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Abstract: The finite-set statistics (FISST) foundational approach to multitarget tracking and
information fusion was introduced in the mid-1990s and extended in 2001. FISST was devised
to be as “engineering-friendly” as possible by avoiding avoidable mathematical abstraction and
complexity—and, especially, by avoiding measure theory and measure-theoretic point process (p.p.)
theory. Recently, however, an allegedly more general theoretical foundation for multitarget tracking
has been proposed. In it, the constituent components of FISST have been systematically replaced
by mathematically more complicated concepts—and, especially, by the very measure theory and
measure-theoretic p.p.’s that FISST eschews. It is shown that this proposed alternative is actually
a mathematical paraphrase of part of FISST that does not correctly address the technical idiosyncrasies
of the multitarget tracking application.
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1. Introduction

The finite-set statistics (FISST) foundational approach to multitarget tracking and information
fusion—stochastic geometry, random finite sets (RFS’s), belief-mass functions, and set derivatives and
integrals—was introduced in the mid-1990s [1]. Its current extended form—probability generating
functionals (p.g.fl.’s) and Volterra functional derivatives [2–4]—dates from 2001 [5]. FISST has inspired
work by dozens of research groups in at least 20 nations; and FISST publications have been cited tens
of thousands of times. A short survey of the FISST state-of-the-art c. 2015 can be found in Ref. [6].
The currently most advanced FISST-based algorithm, the generalized labeled multi-Bernoulli (GLMB)
filter [3,7,8], is capable of real-time tracking of over one million 2D targets in clutter using off-the-shelf
computing equipment [9].

FISST was devised to be as “engineering-friendly” as possible by avoiding avoidable mathematical
abstraction and complexity [4]. Few tracking engineers have studied measure theory and far fewer are
proficient. Still fewer have studied point process (p.p.) theory (which typically requires proficiency
in measure theory), and few are proficient. For this reason, FISST does not employ measure theory
or measure-theoretic p.p.’s, because simpler and more practical concepts, such as multitarget density
functions, RFS’s, and Volterra functional derivatives, suffice.

Despite its “engineering-friendly” emphasis, FISST has inspired two rather contradictory reactions.
Some have insinuated that FISST is probably unnecessary because it will probably turn out to be just
a mathematical obfuscation of multi-hypothesis tracker (MHT) theory. Such a stance is quite mistaken
and has been addressed in the tutorial [10].

Others, however, have recently intimated that FISST is insufficiently complex because it is insufficiently
general. They have systematically replaced the constituent components of FISST with mathematically
more complicated concepts—and, especially, with the very measure theory and measure-theoretic p.p.
theory that FISST eschews.

It has been my observation, as well as that of others, that most tracking engineers—even those
very familiar with measure and p.p. theories—must invest a great deal of effort to digest such
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papers in order to decipher their possible contributions. It is thus entirely possible for mathematical
complexity to obscure mathematical or engineering missteps. A central question, therefore, is this:
What engineering advantages, if any, do sigma-algebras, measures, measure-theoretic p.p.’s, and other
mathematically sophisticated concepts offer—especially given that FISST-based algorithms such as the
GLMB filter offer unprecedented capability?

This review paper, which is a sequel to Refs. [4,11], is intended to answer this question. It will
address the alternative multitarget statistical theory described in Refs. [12–14], with (for the sake of
specificity) emphasis on Ref. [13]. This theory will hereafter be referred to as “measure-theoretical
point-process multitarget tracking”, or “MPMT” for short. It will be demonstrated that MPMT is
a mathematical paraphrase of part of FISST—one that, moreover, does not correctly address the technical
idiosyncrasies of the multitarget tracking application.

A mathematical paraphrase is a substitution of terminology, notation, concepts, ideas, or processes
that are equivalent in mathematical meaning to the terminology, notation, concepts, ideas, or processes in
the original. In particular, it will be shown that:

1. When applied to practical multitarget tracking, p.p.’s are not “more general” than RFS’s.
2. The “regional variance” of Ref. [12] does admit a density—thereby refuting the only offered

evidence in Refs. [12–14] that MPMT is unavoidable for practical multitarget tracking.
3. When applied to multitarget tracking, the “chain differential” is identical to the Gâteaux and

Frechét derivatives—and thus mathematically equivalent to the FISST functional derivative.

These, and other noteworthy facts that follow, have thus far been overlooked in the tracking
literature. It is therefore important that such oversights be carefully addressed.

The paper will address the following replacements of FISST concepts with MPMT concepts: RFS’s
with p.p.’s (Section 2); FISST densities with “measures” (Section 3); set integrals with measure-theoretic
integrals (Section 4); functional derivatives with “chain differentials” (Section 5); the FISST product
rule with “Leibniz’ Rule” (Section 6); and RFS motion models with p.p. motion models (Section 7).
Mathematical derivations can be found in Section 8 and Conclusions in Section 9. The discussions
have been made as tutorial as feasible.

2. RFS’s Replaced by “Point Processes” (p.p.’s)

MPMT replaces RFS’s with “ . . . the more general concept of point process” [13] (p. 1324) (This
phase is logically vacuous: “more general” than what? What is implicitly meant is “more general than
RFS’s”.). Specifically, if < denotes the real numbers then:

“ . . . the population of targets is represented by a point process Φ, on a single-target state
space X ⊆ <d, whose elements describe individual target states. A realization of Φ is a vector
of points φ = (x1, . . . , xN) depicting a specific multitarget configuration, where xi ∈ X . . .
A point process Φ is characterized by its probability distribution PΦ on the measurable space
(X, BX), where X = ∪n≥0Xn is the point process state space, i.e., the space of all the finite
vectors of points in X, and BX is the Borel σ-algebra on X . . . The probability distribution of
a point process is defined as a symmetric function, so that the order of points in a realization
is irrelevant for statistical purposes . . . ”. [13] (p. 1325)

The following subsections address the topics: RFS’s are not an “alternative construction”
(Section 2.1); RFS’s are simpler than simple p.p.’s (Section 2.2); non-RFS p.p.’s are inappropriate
for multitarget tracking (Section 2.3); vectors are poor multitarget state representations (Section 2.4);
simple p.p.’s produce a flawed mathematical paraphrase of RFS’s (Section 2.5); and FISST is actually
more general than MPMT (Section 2.6).
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2.1. RFS’s Are Not an “Alternative Construction”

In MPMT, p.p.’s are assumed to be “simple” (i.e., the x1, . . . , xn in (x1, . . . , xn) are distinct), while
it is also asserted that an RFS is an “alternative construction” of a simple p.p. that is “also available in
the literature” [13] (p. 1325, footnote). This is misleading. It is simple p.p.’s that are being proffered as
an alternative to RFS’s for application to multitarget tracking.

It could be argued to the contrary that, in the pure-mathematics literature of many decades ago, RFS’s
historically arose as an alternative to the three formulations of p.p.’s originally proposed by Moyal in
Ref. [15]. However, any such claim overlooks the following fact: When signal processing engineers apply
concepts drawn from the pure-mathematics literature, they typically create original intellectual property which
must be properly acknowledged as such (Otherwise, why would one need signal processing engineers?)
Moyal’s paper addressed no practical applications at all, and appeared at the same time as the Kalman
filter and nearly 20 years before Reid’s seminal MHT paper [16]. Nearly a half-century after [15], FISST
was devised as a novel application of stochastic geometry (not p.p. theory) to a specific engineering
application: multitarget tracking and information fusion. It is this original application that requires
proper attribution.

