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Abstract: This work experimentally demonstrates that the imaging quality of quantum ghost imaging
(GI) with entangled photons can be significantly improved by properly handling the errors caused
by the imperfection of optical devices. We also consider compressive GI to reduce the number of
measurements and thereby the data acquisition time. The image reconstruction is formulated as a
sparse total least square problem which is solved with an iterative algorithm. Our experiments show
that, compared with existing methods, the new method can achieve a significant performance gain in
terms of mean square error and peak signal–noise ratio.
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1. Introduction

Ghost imaging (GI) has raised increasing interest recently due to its wide applications ranging
from biological sciences to security protocols [1,2]. In an entangled-photon GI system, the object
reconstruction is based on two correlated optical beams, i.e., the object beam and the reference beam.
The object beam emits light through an object, which is monitored by a bucket detector. The reference
beam does not interact with the object and the light is monitored by a spatial-resolution detector.
The first entangled-photon GI experiment was demonstrated by using entangled photons generated by
spontaneous parametric down conversion (SPDC) [3–7]. Quantum imaging with entangled photons
suffers from low-efficiency due to the low-flux of entangled photons, and it is also time-consuming.
To solve this problem, compressive sensing (CS) was introduced into quantum GI [8–10], which greatly
reduces the number of measurements and thereby the acquisition time [10–12]. Some investigations
have been conducted to improve the quality of imaging in terms of peak signal–noise ratio (PSNR)
and the mean square error (MSE). To improve the quality of reconstruction and reduce the number
of samples in the GI system, many CS methods have been employed, which include Orthogonal
Matching Pursuit (OMP) [13], Gradient Projection for Sparse Reconstruction (GPSR), etc. Compared to
traditional quantum GI, the use of these algorithms could provide higher PSNR and lower MSE.

GI was originally performed using entangled-photon pairs [14], and then was realized with
thermal light [15]. In thermal GI, a laser beam is used to illuminate an object, and a light is collected
by a single-pixel bucket with no spatial resolution. By combining CS and GI, the spatial resolution
of recovered images can beat the diffraction limit of GI [16]. Thermal GI has potential in practical
applications [17], such as X-ray tomography [18], astronomy [19] and single-pixel imaging [20–22].
Compared with the thermal-light GI [23], quantum GI can obtain higher-visibility and imaging
quality [24]. Quantum imaging can break the resolution limit of Rayleigh diffraction [25,26] to achieve
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super-resolution and strong anti-interference capability. However, the performance of the GI system
can suffer from errors caused by the imperfection of optical devices and measurement. In particular,
the spatial light modulator (SLM) which modulates the entangled photons in the GI system causes
modulation errors. The errors caused by the imperfection of the optics devices were not considered in
the literature.

In this work, we experimentally show that, by properly handling the errors caused by
the imperfection of optical devices in an entangled-photon GI system, significant performance
improvement can be achieved. Compressive GI is considered to reduce the data acquisition time. The
image reconstruction is formulated as a sparse total least square (STLS) problem, that is solved using
an iterative algorithm. Both simulation and experimental results are provided to demonstrate that a
significant performance gain can be achieved by the proposed method in terms of PSNR and MSE,
compared with existing compressive sensing-based methods.

2. Robust Ghost Imaging Based on STLS

We use a quantum compressive GI system where SPDC is used to generate photons, and entangled
photons are used as the light source. The quantum GI setup [3–7] is shown in Figure 1.
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Figure 1. The experimental schematic of STLS quantum GI: HWP, half-wave plate; BBO, β-barium 
borate crystal; BS, beam splitter; Random patterns placed on a spatial light modulator (SLM); SPCM, 
single photon counting modules; C.C, coincidence measurement between SPCM1 and SPCM2. 

