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Abstract: The problem of attitude estimation is broadly addressed using the Kalman filter
formalism and unit quaternions to represent attitudes. This paper is also included in this
framework, but introduces a new viewpoint from which the notions of “multiplicative update”
and “covariance correction step” are conceived in a natural way. Concepts from manifold theory are
used to define the moments of a distribution in a manifold. In particular, the mean and the covariance
matrix of a distribution of unit quaternions are defined. Non-linear versions of the Kalman filter are
developed applying these definitions. A simulation is designed to test the accuracy of the developed
algorithms. The results of the simulation are analyzed and the best attitude estimator is selected
according to the adopted performance metric.
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1. Introduction

Mechanical state estimation of a vehicle is a field of interest. A vehicle is considered a rigid body,
and its state of motion is represented by 4 mathematical objects: two of them represent its position and
velocity, and the other two represent its orientation, and angular velocity. This paper is focused on the
estimation of the angular state, composed of orientation, and angular velocity.

Although there are other mathematical tools used for estimation [1], the Kalman Filter [2]
has become the algorithm par excellence in this area. Because of its simplicity, the rigor and elegance in
its mathematical derivation, and its recursive nature it is very attractive for many practical applications.
Its non-linear versions have been widely used in orientation estimation: the Extended Kalman Filter
(EKF), and the Unscented Kalman Filter (UKF) [3]. However, there are problems arising from the used
parametrization to represent the orientation.

The orientation of a system is represented by the rotation transformation that relates two reference
frames: a reference frame anchored to that system, and an external reference frame. A thorough survey
of attitude representations is provided in Reference [4]. The parametrization used to represent the
rotation transformation could be singular, or present discontinuities among others. Table 1 summarizes
the main characteristics of the most used parametrizations.

Having in mind that the special orthogonal group SO(3) has dimension three, ideally we would
seek for a continuous and non-singular representation expressed by 3 parameters. However, since
1964 we know that “...it is topologically impossible to have a global 3-dimensional parametrization
without singular points for the rotation group” [5]. Knowing this, we would not be wrong to say
that unit quaternions are the most convenient representation we have, and that we will have for
orientations. In Reference [6] the literature on attitude estimation is reviewed until 1982, when other
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parametrizations like Euler angles were common, and founds the basis of modern quaternion-based
attitude estimation, in which this paper is supported. After that work, many others have explored this
viewpoint, and have demonstrated its superiority [7–12].

Table 1. Main characteristics of the most used parametrizations to represent an orientation.

Representation Parameters Continuous Non-Singular Linear Evolution Equation

Euler angles 3 7 7 7

Axis-angle 3–4 7 7 7

Rotation matrix 9 3 3 3

Unit quaternion 4 3 3 3

Quaternions are 4-dimensional entities, but only those having unit norm represent a rotation
transformation. This fact implies a problem in applying the ordinary Kalman Filter, so different
approaches have emerged. Since a quaternion is of dimension 4, one tends to think at first on a 4× 4
covariance matrix, and in the direct application of the Kalman Filter [13]. Given that all predictions
are contained in the surface defined by the unit constraint, the covariance matrix shrinks in the
orthogonal direction to this surface, which leads to a singular covariance matrix after several updates.
A second perspective was firstly approached in Reference [6] and was after named as “Multiplicative
Extended Kalman Filter” [8,11,12]. In this second approach we define an “error-quaternion” that is
transformed to a 3-vector. We use this vector to build the covariance matrix, and we talk about a “3× 3
representation of the quaternion covariance matrix”. However, there are still details in this adaptation
that are currently being developed. Namely, the “covariance correction step” [14].

This paper presents a new viewpoint on the problem of attitude estimation using Kalman filters
when the orientation is represented by unit quaternions. Noticing that unit quaternions live in a
manifold (the unit sphere in R4), we use basic concepts from manifold theory to define the mean
and covariance matrix of a distribution of unit quaternions. With these definitions we develop
two estimators based on the Kalman filter (one EKF-based and another UKF-based) arriving at the
concepts of “multiplicative update” and “covariance correction step” in a natural and satisfying way.
The inartificial emergence of these ideas establishes a solid foundation for the development of general
navigation algorithms. Lastly, we also analyze the accuracy in the estimations of these two estimators
using simulations.

The organization of this paper is as follows. In Section 2 we review quaternion basics. We also
expose the new viewpoint on the definition of the quaternion mean and covariance matrix. In Section 3
we present the developed estimation algorithms. In Section 4 we define the performance metric,
describe the simulation scheme, and present the results of the simulations. We also discuss the results.
Finally, Section 5 concludes the paper.