To state the issue plainly: In the recent engineering tracking literature, the “p.p.” model of a random
multitarget state in Refs. [12–14] is, historically speaking, being promoted as an alternative to the original
FISST RFS model of a random multitarget state—not the other way around.

2.2. RFS’s Are Simpler than Simple p.p.’s

Contrast the definition of a p.p. previously given with the definition of an RFS:
An RFS Ξ of the single-target state space = is a random variable whose realizations are the finite

subsets X = {x1, . . . , xn} of = of cardinality n ≥ 0.
This requires only simple concepts easily understood by engineers: random variable, finite set,

cardinality. There is no need for measurable spaces, Borel sigma-algebras, or probability measures
(symmetric or otherwise) (RFS’s do have a measure-theoretic basis, but in practical application it can
usually be ignored—see Section 3.1.)

Remark 1. The fact that finite sets are order-free does not mean that we cannot distinguish between targets.
In general, a single-target state will have the form x = (u, `) where u is the kinematic state and ` is a uniquely
identifying track label [1] (pp. 135, 196–197). This is the basis for the labeled RFS (LRFS) theory of Vo and
Vo [7–9]; [3] (Chapter 15). In LRFS theory, u and ` are random variables and the ` are unordered symbols.

2.3. Non-RFS p.p.’s Are Inappropriate for Multitarget Tracking

This is because non-RFS p.p.’s are technically deficient representations of random multitarget states.
Every target track must have a unique identifying label—for example, “Bob.” Given this, x = (u, Bob)
cannot occur more than once in (x1, . . . , xn) since, otherwise, “Bob” would be present twice or more
simultaneously. Thus all state-p.p.’s must be simple—i.e., they must be RFS’s—and so the claim that p.p.’s
are “more general [than RFS’s]” is false in actual engineering application. And, in any case, immediately
after this claim was made all p.p.’s were assumed to be simple.

2.4. Vectors Are Poor Multitarget State Representations

There are multiple reasons for this [17] (Section II-A); [18] (Section 4.2.3). (1) The targets in
a multitarget population have no natural ordering. Imposing physically extraneous information on it,
such as an order, risks the creation of unknown statistical biases. (2) If the system has n distinct targets
X = {x1, . . . , xn} then it has n! vector state representations φX,π = (xπ1, . . . , xπn) (for permutations π on
1, . . . , n)—whereas ideally there should be a one-to-one correspondence between physical states and
their representations. (3) The goal of multitarget algorithms is to produce estimates of the multitarget
state that are as close as possible to ground truth. A mathematical distance metric on multitarget states
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is required to do so. Assume that there exists a metric ρ(φ1,φ2) on vector states. It must be constant
under permutation of the entries of φ1 and φ2—in which case ρ(φ1,φ2) = ρ′(χ(φ1),χ(φ2)) for some ρ′,
where χ(φ) denotes the set of entries in φ. Let φπ = (xπ1, . . . , xπn). Then ρ(φπ ,φπ ′ ) = ρ(φπ ,φπ) = 0 for
permutations π 6= π′, contradicting the definition of a metric. That is: no metric on vector states exists.
Finite sets have well-known metrics such as “OSPA” [3].

Remark 2. It could be argued that, because the probability distribution of a p.p. is symmetric, “ . . . the order of
points in a realization is irrelevant for statistical purposes” [13] (p. 1325). This is immaterial. Distance is an
intrinsic, deterministic property of a multitarget state space that is independent of any particular probability
distribution on that space.

Remark 3. It should be pointed out that one of the authors of Refs. [12–14], as a coauthor of Ref. [18]
(Section 4.2.3), marshaled similar arguments to similarly criticize vector representation.

Finally, Ref. [13] appears to employ finite sets while the contrary is claimed. (1) Most obviously:
“ . . . the abuse of notation ‘x ∈ φ’ is used for ‘x ∈ χ(φ)’ where χ is the function associating a vector of
distinct elements to the set composed of the same elements” [13] (footnote 3) (Such “abuse” is required
only because vectors have been needlessly substituted in place of finite sets). (2) OSPA is used to
measure distance between vectors (This is theoretically problematic since ρ(φ1,φ2) = ρOSPA(χ(φ1),χ(φ2))
cannot be a metric). (3) The set-theoretic notation “Φ1 ∪ Φ2” is used to denote the “superposition” (i.e.,
set-theoretic union) of simple p.p.’s (i.e., RFS’s) Φ1, Φ2 [13] (Proposition 1).

2.5. Simple p.p.’s Produce a Flawed Mathematical Paraphrase of RFS’s

The replacement of every finite subset X = {x1, . . . , xn} ⊆ = with a vector φ = (x1, . . . , xn) ∈ X and
every RFS Ξ with a simple p.p. Φ results in a conceptually questionable and unnecessarily complexified
mathematical paraphrase of FISST that does not correctly address the technical idiosyncrasies of the
multitarget tracking application.

2.6. FISST is More General than MPMT

This is because FISST (a) has an integro-differential calculus of possibly nonadditive set functions
and their density functions (Section 3.1); and (b) it Bayes-optimally addresses multitarget-multisource
information fusion using “hard + soft” data in a unified manner [2] (Chapters 3–7); [3] (Chapter 22).
The latter is attributable to the fact that FISST is based on stochastic geometry, which in turn is based
on the theory of random closed subsets (RCS’s) [19], which in turn is the basis of FISST’s unification of
“hard + soft” information fusion.

3. FISST Densities Replaced by “Measures”

MPMT replaces the former with the latter because:

“ . . . a measure-theoretical formulation provides a more general framework that is required
to construct certain statistical properties on point processes that can be exploited for
practical applications; a recent example is given in [21] for the construction of the regional
statistics . . . ”. [13] (p. 1325)

(The phrase “more general framework” is again logically vacuous: “more general” than what?
What is implicitly meant is “more general than FISST”.) Here, “regional statistics” refers to the
“regional variance” of Ref. [12]—i.e., the variance of the random integer |Ξ ∩ S|:

varΞ(S) = E[|Ξ ∩ S|2] − E[|Ξ ∩ S|]2. (1)
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In Ref. [12] it was claimed that the set function varΞ(S) “ . . . is . . . not a measure . . . [and so
it] does not necessarily admit a density in general . . . This fact motivates the measure-theoretical
approach . . . ” This is not the case, because (as we shall see) varΞ(S) does admit a density.

First, however, readers should be advised that the meaning of “measure” in Refs. [12–14] is often
unclear. For example, since varΞ(S) is not a measure, how can it motivate “the measure-theoretical
approach”? Sometimes “measure” has its usual meaning: a nonnegative set function µ(S) such that
µ(∪n≥1 Sn) = ∑n≥1 µ(Sn) for mutually disjoint Sn. Other times, however, it means nonadditive set
functions such as varΞ(S).

The following subsections will address: the elements of FISST (Section 3.1); measure-theoretic
p.p. theory (Section 3.2); the FISST density of the regional variance (Section 3.3); why measures are
inappropriate for multitarget tracking (Section 3.4); and why the “measure-theoretical formulation” in
Refs. [12–14] produces a complexified mathematical paraphrase of FISST (Section 3.5).

