. Grisetti, G.; Stachniss, C.; Burgard, W. Non-linear Constraint Network Optimization for Efficient Map
Learning. IEEE Tran. Intell. Transp. Syst. 2009, 10, 428–439. [CrossRef]

20. Lu, F.; Milios, E. Globally Consistent Range Scan Alignment for Environment Mapping. Auton. Robots 1997,
4, 333–349. [CrossRef]

21. Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-Time Loop Closure in 2D LIDAR SLAM. In Proceedings of
the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21
May 2016; pp. 1271–1278.

22. Sprickerhof, J.; Nüchter, P.A.; Lingemann, K.; Hertzberg, P.J. A Heuristic Loop Closing Technique for
Large-Scale 6D SLAM. Automatika 2011, 52, 199–222. [CrossRef]

23. Droeschel, D.; Behnke, S. Efficient Continuous-Time SLAM for 3D Lidar-Based Online Mapping.
In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane,
QLD, Australia, 21–25 May 2018; pp. 1–9.

24. Vlaminck, M.; Luong, H.; Goeman, W.; Philips, W. 3D Scene Reconstruction Using Omnidirectional Vision
and LiDAR: A Hybrid Approach. Sensors 2016, 16, 1923. [CrossRef]

25. Vlaminck, M.; Luong, H.; Philips, W. Liborg: A lidar-based robot for efficient 3D mapping. In Proceedings
of the Applications of Digital Image Processing XL, San Diego, CA, USA, 19 September 2017; Volume 10396.

26. Mellado, N.; Aiger, D.; Mitra, N.J. SUPER 4PCS: Fast Global Pointcloud Registration via Smart Indexing.
Comput. Graph. Forum 2014, 33, 205–215. [CrossRef]

27. Goossens, B.; De Vylder, J.; Philips, W. Quasar: A new heterogeneous programming framework for image
and video processing algorithms on CPU and GPU. In Proceedings of the IEEE International Conference on
Image Processing ICIP, Paris, France, 27–30 October 2014; pp. 2183–2185.

28. Aiger, D.; Mitra, N.J.; Cohen-Or, D. 4pointss Congruent Sets for Robust Pairwise Surface Registration.
In Proceedings of the SIGGRAPH ’08 ACM SIGGRAPH 2008 Papers, Los Angeles, CA, USA, 11–15 August
2018; ACM: New York, NY, USA; pp. 85:1–85:10. [CrossRef]

29. Shoemake, K. Animating Rotation with Quaternion Curves. SIGGRAPH Comput. Graph. 1985, 19, 245–254.
[CrossRef]

http://dx.doi.org/10.1109/ROBIO.2017.8324463
http://dx.doi.org/10.1145/3205326.3205357
http://dx.doi.org/10.1109/TITS.2009.2026444
http://dx.doi.org/10.1023/A:1008854305733
http://dx.doi.org/10.1080/00051144.2011.11828420
http://dx.doi.org/10.3390/s16111923
http://dx.doi.org/10.1111/cgf.12446
http://dx.doi.org/10.1145/1399504.1360684
http://dx.doi.org/10.1145/325165.325242

Sensors 2019, 19, 23 18 of 18

30. Geiger, A.; Lenz, P.; Urtasun, R. Are We Ready for Autonomous Driving? The KITTI Vision Benchmark
Suite. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; IEEE Computer Society: Washington, DC, USA, 2012; pp. 3354–3361.

31. Wohlkinger, W.; Vincze, M. Ensemble of shape functions for 3D object classification. In Proceedings of the
2011 IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, 7–11 December 2011;
pp. 2987–2992.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Contributions
	Approach
	Multiview 2D-Projection
	Four-Point Congruent Sets
	Selecting a Coplanar Base
	Finding Congruent Sets
	Test Rigid Transformation

	Verification through ICP and Geometrical Consistency
	Loop Correction

	Evaluation
	Speed Analysis Global Descriptor Computation
	Speed Analysis Global Registration
	Loop Detection Accuracy
	Quality and Speed of the Loop Correction
	Speed Analysis Entire Loop Closure Process

	Conclusions
	References