2. Quaternions Describing Orientations

2.1. Quaternions

Quaternions are hypercomplex numbers composed of a real part and an imaginary part.
The imaginary part is expressed using three different imaginary units {i, j, k} satisfying the
Hamilton axiom:

i2 = j2 = k2 = i ∗ j ∗ k = −1. (1)

A quaternion q can be represented with 4 real numbers, and using several notations:

q = q0 + q1 i + q2 j + q3 k ≡ (2a)

≡ ( q0 , q1 , q2 , q3 )
T ≡ (2b)

≡ ( q0 , q )T . (2c)
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We will denote quaternions with bold italic symbols ( q ), while vectors will be denoted with bold
upright symbols ( q ). Vectors will be written in matrix form, and the transposed of a matrix M will be
denoted as MT .

Quaternion product is defined by Equation (1) which produces the multiplication rule

p ∗ q =

(
p0 q0 − p · q

p0 q + q0 p + p× q

)
, (3)

where (·) represents the usual dot product, and (×) represents the 3-vector cross product. Note that
the quaternion product (∗) is different from the product denoted by (⊗) in reference [4]. Given this
multiplication rule, the inverse of a quaternion q (the one for which q ∗ q−1 = q−1 ∗ q = 1) is given by

q−1 =
1
‖q‖2 q∗ =

1
‖q‖2 ( q0 , −q )T , (4)

where q∗ represents the complex conjugate quaternion. Note that if q is a unit quaternion (a quaternion
with ‖q‖ = 1), then q−1 = q∗ .

2.2. Quaternions Representing Rotations

Each rotation transformation is mapped with a rotation matrix R , and with two unit quaternions
q and −q all of them related through

R(q) =

 1 − 2q2
2 − 2q2

3 2 (q1 q2 − q3 q0) 2 (q1 q3 + q2 q0)

2 (q1 q2 + q3 q0) 1 − 2q2
1 − 2q2

3 2 (q2 q3 − q1 q0)

2 (q1 q3 − q2 q0) 2 (q2 q3 + q1 q0) 1 − 2q2
1 − 2q2

2

 . (5)

Note that R(q) = R(−q) .
Quaternions representing rotations have the form

q =
(

cos(θ/2) , q̂ sin(θ/2)
)T , (6)

where q̂ denotes the unit vector that defines the rotation axis, and θ the angle of rotation. Having this
form, they satisfy the restriction

‖q‖2 = q2
0 + q2

1 + q2
2 + q2

3 = 1. (7)

This means that quaternions describing rotations live in the unit sphere of R4 , S3 . This space
is a manifold, and some concepts regarding these mathematical objects are useful in our context.
In particular, the concept of chart is of special interest.

2.3. Distributions of Unit Quaternions

When dealing with the Kalman filter, the distribution of a random variable x is encoded by its
mean x = E[ x ] and its covariance matrix P defined as

P = E
[
(x− x) (x− x)T

]
. (8)

This definition makes sense when our random variables are defined in the Euclidean space.
But how do we define the covariance matrix of a random variable living in a manifold like ours?
How can we define the covariance for unit quaternions if q − q does not represent a rotation?
(Unit quaternions form a group under multiplication, but not under addition. This means that the
addition of two unit quaternions may not result in another unit quaternion. Therefore, the addition
of two unit quaternions may not represent a rotation.) What would be the covariance matrix if each
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quaternion was equiprobable in the unit sphere? We cannot redefine the covariance matrix, because
the Kalman filter uses this precise form in its derivations, but we can take advantage of the properties
of a manifold. Let us retrieve some important definitions:

Definition 1 (Homeomorphism). A homeomorphism is a function f : X → Y between two topological
spaces X and Y satisfying the next properties:

• f is a bijection,
• f is continuous,
• its inverse function f−1 is continuous.

If such a function exists, we say that X and Y are homeomorphic.

Definition 2 (Manifold). A n-manifold Mn is a topological space in which each point is locally
homeomorphic to the Euclidean space Rn . This is, each point x ∈ Mn has a neighborhood N ⊂ Mn

for which we can define a homeomorphism f : N → Bn , with Bn the unit ball of Rn .

Definition 3 (Chart). A chart for a manifold Mn , is a homeomorphism ϕ from an open subset U ⊂ Mn ,
to an open subset of the Euclidean space V ⊂ Rn . This is, a chart is a function

ϕ : U ⊂ Mn → V ⊂ Rn, (9)

with ϕ a homeomorphism. Traditionally, a chart is expressed as the pair (U, ϕ) .

Given these definitions we can continue our reasoning.
In Reference [8] it talks about four “attitude error representations”. Namely, the one we will

call Orthographic (O), the Rodrigues Parameters (RP), the Modified Rodrigues Parameters (MRP), and
the Rotation Vector (RV). The first three are what we know as stereographic projections (and are called
Orthographic, Gnomonic, and Stereographic respectively). The last one is a projection called Equidistant.
But all four are charts defining a homeomorphism from the manifold S3 to the Euclidean space R3 .
This is, they map a point q in the manifold with a point e in R3 . Table 2 arranges these chart
definitions, together with their domain and image. We must ensure the charts to be bijections so that
they properly define a homeomorphism, and that they do not map q and −q with different points of
R3 since they represent the same rotation. We achieve this by the given definitions of the domain and
image for each chart.