3.1. Basic Concepts of Finite-Set Statistics

This section is drawn from Ref. [4]. The theoretical basis of single-target statistics is the probability
measure pX(S) = Pr(X ∈ S) of a random vector X ∈ = (not to be confused with the p.p. single-target state
space X = =). Single-target tracking requires the probability density of pX(S):

fX(x) =
dpX

dλ
(x) (2)

where the right side is the Radon-Nikodým derivative of pX(S) with respect to Lesbesgue measure λ(S)
on = ⊆ <N. That is: f X(x) has the property that

∫
S f X(x)dx = pX(S) where

∫
S·dx =

∫
·1S(x)dλ(x) and

1S(x) is the indicator function of subset S ⊆ =.
The goal of FISST was to reformulate multitarget tracking as a generalized single-target tracking problem,

with RFS’s Ξ taking the place of random vectors X. The theoretical basis of multitarget statistics is
the probability measure pΞ(O) = Pr(Ξ ∈ O) over the Borel-measurable subsets O of the hyperspace
whose elements are the finite subsets of single-target state space =. (A “hyperspace” is a space whose
elements are subsets of some other “base space.”) FISST avoids pΞ(O) by equivalently replacing it with
the stochastic-geometric belief measure (a.k.a. belief-mass function) βΞ(S) = Pr(Ξ⊆S)—a conceptually
simple generalization of pX(S) = Pr(X∈S).

Remark 4. The belief measure can usually be avoided since it is usually necessary only for motion and
measurement modeling—see Section 7.1.

Multitarget tracking is based on the multitarget probability density of βΞ(S)—i.e., the multitarget
analog of Equation (2):

fΞ(X) =
δβΞ

δX
(∅) =

[
δβΞ

δX
(S)
]

S=∅
(3)

where Ø denotes the empty set and where the right side is a FISST set derivative of βΞ(S) with respect
to X = {x1, . . . , xn} ⊆ =. (The set derivative is a constructivist generalization of the Radon-Nikodým
derivative: (dpX/dλ)(x) = (δpX/δ{x})(Ø)—see Ref. [4] (Section IV-F).)

A related density is the FISST multitarget factorial moment density:

DΞ(X) =
δβΞ

δX
(=) =

[
δβΞ

δX
(S)
]

S==
. (4)

The special case DΞ(x) = DΞ({x}) is known as the probability hypothesis density (PHD) of Ξ.

Remark 5. fΞ(X) and DΞ(X) were defined in 1997 in Ref. [1] using stochastic geometry and set derivatives—not
p.p. theory. Likewise for the first derivation [20] of the PHD filter.
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For any real-valued function h(x) and any finite X ⊆ =, let hX = 1 if X = Ø and hX = ∏x∈X h(x)
otherwise. Then the multitarget analog of pX(S) =

∫
S f X(x)dx is

βΞ(S) =
∫

S
fΞ(X)δX =

∫
1X

S · fΞ(X)δX, (5)

where the set integral
∫

f(X)δX of a multitarget density function f (X) is defined as

∫
f (X)δX =∑

n≥0

1
n!

∫
f ({x1, . . . , xn})dx1 · · · dxn. (6)

The regional set integral
∫

S f (X)δX is nonadditive in S because S 7→ ∏x∈X 1S(x) is nonadditive
(It is not true that integrals must be additive in S—see, for example, [21].).

The set derivative has the following important property. Let σ(S) be a nonnegative set function
defined on the closed subsets S ⊆ =. Then if it exists, its FISST multitarget density is σ∗(X) =
(δσ/δX)(Ø) since ∫

S

δσ

δX
(∅)δX = σ(S). (7)

3.2. Measure-Theoretical p.p. Theory

The “measure-theoretical formulation” of p.p. theory in MPMT is stated as follows:

“The probability distribution PΦ [of a simple p.p. Φ] is characterized by its projection
measures P(n)

Φ, for any n ≥ 0. The nth-order projection measure P(n)
Φ, for any n ≥ 1, is

defined on the Borel σ-algebra of Xn and gives the probability for the point process to be
composed of n points, and the probability distribution of these points . . . For any n ≥
0, J(n)

Φ denotes the nth-order Janossy measure . . . and is defined as J(n)
Φ (B1 × . . . × Bn)

= n!P(n)
Φ(B1 × . . . × Bn) . . . The probability density pΦ (respectively (resp.) the nth-order

projection density p(n)
Φ, the nth-order Janossy density j(n)

Φ) is the Radon-Nikodým derivative
of the probability distribution PΦ (resp. the nth-order projection measure P(n)

Φ, the nth-order
Janossy measure J(n)

Φ) with respect to (w.r.t.) some reference measure . . . Throughout this
article the exploitation of the Janossy measures will be preferred, for they are convenient
tools in the context of functional differentiation . . . ”. [13] (p. 1325)

The “kth-order factorial moment measure” M(k)
Φ(B1, . . . , Bk) and its density m(k)

Φ(x1, . . . , xk) are
also introduced [13] (Equation (20)). MPMT is related to FISST as follows:

j(n)Ξ (x1, . . . , xn) =
1
n!
· fΞ({x1, . . . , xn}) (8)

m(n)
Ξ (x1, . . . , xn) =

1
n!
·DΞ({x1, . . . , xn}) (9)

for distinct x1, . . . , xn. (If x1, . . . , xn are distinct then the factor 1/n! on the right sides of Equations (8)
amd (9) apportions the probability of {x1, . . . , xn} equally among the n! vectors that have the same
elements as {x1, . . . , xn}.).

In summary: the families of multivariate measures J(k)
Φ(B1, . . . , Bk) resp. M(k)

Φ(B1, . . . , Bk) for
n ≥ 1—i.e., the very measures that FISST rejected as unnecessary—have been substituted in place of
f Ξ(X) resp. DΞ(X).

This restoration—and thus MPMT—is allegedly unavoidable because (a) measures are
“convenient tools” for “functional differentiation”; and (b) the fact that varΞ(S) does not have
a density proves that “ . . . a measure-theoretical formulation provides a more general framework
[than FISST] . . . for practical applications . . . ” Neither assertion is true: varΞ(S) does admit a density
(Section 3.3); and measures are unnecessary for functional differentiation (Section 5.4).
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Moreover, this restoration strips away a primary FISST insight: that all information about
a multitarget system Ξk|k at time tk can be represented by a single multitarget probability density
function fk|k(X|Z1:k)—i.e., the multitarget probability density function of Ξk|k. The recent very fast
implementations of the GLMB filter have been possible only because advanced stochastic sampling
techniques can be applied to fk|k(X|Z1:k)—see Ref. [9] (pp. 1–2).

3.3. The FISST Multitarget Density of the Regional Variance

Contrary to the claim in Refs. [12–14], varΞ(S) does admit a density even though it is not an additive
measure. Specifically, recall the FISST set derivative (Section 3.1) and define:

var∗Ξ(X) =
δvarΞ

δX
(∅). (10)

In Section 8.1 it is shown that this equals 0 unless |X| = 2, in which case

var∗Ξ({x1, x2}) = 2DΞ({x1, x2}) + 2δx1(x2)·DΞ(x1)− 2DΞ(x1)·DΞ(x2) (11)

for distinct x1, x2. By Equation (7) it must be the case that∫
S

var∗Ξ(X)δX = varΞ(S). (12)

This fact is verified in Section 8.2 for completeness. Thus var*Ξ is the FISST density of varΞ.
Consequently and contrary to claim, the existence of the regional variance does not prove the

unavoidability of MPMT. Moreover, the fact that Equation (1) might be easier to use than Equation (11)
in some circumstances is meager justification for wholesale adoption of formal measure theory (which
in any case is inapplicable to varΞ(S) since it is not an additive measure).