SPDC is caused by random vacuum fluctuations, and the generation of entangled-photon pairs 
is random. The conversion efficiency of this process is extremely low. The bi-photon state can be 
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SPDC is caused by random vacuum fluctuations, and the generation of entangled-photon pairs
is random. The conversion efficiency of this process is extremely low. The bi-photon state can be
represented as:

|ψ〉 =
x

dxsdxi ϕ(xs, xi)â+s (xs)â+i (xi)|0, 0〉 (1)

where |ψ〉 is the bi-photon state, ϕ(xs, xi) is the optical-field of the pump, â+s (xs) and â+i (xi) are the
creation operators of signal light and reference light respectively. xs and xi are the positions of two
optical paths at BS, respectively. x and y are the positions of photons at the cross-section of SPCM1 and
SPCM2, and |0, 0〉 is the vacuum state [27]. The coincidence count signal for the detectors SPCM1 and
SPCM2 can be expressed by the fourth-order correlation function of optical field intensity as follows:

C(x, y) = 〈ψ|Ê−s (x)Ê−i (y)Ê+
s (x)Ê+

i (y)|ψ〉
=
∣∣〈0|Ê+

s (x)Ê+
i (y)|ψ〉

∣∣2 (2)

where Ê+
s (x), Ê+

i (y), Ê−s (x), and Ê−i (y) are the positive and negative frequency part of the optical
field operator at coordinate (x, y) [19]. The optical fields on the detection plane, which appear in the
second line of (2), are given by:

E+
s (x) =

∫
dxsh(x, xs)âs(xs) (3)
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E+
i (y) =

∫
dxih(y, xi)âi(xi) (4)

The free-space propagation function of the object arm is:

h(x, xs) =
∫

dαh(α, xs)h(x, α) (5)

where h(x, α) is the free-space propagation function from α to x, and the free-space propagation
function of the reference arm is expressed as follows:

h(y, xi) =
∫

dβdρh(β, xi)h(ρ, β)h(y, ρ)L(β) (6)

where the L(β) = exp
(
iπ/(λ f )β2) is the optical transfer function of the lens. Here, f = 100 mm is

the focal length of the lens. Based on the Fresnel approximation, the two-photon amplitude can be
expressed as:

φ(x, y) =
∫

dxsdxih(x, xs)T(α)h(y, xi)(Ai(ρ) + ∆A) + ∆e
=
∫

dxsdxidαdβdρh(α, xs)T(α)h(x, α)

×h(y, ρ)(Ai(ρ) + ∆A)h(ρ, β)L(β)h(β, xi)ϕ(xs, xi) + ∆e
(7)

where the free-space propagation function can be written as h(x, x′) ≈ exp
(

iπ/(d1λ)(x′ − x)2
)

,
T(α) is the transmission function of the object, ∆e represents measurement error, and Ai(ρ) is a
random pattern loaded onto the SLM. The bi-photon state generated by SPDC can be approximated
by ϕ(xs, xi) ≈ δ(xs − xi) [28,29]. When the experiment satisfies the thin lens equation 1/(d1 + d4) +

1/d2 = 1/ f [30], and where (d1 + d4)/d2 = 1.5 is the theoretical magnification factor of our imaging
system, where f is the focal length of the lens. Accordingly, two-photon amplitude is given by:

φ(x, y) = 〈0|Ê+
s (x)Ê+

i (y)|ψ〉
∝
∫

dxsdxidαdβdρ exp
(

iπ
d4λ (α− xs)

2
)

T(α) exp
(

iπ
d5λ (x− α)2

)
exp

(
iπ

d3λ (y− ρ)2
)

(Ai(ρ) + ∆A) exp
(

iπ
λ f β2

)
exp

(
iπ

d2λ (ρ− β)2
)

exp
(

iπ
d1λ (β− xi)

2
)

δ(xs − xi) + ∆e

(8)

Substituting (1), (3), (4) into (2), we have:

C(x, y) ∝
∣∣∣∫ dαdβdρ exp

(
iπ

λ(d1+d4)
(α− β)2

)
exp

(
−iπ
λ f β2

)
exp

(
iπ

d2λ (ρ− β)2
)

exp
(

iπ
d5λ (x− α)2

)
exp

(
iπ

d3λ (y− ρ)2
)

T(α)(Ai(ρ) + ∆A) + ∆e
∣∣∣2 (9)

Then, the integrated coincidence signal becomes:

Cm(x, y) =
s

C(x, y)dxdy
=

s
|φ(x, y)|2dxdy

∝
N
∑

n=1
|Am(−αn) + ∆A|2|T(αn)|2 + ∆e

(10)

where m ∈ 1, 2, . . . , M with M being the total number of measurements, and n ∈ 1, 2, ..., N with N
being the number of pixels corresponding to the object. In (10), |Am(−αn) + ∆A|2 can be rewritten as:

|Am(−αn) + ∆A|2 = |Am(−αn)|2+2× Am(−αn)× ∆A + |∆A|2 = Amn + ∆Smn (11)

where ∆Smn = 2×Am(−αn)×∆A+ |∆A|2 accounts for the errors caused by the imperfection of optical
devices, and Amn = |Am(−αn)|2 is the (m,n)th element of the sensing matrix AM×N . Equation (10) can
be rewritten in matrix form as:

CM×1 = (AM×N + ∆S)× TN×1 + ∆E (12)
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where CM×1 is the measurement vector, and AM×N is the sensing matrix, M is the number of
samples. The N-dimensional unknown signal TN×1 is a vector constructed by Tn = |T(αn)|2. ∆E is a
measurement error vector constructed by ∆e. In our method, pseudo-random measurement matrices
AM×N (M < N, N = 64 × 64) are selected as the sensing matrices. Given the initial parameters, we can
obtain a complete sequence of numbers. The general form of the pseudo-random sequence can be
written as xn+1 = f (a f−1(xn)) and yn = f (b f−1(xn)), where f (x) = sin2x, a = 2.01, b = 1002. Then,
we rearrange the sequence into a matrix with size M×N. This ill-posed [31–33] problem can be solved
by exploiting the sparsity of the signal if AM×N satisfies the restricted isometry property (RIP) [34,35].

Compared with TLS and other CS algorithms, STLS integrates the advantages of compressive
sensing and TLS. On one hand, STLS can reconstruct images with only a small number of samples
by exploiting the sparsity of the signal, i.e., STLS can deal with ill-posed problems while TLS cannot.
On the other hand, STLS is able to handle the errors caused by both the imperfection of optical devices
and measurement, thereby achieving robust GI and high imaging quality, which makes it superior
to conventional CS algorithms as the conventional compressed sensing algorithm does not consider
errors in the dictionary matrix.

We use symlet wavelet in discrete wavelet transform (DWT), to transform the image into a sparse
domain, then reconstruct the image with STLS algorithms in the sparse domain. We assume that the
wavelet transform matrix is WN×N , then WN×N × TN×1 = θN×1, where TN×1 is an unknown signal
vector, and θN×1 is the representation of TN×1 in the sparse domain. Accordingly, Equation (12) can be
rewritten as:

CM×1 = (AM×N + ∆S)× TN×1 + ∆E
= (AM×N + ∆S)×W−1

N×N × θN×1 + ∆E
= (PM×N + ∆ν)× θN×1 + ∆E

(13)

where PM×N = AM×N ×W−1
N×N and ∆ν = ∆S×W−1

N×N . Then, we can obtain the flowchart of the
STLS algorithm as shown in Figure 2, and the two steps are executed iteratively until an ideal solution
is obtained. Sensors 2019, 19, x FOR PEER REVIEW 5 of 12 
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Due to the errors existing in the model shown in Equation (8), the optimization problem can be
formulated as:

{θS−TLS, ∆ES−TLS, ∆νS−TLS} = arg min
∆E,θ,∆ν

‖[∆E, ∆ν]‖2
F + γ‖θ‖1

s.t.C = (P + ∆ν)θ + ∆E
(14)

the cost function includes two parts: the error term ‖[∆E, ∆ν]‖2
F and the regularization term λ‖θ1‖1

where γ is a parameter to control the sparsity of the solution. Clearly, when γ is equal to zero,
the problem is reduced to the TLS. The optimization problem is non-convex. We set γ = 300 and
δ = 1× 10−10. We use a coordinate descent method to solve the problem. The method fixes a parameter
between ∆ν and θ, while optimizing the other one, until a stop criterion is satisfied. The flowchart of
the algorithm is illustrated in Figure 2. Once obtaining θ, we use TN×1 = W−1

N×N × θN×1 to transform θ

to T, and then use T to obtain the reconstructed image.