Figure 1 shows how points in the sphere S2 (subspace of the sphere S3 , where quaternions
live) are mapped to points in R2 (subspace of R3 , where the images of the charts are contained)
through each one of the named charts. Since our charts are homeomorphisms, it is possible to invert
the functions. Figure 2 shows how points from R2 are mapped to points in the manifold through
the inverted charts. As pointed in Reference [8], all four charts provide the same second-order
approximation for a point e ∈ R3 near the origin, to a quaternion q ∈ S3 :

ϕ−1( e ) ≈
(

1 − ‖e‖
2

8
,

e
2

)T

. (10)
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Table 2. Main characteristics of the charts studied.

Chart Domain Image e = ϕ( q ) q = ϕ−1( e )

O {q ∈ S3 : q0 ≥ 0} {e ∈ R3 : ‖e‖ ≤ 2} 2 q

(√
1− ‖e‖

2

4
e/2

)

RP {q ∈ S3 : q0 > 0} R3 2
q
q0

1√
4 + ‖e‖2

(
2
e

)

MRP {q ∈ S3 : q0 ≥ 0} {e ∈ R3 : ‖e‖ ≤ 4} 4
q

1 + q0

1
16 + ‖e‖2

(
16− ‖e‖2

8 e

)

RV {q ∈ S3 : q0 ≥ 0} {e ∈ R3 : ‖e‖ ≤ π} 2 q̂ arcsin (‖q‖)

 cos
(
‖e‖

2

)
ê sin

(
‖e‖

2

)

(a) (b) (c) (d) (e)
Figure 1. Points in the manifold with q3 = 0 are mapped with points in the Euclidean space through
each chart ϕ . (a) S2 ; (b) O ; (c) RP ; (d) MRP ; (e) RV .

(a) (b) (c) (d) (e)
Figure 2. Points in the Euclidean space with e3 = 0 are mapped with points in the manifold through
each chart inverse ϕ−1 . (a) R2 ; (b) O ; (c) RP ; (d) MRP ; (e) RV .

We should notice that having R3 and S3 different metrics, a chart ϕ will inevitably produce a
deformation of the space. However, for quaternions in the neighborhood of the identity quaternion
(top of the sphere), our charts behave like the identity transformation between the imaginary part
of these quaternions, and the points near the origin in R3 , as suggested by (10). This is a desirable
property, as this means that the space around the identity quaternion closely resembles the Euclidean
space, which is the space for which the Kalman filter is designed. But this just happens in the
neighborhood of the identity quaternion. However, we can extend this property for any quaternion
q ∈ S3 noting that any quaternion q ∈ S3 can be expressed as a “deviation” from the first one through
the quaternion product:

q = q ∗ δq, (11)

where δq represents such a deviation. (This definition is arbitrary: we could have chosen to relate
the quaternions through q = δq ∗ q , but it is important to establish one of these definitions, and then
be consequent with it. However, (11) entails a computational advantage for the computation of (37).)
Then, we define a chart ϕq for each quaternion q ∈ S3 as

eq = ϕq( q ) = ϕ
(

δq ), (12)
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where δq = q∗ ∗ q , and where we have denoted the point of the Euclidean space mapped with the
quaternion q ∈ S3 through the chart ϕq as eq . Then, we will have a set of charts

{
ϕq
}

q , each one

resembling the Euclidean space around a quaternion q ∈ S3 , and mapping this last quaternion to the
origin of R3 . We will refer to the Euclidean space associated with the chart ϕq as the q-centered chart.
Thus, the homeomorphism ϕ−1

q takes a point eq in the q-centered chart and maps it to a point q
in the manifold through

q = ϕ−1
q
(

eq ) = q ∗ ϕ−1( eq ). (13)

After reviewing these concepts, we can define the covariance matrix of a distribution of
unit quaternions.

Given a unit quaternion q and a chart ϕ , we will define the expected value of a distribution of
unit quaternions in the q-centered chart as

eq = E
[

eq ], (14)

and its covariance matrix as
Pq = E

[(
eq − eq)(eq − eq)T

]
, (15)

and the probability density of each unit quaternion q would be defined through the homeomorphism
q = ϕ−1

q ( eq ) . Then, a distribution of unit quaternions needs of four mathematical objects to be
encoded:

(
ϕ , q , eq , Pq ) . Although a distribution of unit quaternions is unique, given this definition,

its expected value eq and its covariance matrix Pq may take different values depending on the chosen
quaternion q and chart ϕ . However, knowing that the Kalman filter is designed for the Euclidean
space, it will be convenient to choose a unit quaternion q central in the distribution, in order that the
manifold space around it closely resembles the most significant region for the covariance matrix in the
q-centered chart. It is particularly convenient to choose a quaternion q such that eq = 0 , so that the
covariance matrix is centered in the origin of the q-centered chart.