3.4. Measures Are Inappropriate for Practical Multitarget Tracking

This is because (a) practical Bayes-optimal multitarget state estimation requires densities; and (b) the
multitarget Bayes’ rule as specified in Ref. [13] (Equation (22)),

Pk(dφ|Z1:k) =
gk(Zk

∣∣∣φ)·Pk|k−1(dφ
∣∣∣Z1:k−1)∫

gk(Zk
∣∣φ) ·Pk|k−1(dφ

∣∣∣Zk:k−1)
, (13)

requires the density function Pk|k−1(dφ|Z1:k−1) = pk|k−1(φ|Z1:k−1) in the numerator.
This point is implicitly conceded in [14] (p. 49), where the authors “. . . assume that . . . all [additive]

measures studied in this article . . . admit densities”.

Remark 6. Indeed, Pk|k−1(dφ|Z1:k−1) is a mathematically equivalent substitution for the FISST
fk|k−1(X|Z1:k−1); and

∫
·Pk|k−1(dφ|Z1:k−1) =

∫
·pk|k−1(φ|Z1:k−1)dλc

∪(φ) is an equivalent substitution
for the FISST set integral

∫
·fk|k−1(X|Z1:k−1)δX—see Section 4.

Remark 7. It might nevertheless be objected that there is a purely measure-theoretic version of Bayes’
rule, the Killianpur-Striebel formula. It is immaterial since it is not employed in Refs. [12–14] despite the
“measure-theoretical” emphasis of these papers. And if it had been, it would have only produced another
mathematical paraphrase of FISST that begs the question: what significant engineering advances result from
using it rather than Bayes’ rule?

Remark 8. Since Dirac deltas are density functions, even singular measures can have density functions.
For example, consider the bivariate measure µΞ(S1,S2) = E[|Ξ ∩ S1 ∩ S2|]. Its density function can be shown
to be f(x,y) = δy(x)·DΞ(y). See also Equation (11).
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3.5. FISST Densities vs. Additive/Nonadditive Measures

For the purposes of multitarget tracking, families of multivariate measures, such as J(k)
Φ(B1, . . . ,

Bk) or M(k)
Φ(B1, . . . , Bk) for n ≥ 1, are mathematically equivalent to, but mathematically far more

complicated than, the FISST multitarget density functions that they replace, such as f Ξ(X) and DΞ(X).
Consequently, replacing every FISST density with measures (or some other set function) produces
a mathematically complexified mathematical paraphrase of FISST that is inappropriate for practical
multitarget tracking since densities are unavoidable.

4. Set Integrals Replaced by Measure-Theoretic Integrals

The set integral
∫
·δX was described in Section 3.1. MPMT replaces it with an integral

∫
·dλ(φ)

with respect to an unspecified “reference measure” λ [13] (Equation (2)). This is misleading, because λ

cannot be arbitrary. If it is to be applicable to multitarget tracking it must be an extension of Lebesgue
measure on = ⊆ RN to =∞ = ∪n≥0 =n.

The following subsections address: the extension of Lesbesgue measure λ on = ⊆ RN to a measure
λc
∪ on =∞ (Section 4.1); why the measure-theoretic integral

∫
·dλc

∪(φ) is problematic from the point of
view of practical multitarget tracking (Section 4.2); and why the substitution of

∫
·dλc

∪(φ) in place of∫
·δX in Refs. [12–14] produces a conceptually flawed, complexified mathematical paraphrase of FISST

(Section 4.3).

4.1. Extending Lesbegue Measure to Multitarget States

The following is drawn from Ref. [2] (Appendices F.3 and F.4). Suppose that = ⊆ RN for some N
and let λ(S) be Lesbesgue measure on =. How can λ and Equation (2) be extended to =∞ = ∪n≥0 =n?
Begin with λ. Let λn(O′) be the usual extension of λ to the Cartesian-product space =n for measurable
O′ ⊆ =n. Let O⊆ =∞ be measurable—i.e., O′(n) = O ∩ =n is measurable in =n for every n≥ 1, in which
case λn(O′(n)) exists for every n ≥ 1. If the unit of measurement in = is ι then the unit of measurement
of λn(O′(n)) is ιn. Let c > 0 be a constant whose unit of measurement is ι. Define the extension of λ to
=∞ as:

λ∪c (O) = ∑
n≥0

λn(O(n))

cn . (14)

This is well-defined since each term in the sum is unitless.
Next let f (φ) be a unitless, nonnegative function of φ ∈ =∞ and abbreviate f (x1, . . . , xn) = f ((x1,

. . . , xn)) and
∫
·dx1· · · dxn =

∫
·dλn(x1, . . . , xn). Then it is integrable with respect to λc

∪ if the following
exists: ∫

O
f (φ)dλ∪c (φ) = ∑

n≥0

1
cn

∫
O(n)

f (x1, . . . , xn)dx1 · · · dxn. (15)

Now turn to the generalization of Equation (2). Let µ(O) be a probability measure on =∞ and let
µn denote its restriction to =n. Recall that µ is absolutely continuous with respect to (a.c.w.r.t.) another
measure µ0 if µ(O) = 0 whenever µ0(O) = 0. If µ is a.c.w.r.t. λc

∪ then µn is a.c.w.r.t. λn for all n ≥ 1.
Consequently, by the Radon-Nikodým theorem, for each n ≥ 1 there is an almost everywhere unique
fn(φ) on φ ∈ =n such that

µn(O′) =
∫

O′
fn(φ)dλn(φ) =

∫
O′

f (x1, . . . , xn)dx1 · · · dxn (16)

for all measurable O′ ⊆ =n. The unit of measurement of fn(φ) is ι−n. Define the unitless function fc(φ)
= cn·fn(φ) if φ = (x1, . . . , xn). Then

µ(O) = µ(∪n>0O(n)) = ∑
n≥0

µn(O(n)) = ∑
n≥0

∫
O(n)

fn(x1, . . . , xn)dx1 · · · dxn (17)
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= ∑
n≥0

1
cn

∫
O(n)

fc(x1, . . . , xn)dx1 · · · dxn =
∫

O
fc(φ)dλ∪c (φ) (18)

for all measurable O ⊆ =∞. That is: fc(φ) = (dµ/dλc
∪)(φ) is the Radon-Nikodým density of µ(O) w.r.t.

λc
∪—i.e., it is the extension of Equation (2) to =∞ (If µ = PΦ it is what in Ref. [13] is denoted as PΦ(dφ)

or pΦ(φ)).
This is conceptually troublesome since µ has a different density for each c > 0. In p.p. theory,

the usual resolution of this difficulty is to set c = 1·ι [22] (pp. 1226–1229). But as we shall now see, this
leads to a new conceptual difficulty when applied to multitarget tracking.