3. Numerical Simulation Results

In order to examine the effectiveness of the proposed scheme with STLS, we compare the
performance of the scheme with that of the scheme with OMP, GPSR, Method proposed in [19]
and TLS algorithms. The method proposed in [19] is direct CS method. We use MSE and PSNR to
evaluate the reconstruction quality. For an L×W image, the MSE and PSNR are defined as:

MSE =

∑
0≤i<L

∑
0≤j<W

(Ci,j − C′i,j)
2

L×W
(15)

PSNR = 10lg
C2

max
MSE

(16)

where Ci,j represents the true image and C′i,j denotes the reconstructed image, lg is the base-10 logarithm
function, and Cmax is the maximum pixel value of the image. In our simulations, L = 64 and W = 64.
Generally, the larger the PSNR, the better the quality of the reconstructed image. All the simulations
are run using MATLAB 2014a in a computer with configuration: Intel(R) Core (TM) i7-7700 CPU
3.6 GHz and 16 GB memory.

In the simulations, we assume that the image scene includes 64 × 64 pixels, and there are nine
objects in the scene as shown in Figure 3a, where each object is represented by a pixel and the interval
between two adjacent objects is a pixel. This is used to evaluate the performance of the algorithm
in the case of small objects. We added the disturbance ∆S and error ∆E into the image and assume
that ∆S is Gaussian distributed with mean 0 and variance 0.1, and error ∆E in (12) is also Gaussian
distributed with mean 0 and variance 0.5× Cmax. The maximum intensity of the original image is 255.

The sampling number for OMP, GPSR, Method proposed in [19] and STLS is 300, and the sampling
number for TLS is 4500 because TLS requires M > N. It can be seen in Figure 3 that OMP and TLS
exhibit the worst performances; GPSR and Method proposed in [19] work slightly better. We can also
see that STLS outperforms other algorithms significantly. Simulations show that the PSNRs of OMP,
GPSR, Method proposed in [19], TLS and STLS are 34.9166 dB, 37.4358 dB, 37.7993 dB, 33.2462 dB and
38.4405 dB, respectively, and the MSEs of OMP, GPSR, Method proposed in [19], TLS and STLS are
20.9612, 11.7356, 10.7932, 30.7939 and 9.3118, respectively. STLS achieves much better PSNR and MSE
than OMP, GPSR, Method proposed in [19] and TLS schemes. The convergence of the STLS algorithm
and the typical execution times are shown in Figure 4 and Table 1, respectively. Figure 4 illustrates
the MSE of the reconstruction image with different numbers of iterations. Normally, the algorithm
converges within 20 iterations.
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4. Experimental Results and Discussions

Our quantum GI experimental system is shown in Figure 5. A continuous-wave laser with 460 nm
wavelength was used to pump a BBO crystal, which was cut according to type-II collinear SPDC. The
power of the pump laser is 300 mW, and the central wavelength and the bandwidth of the filter after
BBO are 920 nm and 10 nm, respectively. The photon detection efficiency of single-photon detectors
(SPCM-AQRH-FC, from Excelitas Technologies) at 920 nm is about 35%. In order to maximize the
SPDC efficiency, we need to polarize the pump laser by a half-wave plate (HWP). Because only a
small number of photons can be converted into entangled-photon pairs, we have to filter out the
unconverted pump light by placing a filter behind BBO. A beam splitter (BS) was used to divide the
entangled-photon pairs into the signal and reference arms. The entangled photons go through the
object and are collected by the photon counting module (SPCM) in the object arm. The reference
entangled photons are modulated by the SLM in the reference arm and are collected by the other
SPCM. The SLM used in the experiment is HOLOEYE HES 6001-NIR with phase and amplitude type,
and its resolution is 1920× 1080 with pixel size 8× 8 µm2.Sensors 2019, 19, x FOR PEER REVIEW 8 of 12 
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Figure 5. Experimental platform of our quantum GI, where random patterns are placed on the SLM,
and the target is a double-slit.

To demonstrate the performance of STLS, we use double-slit as the object with 64× 64 pixels
shown in Figure 6. The singles counts we collected from SPCM in the object arm and reference arm are
5.05× 104 counts/s and 5.10× 104 counts/s. In the experiment, the center-to-center distance of the
double-slit is 1200 µm (22 pixels) and the pixel pitch is 54 µm.