2.4. Transition Maps

At some step of the Kalman filter, we will have a distribution of unit quaternions defined in a
q-centered chart, and we will be interested in expressing our distribution in another p-centered chart.
The concept of transition map is relevant for this purpose.

Definition 4 (Transition map). Given two charts (Uα, ϕα) and (Uβ, ϕβ) for a manifold M ,
with Uαβ = Uα ∩Uβ 6= ∅ , we can define a function ϕαβ : ϕα(Uαβ )→ ϕβ(Uαβ ) as

ϕαβ(x) = ϕβ

(
ϕ−1

α (x)
)

, (16)

with x ∈ ϕα(Uαβ ) . The function ϕαβ is called a transition map. Being that ϕα and ϕβ are homeomorphisms,
so is ϕαβ .

For the present case, let us consider two unit quaternions p and q both related through

p = q ∗ δ. (17)
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These two quaternions define the charts ϕp and ϕq . We build the transition map that relates a
point eq expressed in the q-centered chart with a point ep expressed in the p-centered chart doing

ep = ϕp

(
ϕ−1

q
(

eq ) ) = (18a)

= ϕ
(

p∗ ∗ q ∗ ϕ−1( eq ) ) = (18b)

= ϕ
(

δ
∗ ∗ ϕ−1( eq ) ) . (18c)

That is to say, first we take the point eq in the q-centered chart, and we obtain its associated
quaternion q in the manifold using ϕ−1

q . Then, we transform this quaternion q to a point ep in the

p-centered chart. Nevertheless, knowing the quaternion δ we do not need to explicitly compute q .
In fact, being able to express the same quaternion q as two different deviations,

q = q ∗ δq

q = p ∗ δp

}
=⇒ δp = p∗ ∗ q︸ ︷︷ ︸

δ
∗

∗ δq. (19)

Note the equivalence of expressions (18c) and (19).
Table 3 displays the transition maps for the charts studied. The detailed derivations of these

transition maps can be found in Appendix A. Figure 3 attempts to provide some insight into how
points are transformed through the transition map of each chart.

Table 3. Transition maps for the charts studied.

Chart Transition Map ep( eq )
O δ0 eq −

√
4− ‖eq‖2 δ − δ× eq

RP 2
δ0 eq − 2 δ − δ× eq

2 δ0 + δ · eq

MRP 4
8 δ0 eq − (16− ‖eq‖2) δ − 8 δ× eq

16 + ‖eq‖2 + δ0 (16− ‖eq‖2) + 8 δ · eq

RV 2
δ

p

‖δp‖
arcsin ‖δp‖ , with δ

p = δ0 êq sin
(
‖eq‖

2

)
− cos

(
‖eq‖

2

)
δ − δ× êq sin

(
‖eq‖

2

)

(a) (b) (c) (d) (e)
Figure 3. Points in a q-centered chart are transformed using the transition map defined by each chart,
and travel to the chart centered in the quaternion mapped with eq = (1, 1, 0)T in the previous chart.
(a) R2 ; (b) O ; (c) RP ; (d) MRP ; (e) RV .
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3. Manifold Kalman Filters

In this section we present the models adopted for the Manifold Kalman Filters (MKF), and we
display the resulting algorithms.

The state of the system at a time t is defined by an orientation, encoded with a unit quaternion
qt , and by an angular velocity ω′t . We will consider them to be random variables, and we will try to
estimate their value using a Kalman filter.

Our unit quaternions {qt ∈ H : ‖qt‖ = 1} will define the rotation transformation that relates a
vector v′t expressed in a reference frame S ′ attached to the solid whose state we want to describe,
with the same vector vt expressed in an external reference frame S :

vt = R(qt) v′t ≡ vt = qt ∗ v′t ∗ q∗t . (20)

For example, if we measure an acceleration a′t in reference frame S ′ , the acceleration in the inertial
reference frame S would be given by at = R(qt) a′t . This acceleration would be the one that we would
have to integrate to obtain the position estimated by an accelerometer.

The vector ω′t will define the angular velocity of the solid measured in S ′ . Note that we do not
include the bias of the sensors in the state of our system. We will assume that our sensors are calibrated,
so the biases are zero.

We can predict the value of the random variables that describe the state of our system through
the following motion equations:

d ω′(t)
dt

= qω(t), (21)

d q(t)
dt

=
1
2

q(t) ∗ω′(t) =
1
2

q(t) ∗
(

0
ω′(t)

)
, (22)

where qω(t) is a random variable that represents the process noise, and is associated with the torque
acting on the system, and with its inertia tensor. Its expected value at a given time t will be denoted
as qω

t , and its covariance matrix will be denoted as Qω
t .