4.2. Measure-Theoretic Integrals and Multitarget State Estimation

Define the FISST multitarget density function f (X) by

f({x1, . . . , xn}) = n!·fn(x1, . . . , xn) (19)

for distinct x1, . . . , xn. From Equations (6), (18) and (20), the measure-theoretic and set integrals
are equivalent: ∫

fc(φ)dλ∪c (φ) =
∫

f (X)δX. (20)

Also, the maximum a posteriori estimate

φc = argsupφ fc(φ) (21)

of fc(φ) is equivalent to FISST’s JoM (Joint Multitarget) estimate of f (X) [2] (p. 498):

Xc = argsupX .
c|X|

|X|! · f (X). (22)

As was explained in Ref. [2] (pp. 499–500), to arrive at an intuitively reasonable Xc the magnitude
of c should be approximately equal to the accuracy with which any x ∈ = can be estimated. Since this
argument is fairly lengthy and involved, it cannot be reproduced here.

The fixed choice c = 1·ι will, in general, produce poor JoM estimates of f(X) (and therefore poor MAP
estimates of fc(φ)). The only reasonable resolution is to attach c to a particular estimator—JoM—rather
than to so fundamental a concept as a multitarget integral.

4.3. Set Integrals vs. Measure-Theoretic Integrals

The measure-theoretic integral
∫
·dλc

∪(φ) is mathematically equivalent to but mathematically far
more complicated than the set integral

∫
·δX, which is not measure-theoretic. Also, from the point

of view of practical multitarget tracking
∫
·δX resp. f (X) resp. Xc are preferable to

∫
·dλc

∪(φ) resp.
fc(φ) = PΦ(dφ) resp. φc. Consequently, replacing every set integral with a measure-theoretic integral,
and every multitarget density with a Radon-Nikodým derivative, produces a flawed, complexified
mathematical paraphrase of FISST.

5. Functional Derivatives Replaced by “Chain Differentials”

In MPMT the former is replaced with the latter “ . . . so that a general chain rule can be
determined. . . ” [13] (p. 1326). The plain meaning of this phrase is: the chain differential is necessary for
a general chain rule (as applied in Ref. [13] to p.g.fl.’s). It is false for two reasons:

1. The FISST functional derivative already has a general chain rule—see [23]; [3] (pp. 78–79).
2. When applied to p.g.fl.’s the chain differential is identical to the Gâteaux and Frechét

derivatives—and thus mathematically equivalent to the FISST functional derivative.
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The following subsections address the following topics: probability generating functionals
(Section 5.1); differentiation theory (Section 5.2); differentiation of p.g.fl.’s (Section 5.3); equivalence
of chain differentials and functional derivatives (Section 5.4); and the chain differential produces
a complexified mathematical paraphrase of FISST (Section 5.5).

5.1. Probability Generating Functionals

The statistics of an RFS Ξ are equivalently characterized by βΞ(S) and f Ξ(X). A third fundamental
statistical descriptor of Ξ, the probability generating functional (p.g.fl.), is:

GΞ[h] =
∫

hX fΞ(X)δX (23)

where the notation hX was defined in Equation (5). For present purposes the “test function” h will
be assumed to be a nonnegative bounded function, in which case 0 ≤ GΞ[h] < ∞. (FISST follows the
practice in Ref. [24] of further assuming that 0 ≤ h(x) ≤ 1.) Note that GΞ[1S] = βΞ(S).

A great many generating functionals besides the p.g.fl. are used in p.p. theory: characteristic,
Laplace, moment, factorial-moment, cumulant, factorial-cumulant, Khinchin, etc., [24]. It was FISST
that identified the particular importance of the p.g.fl. for multitarget tracking.

The p.g.fl. finds its greatest use in the derivation of approximate multitarget filters such as the
PHD and cardinalized PHD (CPHD) filters. This, in turn, requires a differential calculus of p.g.fl.’s—the
subject of the next two subsections.

5.2. Differentiation Theory

Let A, B be (possibly infinite-dimensional) topological linear spaces and let τ: A → B be
a transformation. Then the Gâteaux differential is a simple and obvious generalization of the differential
quotient of undergraduate calculus:

(δτ)(a′; a) = lim
ε→0

τ(a′ + ε·a)− τ(a′)
ε

. (24)

If the function defined by a 7→ (δτ)(a′;a) exists and is linear and continuous then (δτ)(a′;·) is called
the Gâteaux derivative of τ at a′.

Now recall that a Banach space is a normed topological linear space that is closed with respect to
limits. (A norm is a nonnegative function ‖x‖ such that ‖x‖ = 0 implies x = 0 and which satisfies the
triangle inequality: ‖x+y‖ ≤ ‖x‖+‖y‖.)

Let A, B be Banach spaces with respective norms ‖·‖A and ‖·‖B. If there exists a linear-continuous
function Da ′τ: A→ B such that

lim
a→0

‖τ(a′ + a)− τ(a′)− (Da′τ)(a)‖B
‖a‖A

= 0 (25)

then Da ′τ is called the Frechét derivative of τ at a′. If the Frechét derivative exists then so does the
Gâteaux derivative, and the two are equal.

The Frechét derivative admits a chain rule in the following sense. Let ψ: B → C be a second
transformation between Banach spaces. If the Frechét derivatives of τ and ψ exist at a′ resp. τ (a′) then
so does the Frechét derivative of (τ◦ψ)(a) = ψ(τ (a)) at a′ and it is:

(Da ′ (τ◦ψ))(a) = (Dτ (a′)ψ)((Da ′τ)(a)). (26)
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Because the Gâteaux differential does not admit a chain rule in general, Bernard [25] devised
a restricted version of it that does: the “chain differential.” It is defined as

(δ∗τ)(a′; a) = lim
n→∞

τ(a′ + εn·an)− τ(a′)
εn

(27)

if the limit exists and is identical for any εn → 0 and an → a. If the chain differential exists then it is
the Gâteaux differential [25] (Proposition 1). If a 7→ (δ*τ)(a′;a) exists and is linear and continuous then
(δ*τ)(a′;·) is called the chain derivative of τ at a′ [25] (Proposition 1). If the Frechét derivative exists then
it is equal to the chain derivative [25] (Proposition 1).

5.3. Differentiation of p.g.fl.’s

The Gâteaux and chain differentials of a p.g.fl. GΞ[h] will be notated as, respectively,

∂GΞ

∂g
[h] = lim

ε↓0

GΞ[h + ε·g]− GΞ[h]
ε

(28)

∂∗GΞ

∂∗g
[h] = lim

n→∞

GΞ[h + εn·gn]− GΞ[h]
εn

. (29)

Suppose that GΞ[h] is Gâteaux differentiable. Since g(y) =
∫

g(x)·δx(y)dx and g 7→ (∂GΞ/∂g)[h] is
linear and continuous it follows that, intuitively speaking,

∂GΞ

∂g
[h] =

∫
g(x)

∂GΞ

∂δx
[h]dx (30)

for all g. If it exists, the quantity
δGΞ

δx
[h] =

∂GΞ

∂δx
[h] (31)

is Volterra’s functional derivative of GΞ[h] at x [26] (p. 75; p. 24, Equation (3)). Its significance is that it
permits the direct derivation of density functions without resort to measures (and for this reason is preferred
by the physics community [27,28]). Equation (30) shows that the functional derivative is mathematically
equivalent to the Gâteaux derivative.