Figure 6 shows the reconstructed images by OMP, GPSR, Method proposed in [19] and STLS with
sampling numbers of 500, 1000 and 1500, respectively. When the sampling number is 500, it is hard to
identify the double-slit for OMP and GPSR. When the sampling number is 1000, we can see a blurry
double slit in the images by OMP, GPSR and Method proposed in [19] but a clear one in the image by
STLS, which demonstrates the advantage of the STLS scheme.

PSNR and MSE were also used to evaluate the quality of the CS image reconstruction. Figures 7
and 8 show the MSE and PSNR of three schemes, where we can see that the MSE of STLS is much
smaller than the other two schemes, and the PSNR of STLS is much higher than the other two
schemes. We can see that the STLS scheme achieves better reconstruction results than others with the
same number of measurements. As the number of samples increases, better recovery results can be
obtained. The performance of our quantum ghost imaging scheme can be optimized by improving the
coincidence rate and the beam quality of the pump laser. In the experiment, the object has 64 × 64 =
4096 pixels. We can obtain a very high-quality image with 1500 measurements and a clear image with
1000 measurements.
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5. Conclusions 

In this work, we have investigated robust GI with a relatively small number of measurements 
to deal with the imperfection of optical devices, measurement error and noise in the optical path. The 
proposed method uses the pseudo-random matrix as the measurement matrix, and signals are 
transformed into a sparse domain by discrete wavelet transform. Then, the reconstruction is 
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experimental results have been provided to show the superiority of the proposed STLS scheme, 
which can achieve significantly better PSNR and MSE than the system with other reconstruction 
algorithms such as TLS, OMP, GPSR and Method proposed in [19]. This work demonstrates the 
significant potential of handling the imperfection of optical devices in improving the quality of 
reconstruction. 
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5. Conclusions

In this work, we have investigated robust GI with a relatively small number of measurements
to deal with the imperfection of optical devices, measurement error and noise in the optical path.
The proposed method uses the pseudo-random matrix as the measurement matrix, and signals are
transformed into a sparse domain by discrete wavelet transform. Then, the reconstruction is formulated
as a sparse total least square problem which is solved iteratively. Both simulation and experimental
results have been provided to show the superiority of the proposed STLS scheme, which can achieve
significantly better PSNR and MSE than the system with other reconstruction algorithms such as
TLS, OMP, GPSR and Method proposed in [19]. This work demonstrates the significant potential of
handling the imperfection of optical devices in improving the quality of reconstruction.

Author Contributions: Conceptualization, J.L., W.G. and Q.G.; methodology, W.G. and J.X.; formal analysis, J.Q.
and C.R.; validation, W.G.; investigation, J.Q.

Funding: This research was funded by National Natural Science Foundation of China, Grant No. 61431016. It was
also partially supported by an UIC project at University of Wollongong.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Morris, P.A.; Aspden, R.S.; Bell, J.E.; Boyd, R.W.; Padgett, M.J. Imaging with a small number of photons.
Nat. Commun. 2015, 6, 5913. [CrossRef] [PubMed]

2. Clemente, P.; Durán, V.; Tajahuerce, E.; Lancis, J. Optical encryption based on computational ghost imaging.
Opt. Lett. 2010, 35, 2391–2393. [CrossRef] [PubMed]

3. Shapiro, J.H.; Boyd, R.W. The physics of ghost imaging. Quantum Inf. Process. 2012, 11, 949–993. [CrossRef]
4. Magana-Loaiza, O.S.; Howland, G.A.; Malik, M.; Howell, J.C.; Boyd, R.W. Compressive object tracking using

entangled photons. Appl. Phys. Lett. 2013, 102, 231104. [CrossRef]
5. Strekalov, D.V.; Sergienko, A.V.; Klyshko, D.N.; Shih, Y.H. Observation of two-photon “ghost” interference

and diffraction. Phys. Rev. Lett. 1995, 74, 3600. [CrossRef] [PubMed]
6. Pittman, T.B.; Shih, Y.H.; Strekalov, D.V.; Sergienko, A.V. Optical imaging by means of two-photon quantum