We will assume that we have sensors giving measurements of angular velocity ωm
t (which

provide information about the relative change in orientation), and of a vector vm
t whose value vt ,

expressed in the external reference frame S , is known (this provides information about absolute
orientation). Examples of such sensors could be a gyroscope giving angular velocity measurements,
an accelerometer measuring the gravity vector near the Earth surface (vt := −g), or a magnetometer
measuring the Earth magnetic field (vt := B). The measurement model relates these measurements
with the variables that describe the state of the system:

vm
t = RT(qt) ( qv

t + vt ) + rv
t , (23)

ω
m
t = ω

′
t + rω

t , (24)

where rω
t and rv

t are random variables with zero mean and covariance matrices Rω
t and Rv

t
respectively that represent the measurement noises, and qv

t is another random variable with mean qv
t

and covariance matrix Qv
t representing external disturbances in the measurement of the vector vt .

For example, it could represent accelerations others than gravity for an accelerometer, or magnetic
disturbances produced by moving irons for a magnetometer.

We will assume that the measurements arrive at discrete times {tn}n . The format xt|tn will
be used to denote a variable x at a time t , having included measurements up to a time tn with
t > tn . For the n-th time stamp, in which a measurement arrives, we will write xt|n for the sake
of simplicity. Then, our knowledge about the state at a time t , having included measurements up
to a time tn with t > tn , is described by a distribution encoded in the collection of mathematical
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objects
(

ϕ , p , xp
t|n , Pp

t|n
)

as described in Section 2.3. For the present case, xp
t|n =

(
ep

t|n , ω
′
t|n
)T is

the expected value of the distribution, and Pp
t|n is its 6× 6 covariance matrix, both expressing the

quaternion distribution in the p-centered chart. Preferably, p will be a unit quaternion central in the
distribution, so that the mapping of points from the p-centered chart to the manifold causes minimal
deformation in such distribution. The unit quaternion qt|n = ϕ−1

p
(

ep
t|n
)

will be our best estimation of
the real quaternion qt that defines the orientation of the system with respect to the external reference
frame S at time t .

The following subsections present the developed Kalman filters: one version based on the EKF
and another version based on the UKF. The EKF is based on the linearization of the non-linear models
to calculate the predicted covariance matrices. That is, the EKF approximates non-linear functions
using their Jacobian matrices. To apply the EKF, our functions must be differentiable. On the other
hand, the UKF is based on a deterministic sampling to approximate the distribution of our random
variables. We select a minimal set of samples whose mean and covariance matrix are those of the state
distribution. Then, they are transformed by the non-linear models, and the resulting set of points
is used to compute the means and covariance matrices necessary to perform the Kalman update.
This second approach does not need the functions to be differentiable.

3.1. Manifold Extended Kalman Filter

In this section we present the EKF-based estimator: the Manifold Extended Kalman Filter (MEKF).
We offer here the main results of the more detailed derivation given in Appendix B.

A measurement

zn =

(
vm

n
ωm

n

)
(25)

arrives at time tn . Our knowledge about the orientation at a previous time tn-1 is described by a
distribution expressed in the qn-1|n-1-centered chart. We assume that this distribution has mean

x
qn-1|n-1
n-1|n-1 =

 e
qn-1|n-1
n-1|n-1 = 0

ω
′
n-1|n-1

 , (26)

and covariance matrix P
qn-1|n-1
n-1|n-1 . This is, we have an initial four

(
ϕ , qn-1|n-1 , ω

′
n-1|n-1 , P

qn-1|n-1
n-1|n-1

)
. (27)

The state prediction at time tn given all the information up to tn-1 is computed through

ω
′
n|n-1 = ω

′
n-1|n-1, (28)

δω
n =

 cos
(
‖ω′n|n-1‖∆tn

2

)
ω
′
n|n-1

‖ω′n|n-1‖
sin
(
‖ω′n|n-1‖∆tn

2

)
 , (29)

qn|n-1 = qn-1|n-1 ∗ δω
n , (30)

Fn =

(
RT(δω

n ) I ∆tn

0 I

)
, (31)

P
qn|n-1
n|n-1 = Fn

[
P

qn-1|n-1
n-1|n-1 + Qn

]
FT

n , (32)
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with

Qn =

 Qω
n

(∆tn)3

3 −Qω
n

(∆tn)2

2

−Qω
n

(∆tn)2

2 Qω
n ∆tn

 . (33)

The measurement prediction at the same time is given by

vm
n|n-1 = RT( qn|n-1

)
( qv

n + vn ) , (34)

ω
m
n|n-1 = ω

′
n|n-1, (35)

zn|n-1 =

(
vm

n|n-1
ω

m
n|n-1

)
, (36)

Hn =

( [
vm

n|n-1

]
× 0

0 I

)
, (37)