If X = {x1, . . . , xn} with |X| = n then the iterated functional derivative is

δGΞ

δX
[h] =

δnGΞ

δx1 · · · δxn
[h]. (32)

The set and functional derivatives are related by

δσ

δX
(S) =

δσ+

δX
[1S] (33)

where σ+ is the p.g.fl. of σ*(X) = (δσ/δX)(Ø):

σ+[h] =
∫

hX δσ

δX
(∅)δX. (34)

Thus if σ = βΞ then:

fΞ(X) =
δGΞ

δX
[0] =

δβΞ

δX
(∅). (35)
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In MPMT the space of test functions h is assumed to have the L∞ norm ‖h‖∞ = supx∈= |h(x)|—see
Ref. [13] (p. 1326, footnote 2). The chain differential is therefore superfluous if the Frechét derivative of
GΞ[h] with respect to ‖·‖∞ exists. If so, it is given by:

lim
g↓0

|GΞ[h + g]− GΞ[h]− (DhGΞ)[g]|
‖g‖∞

= 0. (36)

5.4. Equivalence of Chain Differentials and Functional Derivatives of p.g.fl.’s

Let GΞ[h] be the p.g.fl. of the RFS Ξ. Since (h + εg)X = ∑W⊆X hX−W ·ε|W| gW (see Ref. [3]
Equation (3.6)), Equation (28) becomes

∂GΞ

∂g
[h] =

∫ (
∑

x∈X
hX−{x}g(x)

)
fΞ(X)δX (37)

(see Section 8.3). This is a Gâteaux derivative since it is linear and continuous in g. Equation (37) can be
rewritten as

∂GΞ

∂g
[h] =

∫
g(x)

(∫
hX fΞ({x} ∪ X)δX

)
dx (38)

(see Section 8.4). From Equations (30) and (31), the quantity in the parentheses is the functional
derivative:

δGΞ

δx
[h] =

∫
hX fΞ({x} ∪ X)δX. (39)

That is: the Gâteaux and functional derivatives of a p.g.fl. always exist. In Section 8.6 it is
additionally shown that the Frechét derivative of a p.g.fl. always exists and is identical to the Gâteaux
derivative: (DhGΞ)[g] = (∂GΞ/∂g)[h].

As for the chain differential of a p.g.fl., it is easily shown (see Section 8.5) that it always exists and
is identical to the Gâteaux (and therefore the Frechét) derivative:

∂∗GΞ

∂∗g
[h] =

∂GΞ

∂g
[h] = (DhGΞ)[g]. (40)

Thus, by Equation (30), the density of the authors’ measure S 7→ (∂GΞ/∂1S)[h] is the functional
derivative. The following two points are therefore established:

1. The general chain rule for p.g.fl.’s is a consequence of the Frechét derivative, not the superfluous
chain differential.

2. The general chain rule for chain derivatives is mathematically equivalent to the general chain
rule for functional derivatives and thus produces nothing new.

Specifically, let GΞ[T[h]] = GΨ[h] for some RFS Ψ. Then the chain rule for functional derivatives is
Ref. [2] (Equation (11.285)):

δ

δx
GΞ[T[h]] =

∂GΞ

∂
(

δT
δx [h]

) [T[h]] = ∫
δT
δx

[h](w)
δGΞ

δw
[T[h]]dw (41)

and the general chain rule for the functional derivative is Ref. [23]; [3] (Equation (3.91)):

δ

δX
GΞ[T[h]] = ∑

P⊥X

∂GΞ

∂W∈P
(

δT
δW [h]

) [T[h]] (42)

where the summation is taken over all partitions P of X.
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5.5. Functional Derivative vs. Chain Differential

The Gâteaux differential of a p.g.fl., Equation (28), is a simple and obvious generalization of the
differential quotient of elementary calculus. The chain differential of a p.g.fl. is more complicated
and by no means obvious. It is also identical to the Gâteaux and Frechét derivatives and therefore
equivalent to the FISST functional derivative. Consequently: replacing every functional derivative
with a chain differential produces a mathematically complexified paraphrase of FISST.

6. FISST Product Rule Replaced by “Leibniz’ Rule”

”Leibniz’ Rule”is mathematically equivalent to the FISST product rule since the chain differential is
equivalent to the functional derivative. That is, “Leibniz’ rule” [13] (Equation (14))

δn(F·G)(h; (η)n
i=1) = ∑

π⊆{1,...,n}
δ|π|F(h; (η)i∈π)δ

n−|π|G(h : (η)i∈πc) (43)

is substituted in place of its equivalent, the FISST product rule [2] (Equation (11.271)); [3]
(Equation (3.70)):

δ

δX
(F[h]·G[h]) = ∑

W⊆X

δF
δ(X−W)

[h]
δG
δW

[h]. (44)

Note the relative conceptual simplicity of the latter compared to the former. There is no mention
of the FISST general product rule [2] (Equation (11.274)); [3] (Equation (3.68)):

δ

δX
(F1[h] · · · Fnh]) = ∑

W1∪...∪Wn=X

δF1

δW1
[h] · · · δFn

δWn
[h]. (45)

More generally, there is no mention of the extensive FISST “toolbox” of general multitarget
differentiation and integration rules [2] (pp. 383–389); [3] (pp. 69–80). MPMT instead replaces it with
a paraphrase consisting of chain-differential rules that, for the purposes of multitarget tracking,
are mathematically equivalent to their FISST counterparts [29]. For example, the formula [13]
(Equation (16))

δkGΦ(h; η1, . . . , ηk) = ∑
n≥k

1
(n− k)!

∫ k

∏
i=1

ηi(xi)
n

∏
i=k+1

h(xi)J(n)Φ (dx1, . . . , xn) (46)

is substituted in place of, and is equivalent to, the decade-old FISST “generalized Radon-Nikodým”
formula [2] (Equation (11.251)); [3] (pp. 69–80, 95–97)):

δGΞ

δX
[h] =

∫
hW fΞ(X ∪W)δW. (47)

Note the conceptual simplicity of the latter compared to the former.

Remark 9. Note that Equation (39) is the special case of Equation (47) with X = {x}.

Remark 10. The paper [14] does contain three acknowledgements of the FISST “toolbox”: the FISST
“generalized product rule for set derivatives” [14] (p. 51), the FISST “multi-target Bayesian recursion” [14]
(p. 49), and the FISST “extraction rule . . . for the evaluation of the multitarget density of a RFS” [14] (p. 51). The
paper [23] (in which the general chain rule for the FISST functional derivative is derived) is acknowledged [14]
(p. 50)—but is cited as a chain differential paper even though it addresses only the functional derivative. These
negligible differences aside, the issues raised in this paper apply with full force to [14] (not just [12,13]).
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7. RFS Motion Models Replaced by MPMT Motion Models

The paper [13] is devoted to a CPHD filter with target spawning, which in turn requires the
predicted p.g.fl. Gk|k−1[h]. This formula was derived 14 years earlier in Ref. [30] (p. 1173). An alleged
p.p derivation of it is substituted in its place.

The following subsections address: the FISST multitarget motion model (Section 7.1); the FISST
predicted p.g.fl. (Section 7.2); the FISST and p.p. multitarget motion models are identical (Section 7.3);
and the FISST and p.p. predicted p.g.fl.’s are identical (Section 7.4).