entanglement. Phys. Rev. A 1995, 52, R3429. [CrossRef] [PubMed]
7. D’Angelo, M.; Shih, Y.H. Quantum imaging. Laser Phys. Lett. 2010, 2, 567–596. [CrossRef]

http://dx.doi.org/10.1038/ncomms6913
http://www.ncbi.nlm.nih.gov/pubmed/25557090
http://dx.doi.org/10.1364/OL.35.002391
http://www.ncbi.nlm.nih.gov/pubmed/20634840
http://dx.doi.org/10.1007/s11128-011-0356-5
http://dx.doi.org/10.1063/1.4809836
http://dx.doi.org/10.1103/PhysRevLett.74.3600
http://www.ncbi.nlm.nih.gov/pubmed/10058246
http://dx.doi.org/10.1103/PhysRevA.52.R3429
http://www.ncbi.nlm.nih.gov/pubmed/9912767
http://dx.doi.org/10.1002/lapl.200510054


Sensors 2019, 19, 192 10 of 11

8. Katz, O.; Bromberg, Y.; Silberberg, Y. Compressive ghost imaging. Appl. Phys. Lett. 2009, 95, 739. [CrossRef]
9. Zhang, S.; Zhao, X.; Lei, B. Robust Facial Expression Recognition via Compressive Sensing. Sensors 2012, 12,

3747–3761. [CrossRef]
10. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
11. Liu, H.; Li, D.; Zhou, Y.; Truong, T.K. Simultaneous Radio Frequency and Wideband Interference Suppression

in SAR Signals via Sparsity Exploitation in Time-Frequency Domain. IEEE Trans. Geosci. Remote Sens. 2018,
56, 5780–5793. [CrossRef]

12. Yu, W.K.; Li, M.F.; Yao, X.R.; Liu, X.F.; Wu, L.A.; Zhai, G.J. Adaptive compressive ghost imaging based on
wavelet trees and sparse representation. Opt. Express 2014, 22, 7133–7144. [CrossRef] [PubMed]

13. Tropp, J.A.; Gilbert, A.C. Signal Recovery from Random Measurements via Orthogonal Matching Pursuit.
IEEE Trans. Inf. Theory 2007, 53, 4655–4666. [CrossRef]

14. Brida, G.; Chekhova, M.V.; Fornaro, G.A.; Genovese, M.; Lopaeva, E.D.; Berchera, I.R. Systematic analysis
of signal-to-noise ratio in bipartite ghost imaging with classical and quantum light. Phys. Rev. A 2011, 83,
063807. [CrossRef]

15. Bennink, R.S.; Bentley, S.J.; Boyd, R.W. “Two-Photon” coincidence imaging with a classical source. Phys. Rev.
Lett. 2002, 89, 113601. [CrossRef] [PubMed]

16. Gong, W.; Han, S. Super-resolution ghost imaging via compressive sampling reconstruction. arXiv 2009;
arXiv:0910.4823.

17. Genovese, M. Real applications of quantum imaging. J. Opt. 2016, 18, 073002. [CrossRef]
18. Choi, J.; Kim, M.W.; Seong, W.; Ye, J.C. Compressed sensing metal artifact removal in dental CT.

In Proceedings of the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston,
MA, USA, 28 June–1 July 2009.

19. Bobin, J.; Starck, J.L.; Ottensamer, R. Compressed Sensing in Astronomy. IEEE J. Sel. Top. Signal Process. 2008,
2, 718–726. [CrossRef]

20. Czajkowski, K.M.; Pastuszczak, A.; Kotynski, R. Real-time single-pixel video imaging with Fourier domain
regularization. arXiv, 2018; arXiv:1804.10008.