Sn|n-1 = Hn P
qn|n-1
n|n-1 HT

n +

(
RT(qn|n-1

)
Qv

n R
(
qn|n-1

)
+ Rv

n 0
0 Rω

n

)
, (38)

where [v]× stands for

[v]× =

(
0 −v3 v2

v3 0 −v1

−v2 v1 0

)
. (39)

At this point, we compute the Kalman gain Kn and use it to obtain the optimal estimation of the state:

Kn = P
qn|n-1
n|n-1 HT

n S−1
n|n-1, (40)

x
qn|n-1
n|n = x

qn|n-1
n|n-1 + Kn

(
zn − zn|n-1

)
, (41)

P
qn|n-1
n|n = ( I − Kn Hn ) P

qn|n-1
n|n-1 , (42)

where x
qn|n-1
n|n-1 =

(
e

qn|n-1
n|n-1 = 0 , ω

′
n|n-1

)T . Finally, we need to obtain the updated unit quaternion, qn|n ,
and compute the mean and the covariance matrix in the qn|n-centered chart, so that the distribution

is expressed in the same conditions as at the beginning of the iteration. The point e
qn|n-1
n|n that

results from (41), and that is defined in the qn|n-1-centered chart, correspond to a unit quaternion in
the manifold. This is the updated unit quaternion qn|n which we are looking for:

qn|n = ϕ−1
qn|n-1

(
e

qn|n-1
n|n

)
= (43a)

= qn|n-1 ∗ ϕ−1
(

e
qn|n-1
n|n

)
= (43b)

= qn|n-1 ∗ δn. (43c)

Knowing that the Kalman update (41) could produce any point in the qn|n-1-centered chart we

will need to “saturate” to the closest point contained in the image of each chart. The point e
qn|n-1
n|n in the

qn|n-1-centered chart is the origin in the qn|n-centered chart. Then, the expected value of the state in

this new chart will be given by x
qn|n
n|n =

(
e

qn|n
n|n = 0 , ω

′
n|n
)T , as at the beginning of the iteration.

To update the covariance matrix we need to consider its definition (15). We want to compute
Pqn|n having Pqn|n-1 and knowing the relation ep( eq ) provided by the transition maps in Table 3.
Continuing with the EKF philosophy, the update for the covariance matrix will be found by linearizing
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ep( eq ) around the point where the majority of information is comprised (in our case, the point

eq = e
qn|n-1
n|n ):

ep
i
(

eq ) = ep
i
(

eq ) + ∑
j

∂ ep
i
(

eq )
∂eq

j

∣∣∣∣∣∣
eq=eq

(
eq

j − eq
j
)

+ O
(
‖eq − eq‖2

)
, (44)

where we have used the big O notation to describe the limiting behavior of the error term of the
approximation as eq → eq . In particular, if we define

(T)ij =
∂ ep

i
(

eq )
∂eq

j

∣∣∣∣∣∣
eq=eq

, (45)

then,
ep − ep ≈ ep( eq ) − ep( eq ) ≈ T

(
eq − eq

)
, (46)

and the final update for the covariance matrix will be computed through

P
qn|n
n|n = E

[
(x

qn|n
n|n − x

qn|n
n|n ) (x

qn|n
n|n − x

qn|n
n|n )T

]
≈ (47a)

≈
(

T( δn ) 0
0 I

)
P

qn|n-1
n|n

(
T( δn ) 0

0 I

)T

. (47b)

Table 4 summarizes the resulting T-matrix for each chart, along with their application domain.
A detailed derivation of these T-matrices can be found in Appendix C.

Table 4. T-matrices for the transition maps of the charts studied.

Chart T( δ ) Matrix Domain

O δ0 I −
[

δ
]
× +

δ δ
T

δ0
{ δ ∈ S3 : δ0 > 0 }

RP δ0

(
δ0 I −

[
δ
]
×

)
{ δ ∈ S3 : δ0 6= 0 }

MRP
1
2

[ (
1 + δ0

) (
δ0 I −

[
δ
]
×

)
+ δ δ

T
]

{ δ ∈ S3 : δ0 ≥ 0 }

RV
[

δ0

(
I − δ̂ δ̂

T
)
−
[

δ
]
×

]
‖δ‖

arcsin ‖δ‖
+ δ̂ δ̂

T
{ δ ∈ S3 : δ0 ≥ 0 , ‖δ‖ 6= 0 }

After the final computation we obtain the four

(
ϕ , qn|n , ω

′
n|n , P

qn|n
n|n

)
, (48)

that is a condition equivalent to (27) in which we started the iteration.