7.1. The “Standard” FISST Multitarget Motion Model

This section is drawn from Sections III-C and IV-D of Ref. [4]. Single-target tracking is based on
an explicit motion model. It typically has the form Xk|k−1 = hk|k−1(x′) + Wk|k−1 where Xk|k−1 is the
random predicted target state, hk|k−1(x′) is the deterministic predicted state given that the target has
state x′ at time tk−1, and Wk|k−1 is the plant noise. The statistics of this model are characterized by the
probability measure pk|k−1(S|x′) = Pr(Xk|k−1 ∈ S|Xk−1|k−1 = x′). The Markov density f k|k−1(x|x′) is
derived from it via calculus.

A fundamental innovation of FISST was to extend this reasoning to multitarget systems. Assume
that there is no target spawning—i.e., a target at time tk survives or disappears but does not generate
new targets. This scenario is described by the RFS “standard” motion model

Ξk|k−1 = Tk|k−1(x
′
1) ∪ . . . ∪ Tk|k−1(x

′
n) ∪ Bk|k−1. (48)

Here, X′ = {x′1, . . . , x′n} with |X′| = n is the multitarget state at time tk−1; the RFS Tk|k−1(x′)
describes the evolution of a target with state x′; and the RFS Bk|k−1 describes the newly-appearing
targets. Here, either Tk|k−1(x′) = ∅ (target vanishes with probability 1 − pS(x′)) or Tk|k−1(x′) = {Xk|k−1}
(target survives with probability pS(x′)). Also, Bk|k−1 is assumed to be a Poisson RFS.

If targets evolve independently then the belief measure of Ξk|k−1 factorizes as:

βΞk|k−1
(S
∣∣∣X′) = βTk|k−1(x′1)

(S) · · · βTk|k−1(x′n)
(S)·βBk|k−1

(S). (49)

Given this, Equation (35) and the FISST multitarget calculus rules are used to derive an explicit
formula for the multitarget Markov density fk|k−1(X|X′) [2] (Equations (13.6)–(13.8)).

If there is target spawning, then Tk|k−1(x′) is replaced by Tk|k−1(x′) ∪ T′ k|k−1(x′) where the RFS
T′k|k−1(x′) models the targets spawned by a target with state x′ at time tk−1.

7.2. The FISST Predicted p.g.fl.

Given the formula for fk|k−1(X|X′), one can derive the formula for the p.g.fl. Gk|k−1[h] (of the
predicted multitarget distribution fk|k−1(X|Z1:k−1)) in terms of the p.g.fl. Gk−1|k−1[h] of the prior
distribution fk−1|k−1(X|Z1:k−1), as follows [2] (Equation (16.399)); [3] (p. 1167):

Gk|k−1[h] = eh·Gk−1|k−1[(1 − pS+ pS ph)·bh]. (50)

Here, ph(x′) =
∫

h(x)·fk|k−1(x|x′)dx describes the surviving targets; bh(x′) =
∫

hX·bk|k−1(X|x′)δX
describes the spawned targets; and eh{h} =

∫
hX·bk|k−1(X)δX describes the appearing targets.

7.3. The FISST and MPMT Motion Models Are Identical

In Ref. [13] the RFS motion model is implicitly presumed and a “p.p.” paraphrase of it substituted
in its place. Specifically, Tk|k−1(x′) is replaced by a surviving “daughter” p.p. Φs; T′k|k−1(x′) is replaced
by a “spawning point process” Φb; Bk|k−1 is replaced by a “spontaneous birth process” Φγ; and Ξk|k−1
is replaced by the “predicted multitarget process” Φk|k−1.
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7.4. The FISST and MPMT Predicted p.g.fl.’s Are Identical

In Ref. [13] (Equation (62b)) the “Galton-Watson equation” and other formulas are used to derive
the predicted p.g.fl.:

Gk|k−1[h] = Gγ[h]·Gk−1|k−1[Gs[h|·]·Gb[h|·]] (51)

where Gγ[h] is identical to eh; Gs[h|·] is identical to 1 − pS(·) + pS((·)ph(·); and Gb[h|·] is identical to bh.
That is: Equation (51) is the result of a “p.p.” derivation that is nearly identical to the FISST derivation,
and is exactly the same formula that was derived using FISST 14 years earlier.

8. Mathematical Derivations

The theoretical results reported in this section are original. Even so, the results reported in
Sections 8.3–8.6—i.e., the existence and equality of the Frechét, Gâteaux, and chain derivatives of
a p.g.fl.—should be regarded, from an intuitive point of view, as nearly obvious. A p.g.fl. G[h] is
a functional analog of a power-series function f (x) = ∑n≥0 anxn. (Indeed, it is an instance of what
Volterra in Ref. [26] called a “functional power series.”) Since a power-series function is analytic—i.e.,
its Newtonian derivatives (dnf /dxn)(x) of arbitrary order n exist, with (dnf /dxn)(0) = n!·an—it should
not be surprising that p.g.fl.’s are analogously analytic.

8.1. Derivation of the Density Function of the Regional Variance

We are to prove Equation (11). First extend varΞ(S) to a functional as follows:

var+Ξ [h] =
∫ (

∑
x∈X

h(x)

)2

fΞ(X)δX−
(∫ (

∑
x∈X

h(x)

)
fΞ(X)δX

)2

. (52)

It is easily seen that varΞ(S) = var+
Ξ[1S]. Thus, from Equation (33) we get:

var∗Ξ(S) =
δvarΞ

δX
(∅) =

δvar+Ξ
δX

[0]. (53)

By Campbell’s theorem [3] (Equation (4.96)), the second term of Equation (52) can be simplified:

var+Ξ [h] =
∫ (

∑
x∈X

h(x)

)2

fΞ(X)δX−
(∫

h(x)DΞ(x)dx
)2

. (54)

Taking functional derivatives δ/δx1 and δ/δx2 of Equation (56) with x1 6= x2 we get:

δvar+Ξ
δx1

[h] =
∫

2

(
∑

x∈X
h(x)

)(
∑

x′∈X
δx1(x

′)

)
fΞ(X)δX− 2

(∫
h(x)DΞ(x)dx

)(∫
δx1(x)DΞ(x)dx

)
(55)

=
∫

2

(
∑

x∈X
h(x)

)(
∑

x′∈X
δx1(x

′)

)
fΞ(X)δX− 2DΞ(x1)

(∫
h(x)DΞ(x)dx

)
(56)

and so
δ2var+Ξ
δx2δx1

[h] =
∫

2

(
∑

x∈X
δx2(x)

)(
∑

x′∈X
δx1(x

′)

)
fΞ(X)δX− 2DΞ(x1)DΞ(x2). (57)

The quadratic version of Campbell’s theorem is [3] (Equation (4.102)):∫ (
∑y∈Y h(y)

)(
∑y′∈Y h′(y′)

)
fΞ(Y)δY =

∫
h(y)h′(y)DΞ(y)dy +

∫
h(y1)h

′(y2)DΞ({y1, y2})dy1dy2. (58)
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Given this and and since x1 6= x2,

∫ (
∑y∈Y δx1(y)

)(
∑y′∈Y δx2(y

′)
)

fΞ(Y)δY =
∫

δx1(y)δx2(y)DΞ(y)dy +
∫

δx1(y1)δx2(y2)DΞ({y1, y2})dy1dy2 (59)

= δx1(x2)·DΞ(x1) + DΞ({x1, x2}). (60)

Thus after setting h = 0, Equation (57) yields Equation (11).