21. Zhang, Z.; Wang, X.; Zheng, G.; Zhong, J. Fast Fourier single-pixel imaging via binary illumination. Sci. Rep.
2017, 7, 12029. [CrossRef]

22. Higham, C.F.; Murray-Smith, R.; Padgett, M.J.; Edgar, M.P. Deep learning for real-time single-pixel video.
Sci. Rep. 2018, 8, 2369. [CrossRef]

23. Bennink, R.S.; Bentley, S.J.; Boyd, R.W.; Howell, J.C. Quantum and classical coincidence imaging. Phys. Rev.
Lett. 2004, 92, 033601. [CrossRef]

24. Deng, C.; Pan, L.; Wang, C.; Gao, X.; Gong, W.; Han, S. Performance analysis of ghost imaging lidar in
background light environment. Photonics Res. 2017, 5, 431–435. [CrossRef]

25. Moreau, P.A.; Toninelli, E.; Morris, P.A.; Aspden, R.S.; Gregory, T.; Spalding, G.; Boyd, R.W.; Padgett, M.J.
Resolution limits of quantum ghost imaging. Opt. Express 2018, 26, 7528–7536. [CrossRef]

26. Wang, H.; Han, S.; Kolobov, M.I. Quantum limits of super-resolution of optical sparse objects via sparsity
constraint. Opt. Express 2012, 20, 23235–23252. [CrossRef]

27. Saleh, B.E.; Abouraddy, A.F.; Sergienko, A.V.; Teich, M.C. Duality between partial coherence and partial
entanglement. Phys. Rev. A 2000, 62, 523–530. [CrossRef]

28. Zerom, P.; Chan, K.W.; Howell, J.C.; Boyd, R.W. Entangled-photon compressive ghost imaging. Phys. Rev. A
2011, 84, 061804. [CrossRef]

29. Klyshko, D.N. Photons Nonlinear Optics; CRC Press: Boca Raton, FL, USA, 1988.
30. Pittman, T.B.; Strekalov, D.V.; Klyshko, D.N.; Rubin, M.H.; Sergienko, A.V.; Shih, Y.H. Two-photon geometric

optics. Phys. Rev. A 1996, 53, 2804. [CrossRef] [PubMed]
31. Pilanci, M.; Arikan, O. Recovery of sparse perturbations in Least Squares problems. In Proceedings of the

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech Republic,
22–27 May 2011.

32. Candès, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements.
Commun. Pure Appl. Math. 2006, 59, 1207–1223. [CrossRef]

33. Herrholz, E.; Teschke, G. Compressive sensing principles and iterative sparse recovery for inverse and
ill-posed problems. Inverse Probl. 2010, 26, 125012. [CrossRef]

http://dx.doi.org/10.1063/1.3238296
http://dx.doi.org/10.3390/s120303747
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/TGRS.2018.2825459
http://dx.doi.org/10.1364/OE.22.007133
http://www.ncbi.nlm.nih.gov/pubmed/24664061
http://dx.doi.org/10.1109/TIT.2007.909108
http://dx.doi.org/10.1103/PhysRevA.83.063807
http://dx.doi.org/10.1103/PhysRevLett.89.113601
http://www.ncbi.nlm.nih.gov/pubmed/12225140
http://dx.doi.org/10.1088/2040-8978/18/7/073002
http://dx.doi.org/10.1109/JSTSP.2008.2005337
http://dx.doi.org/10.1038/s41598-017-12228-3
http://dx.doi.org/10.1038/s41598-018-20521-y
http://dx.doi.org/10.1103/PhysRevLett.92.033601
http://dx.doi.org/10.1364/PRJ.5.000431
http://dx.doi.org/10.1364/OE.26.007528
http://dx.doi.org/10.1364/OE.20.023235
http://dx.doi.org/10.1103/PhysRevA.62.043816
http://dx.doi.org/10.1103/PhysRevA.84.061804
http://dx.doi.org/10.1103/PhysRevA.53.2804
http://www.ncbi.nlm.nih.gov/pubmed/9913196
http://dx.doi.org/10.1002/cpa.20124
http://dx.doi.org/10.1088/0266-5611/26/12/125012


Sensors 2019, 19, 192 11 of 11

34. Candes, E.J.; Romberg, J.; Tao, T. Robust Uncertainty Principles: Exact Signal Reconstruction from Highly
Incomplete Frequency Information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [CrossRef]

35. Candes, E.J.; Tao, T. Near-Optimal Signal Recovery from Random Projections: Universal Encoding Strategies?
IEEE Trans. Inf. Theory 2006, 52, 5406–5425. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1109/TIT.2006.885507
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Robust Ghost Imaging Based on STLS 
	Numerical Simulation Results 
	Experimental Results and Discussions 
	Conclusions 
	References