8.2. The Set Integral of the Reegional-Variance Density Is the Regional Variance

We are to prove Equation (12). From Equations (6) and (11) the set integral of var+
Ξ(X) is

∫
S

var∗Ξ(X)δX =
∫

S×S
DΞ({x1, x2})dx1dx2 +

∫
S×S

δx1(x2)DΞ(x1)dx1dx2 −
(∫

S
DΞ(x)dx

)2
(61)

=
∫

S×S
DΞ({x1, x2})dx1dx2 +

∫
S

DΞ(x)dx− E [|Ξ ∩ S|] 2. (62)

Setting h = h′ = 1S in Equation (58) results in∫
S×S

DΞ({y1, y2})dy1dy2 = E[|Ξ ∩ S|2]−
∫

S
DΞ(y)dy. (63)

Substituting this into Equation (62) we get, as claimed, varΞ(S).

8.3. The Gâteau Differential of a p.g.fl.

We are to prove Equation (37). By Equation (28) the Gâteaux differential of GΞ[h] is

∂GΞ

∂g
[h] = lim

ε↓0

GΞ[h + ε·g]− GΞ[h]
ε

. (64)

Since (h + εg)X = ∑W⊆X hX−W ·ε|W| gW [3] (Equation (3.6))),

GΞ[h + ε·g] =
∫ (

∑
W⊆X

hX−Wε|W|gW

)
fΞ(X)δX (65)

= GΞ[h] + ε
∫ (

∑
x∈X

hX−{x}g(x)

)
fΞ(X)δX + ε2

∫  ∑
W⊆X,|W|≥2

hX−Wε|W|−2gW

 fΞ(X)δX. (66)

From this Equation (37) immediately follows.

8.4. Formula for the Functional Derivative of a p.g.fl.

We are to prove Equation (38). From the definition of a set integral, Equation (6), we see that

∫ (
∑

x∈X
hX−{x}g(x)

)
fΞ(X)δX = ∑

n≥0

1
n!

∫
h(x2) · · · h(xn)g(x1) fΞ({x1, . . . , xn})dx1 · · · dxn

+ . . .
∑

n≥0

1
n!

∫
h(x1) · · · h(xn−1)g(xn) fΞ({x1, . . . , xn})dx1 · · · dxn

(67)

= ∑
n≥0

n
n!

∫
g(x)h(x1) · · · h(xn−1) fΞ({x, x1, . . . , xn−1})dxdx1 · · · dxn−1 (68)

= ∑
i≥0

1
i!

∫
g(x)h(x1) · · · h(xi) fΞ({x, x1, . . . , xi})dxdx1 · · · dxi (69)
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=
∫

g(x)
(∫

hX fΞ({x} ∪ X)

)
δXdx. (70)

8.5. The Chain Differential of a p.g.fl.

We are to prove Equation (40). From Equations (65) and (66) and the definition of the chain
differential, Equation (29),

GΞ[h + εngn] =
∫ (

∑
W⊆X

hX−Wε
|W|
n gW

n

)
fΞ(X)δX (71)

= GΞ[h] + εn

∫ (
∑

x∈X
hX−{x}gn(x)

)
fΞ(X)δX + ε2

n

∫  ∑
W⊆X,|W|≥2

hX−Wε
|W|−2
n gW

n

 fΞ(X)δX. (72)

Equation (40) immediately follows from this.

8.6. The Frechét Derivative of a p.g.fl.

We are to show that, with respect to the L∞ norm ‖h‖∞ = supx∈X|h(x)|, the Frechét derivative
of a p.g.fl. exists. We know that if it exists then it must be equal to the Gâteaux derivative, which by
Equation (37) is

lh[g] =
∫ (

∑
x∈X

hX−{x}g(x)

)
fΞ(X)δX. (73)

Because of Equation (36) we are to show that

lim
g↓0

|GΞ[h + g]− GΞ[h]− lh[g]|
‖g‖∞

= 0. (74)

However, the left side is easily seen to be

lim
g↓0

∣∣∣∫ ∑W⊆X,|W|≥2 hX−W gW fΞ(x)δX
∣∣∣

‖g‖∞
= lim

g↓0

∣∣∣∣∣∣
∫

∑
W⊆X,|W|≥2

hX−W
(

gW

supx g(x)

)
fΞ(x)δX

∣∣∣∣∣∣ (75)

=

∣∣∣∣∣∣
∫

∑
W⊆X,|W|≥2

hX−W lim
g↓0

(
gW

supx g(x)

)
fΞ(x)δX

∣∣∣∣∣∣. (76)

For fixed W = {x1, . . . , xn} with |W| = n ≥ 2, the limit in Equation (76) is

lim
g↓0

(
g(x1) · · · g(xn)

supxg(x)

)
≤ lim

g↓0
g(x1) · · · g(xn−1) = 0. (77)

9. Conclusions

The finite-set statistics (FISST) approach to multitarget tracking—stochastic geometry,
random finite sets (RFS’s), belief-mass functions, and set derivatives—was introduced in the
mid-1990s [1]. Its extended form—probability generating functionals (p.g.fl.’s) and Volterra functional
derivatives [2–4]—dates from 2001 [5]. An allegedly more general alternative to FISST—herein
called “point-process measure-theoretical multitarget tracking” or “MPMT”—has been presented in
Refs. [12–14]. Herein it was demonstrated that MPMT is a mathematical paraphrase of part of FISST
with the following mathematically equivalent substitutions:

Finite set⇒ vector; RFS⇒ simple point process (p.p.); multitarget densities⇒ “measures”
(actually, set functions or families of measures); multitarget probability density⇒ family



Sensors 2019, 19, 202 18 of 19

of Janossy measures; multitarget factorial-moment density⇒ family of factorial-moment
measures; multitarget distribution fk|k(X|Z1:k)⇒ Radon-Nikodým density Pk|k(dφ|Z1:k);
set integral ⇒ measure-theoretic integral; functional derivative ⇒ chain differential;
functional-derivative product rule⇒ chain-differential “Leibniz’ rule”; functional-derivative
chain rules ⇒ chain-derivative chain rules; RFS multitarget motion model ⇒ “p.p.”
multitarget motion model; FISST predicted p.g.fl. ⇒ “p.p.” predicted p.g.fl.; and so on.

It was further demonstrated that each of these substitutions is an unnecessary mathematical
complexification of the FISST component that it replaces. In particular:

• Vector multitarget-state representation is a mathematically equivalent complexification of finite
set representation that is inappropriate for practical multitarget tracking.

• A simple p.p. is a mathematically equivalent complexification of an RFS that is inappropriate for
practical multitarget tracking.

• The “regional variance” of Ref. [12] does admit a density—thereby refuting the only evidence
offered in Refs. [12–14] that MPMT is unavoidable for practical multitarget tracking.

• The measure-theoretic integral is a mathematically equivalent complexification of the FISST set
integral that is inappropriate for practical multitarget tracking.

• When applied to practical multitarget tracking, the “chain differential” is a mathematically
equivalent complexification of the FISST functional derivative.

Beyond this, FISST is significantly more general than MPMT because it: (a) has an integro-
differential calculus of nonadditive set functions and their densities; and (b) provides a provably
Bayes-optimal unification of “hard + soft” multitarget information fusion.
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