3.2. Manifold Unscented Kalman Filter

In this section we present the UKF-based estimator: the Manifold Unscented Kalman Filter (MUKF).
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A measurement zn arrives at time tn . Our knowledge about the orientation at a previous time
tn-1 is described by a distribution expressed in the qn-1|n-2-centered chart. This distribution is encoded
in the four (

ϕ , qn-1|n-2 , x
qn-1|n-2
n-1|n-1 , P

qn-1|n-2
n-1|n-1

)
. (49)

The first step in the UKF is to create the augmented N×1 mean x̃n and N×N covariance
matrix P̃n . Since the measurement equations are linear for the random variables rω

t and rv
t , we can

leave their covariance matrices out of the augmented one and add them later:

x̃n =

 x
qn-1|n-2
n-1|n-1
qω

n
qv

n

 , (50)

P̃n =

 P
qn-1|n-2
n-1|n-1 0 0

0 Qω
n 0

0 0 Qv
n

 . (51)

Then, we obtain the matrix Ln which satisfies Ln LT
n = P̃n and we use it to generate the 2N+1

sigma points {X j}2N
j=0 as described in Ref. [15]:

Xi,0 = (x̃n)i, (52a)

Xi,j = (x̃n)i +

(
Ln
)

ij√
2Wj

for j = 1, . . . , N, (52b)

Xi,j+N = (x̃n)i −

(
Ln
)

ij√
2Wj

for j = 1, . . . , N, (52c)

being Wj = (1−W0)/(2N) for j 6= 0 where W0 regulates the importance given to the sigma
point X 0 in the computation of the mean. These sigma points {X j}j are expressed in the
qn-1|n-2-centered chart. We need to express them in the manifold before applying the evolution
equations and the measurement equations:

X q
j = ϕ−1

qn-1|n-2

(
X e

j
)

= qn-1|n-2 ∗ ϕ−1(X e
j
)
, (53)

Yω

j = X ω

j + X qω

j ∆tn, (54)

Yq
j = X q

j ∗

 cos
(
‖Yω

j ‖∆tn

2

)
Ŷω

j sin
(
‖Yω

j ‖∆tn

2

)
 , (55)

Zv
j = RT

(
X q

j

) (
X v

j + vt

)
, (56)

Zω

j = Yω

j , (57)

where for the j-th sigma point, X e
j is its chart point part and X q

j is the quaternion with which it is

mapped, X ω

j is its angular velocity part, X qω

j is its angular velocity noise part, Yω

j is its angular

velocity prediction, Yq
j is the quaternion part of its prediction (we have assumed that the angular

velocity Yω

j is constant in the time interval [tn-1, tn) so that we can use (A20)), X v
j is the vector

process noise part, Zv
j is its vector measurement prediction, Zω

j is its angular velocity measurement
prediction, and ∆tn = tn − tn-1 . Note that when applying the inverse chart ϕ−1 we will need to
“saturate” X e

j to the closest point in the image of ϕ . Having these new sigma points, we can
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obtain the means and covariance matrices of the distributions present in the UKF. First, defining
Z j :=

(
Zv

j , Zω

j

)
T , the means are computed through

qn|n-1 =
∑j Wj Y

q
j

‖∑j Wj Y
q
j ‖

, (58)

ω
′
n|n-1 = ∑

j
Wj Yω

j , (59)

x
qn|n-1
n|n-1 =

(
ϕqn|n-1

(
qn|n-1

)
= 0

ω
′
n|n-1

)
, (60)

zn|n-1 = ∑
j

Wj Z j. (61)

where we have used a variation of the result provided in Ref. [16]. Namely,

q ≈
∑j qj

‖∑j qj‖
, (62)

with qj · qk > 0 for j, k = 0, . . . , 2N . This result is shown to minimize the fourth order approximation
of the distance defined as the sum of squared angles between the rotation transformation represented
by each quaternion qj , and the one represented by q . This approach to compute the mean quaternion
is extremely efficient, and its derivation is elegant and simple. In order to ensure that qj · qk > 0 , it is
useful to remember the property that both q and −q represent the same rotation. This property is
also useful for introducing the quaternions in the domain of ϕ to execute the next step of the filter.

After this, we use the obtained mean quaternion qn|n-1 to express each sigma point in the
qn|n-1-centered chart, and compute the covariance matrices:

Ye
j = ϕqn|n-1

(
Yq

j
)

= ϕ
(

q∗n|n-1 ∗Y
q
j
)
, (63)

P
qn|n-1
n|n-1 = ∑

j
Wj Y j YT

j , (64)

Pyz
n|n-1 = ∑

j
Wj Y j

(
Z j − zn|n-1

)T
, (65)

Sn|n-1 = ∑
j

Wj

(
Z j − zn|n-1

) (
Z j − zn|n-1

)T
+

(
Rv

n 0
0 Rω

n

)
, (66)

where we have denoted Y j :=
(
Ye

j , Yω

j − ω
′
n|n-1

)T . Finally, we compute the UKF version of the
Kalman gain Kn , and we use it to obtain the optimal estimation of the state:

Kn = Pyz
n|n-1 S−1

n|n-1, (67)

x
qn|n-1
n|n = x

qn|n-1
n|n-1 + Kn

(
zn − zn|n-1

)
, (68)

P
qn|n-1
n|n = P

qn|n-1
n|n-1 − Kn Sn|n-1 KT

n , (69)

arriving at the same conditions in which we began the iteration, with a distribution expressed in the
qn|n-1-centered chart, and encoded by the four

(
ϕ , qn|n-1 , x

qn|n-1
n|n , P

qn|n-1
n|n

)
. (70)
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Our best estimation for the orientation at this time is

qn|n = ϕ−1
qn|n-1

(
e

qn|n-1
n|n

)
= qn|n-1 ∗ ϕ−1

(
e

qn|n-1
n|n

)
, (71)

being e
qn|n-1
n|n the part of the mean x

qn|n-1
n|n that represent the quaternion in the qn|n-1-centered chart.

Note that setting qn-1|n-2 := qn-1|n-1 and e
qn-1|n-2
n-1|n-1 := 0 at the beginning of each iteration yields the

traditional version of the algorithm, where a “reset operation” is performed instead of the covariance
matrix update.

4. Simulation Results

This section presents the results of the simulations used to measure the accuracy of each estimator.
Simulations are chosen instead of real experiments because a real system entails an uncertainty in
the measurement of the true attitude: the attitude that is used to compare with that estimated by the
algorithms. There are sources of error ranging from a miscalibration of the measurement system to a
possible bias in the “true attitude” produced by another attitude estimator, which makes it problematic
to define an adequate metric to measure the accuracy of the algorithms. For this reason, the authors
consider that using a simulation is more reliable to avoid possible biases in the results due to said
sources of error. Others have performed similar types of tests [7,17]. However, the results do not seem
to be statistically conclusive: only the estimations of some orientation trajectories are shown.

We perform our comparison through a simulation in which we do have an absolute knowledge
of the attitude of the system: a true oracle exists in a simulation. Therefore, we can compare the
real orientation with the attitude estimated by the algorithms having fed them only with simulated
measurements that we obtain from such known orientations. We will extract our performance metrics
from a wide set of orientation trajectories in order to obtain statistically conclusive results.

We try to answer three questions with the simulation test. The first question is, is there a chart for
which we get a greater accuracy in attitude estimation? The second one is, what algorithm produces
the most accurate attitude estimation, the MEKF or the MUKF? The last question stems from the fact
that previous algorithms on attitude estimation, such as the Multiplicative Extended Kalman Filter,
did not contemplate updating the distribution from one chart to another as done at (47b) in the MEKF.
However, their estimators performed well [6,7,12]. Then the third question is, does this “chart update”
imply an improvement in the accuracy of the attitude estimation?

Although a simulation has been used to compare our algorithms, these have also been tested with
a real IMU. In the Supplementary Materials one can find a demonstration video, the source code used
in the video, the source code used to generate the simulations, and the source code used to obtain the
computational cost of the algorithms in each platform.

4.1. Performance Metric

We have already described a quaternion q as a deviation from another quaternion q as q = q ∗ δ .
Now we define the instantaneous error between an estimated attitude, represented by a unit quaternion
q , and the real attitude, represented by the unit quaternion ?q , as the angle we have to rotate one of
them to transform it into the other. This is, the angle of the rotation transformation defined by the
quaternion δe such that ?q = q ∗ δe . Recalling (6), this angle can be computed as:

θe = 2 arccos
[ (

q∗ ∗ ?q
)

0

]
= (72a)

= 2 arccos
(

q · ?q
)

, (72b)

having previously ensured that q · ?q ≥ 0 using the fact that both q and −q represent the same
rotation transformation.
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Angle θe will vary along an orientation trajectory. Then, we will define the mean error in
orientation estimation for a given trajectory starting at time t = 0 and ending at time t = T as

eθ =
1
T

∫ T

0
θe(t) dt. (73)

Finally, eθ will depend on the followed trajectory, and on the set of taken measurements. We will
need to generate several orientation trajectories to obtain the mean value eθ and the variance σ2

eθ
that

characterize the distribution of the error in orientation estimation eθ for each algorithm. We will define
the confidence interval for the computed eθ as[

eθ − 3 σeθ
/
√

Ns , eθ + 3 σeθ
/
√

Ns

]
, (74)

where Ns is the number of samples taken for the eθ computation, so that σ2
eθ

/Ns is the variance of
the sample mean distribution.

Being that the lower the better, the value of eθ gives us a measure of how well an algorithm
estimates the orientation. We will consider that the performance of an algorithm A is better than the
performance of other algorithm B if eθ(A) < eθ(B) and their confidence intervals do not overlap.

4.2. Simulation Scheme

To compute the performance metrics we will need to generate a large number of simulations.
Each independent simulation will consist of three steps: initialization, convergence, and estimation.

In the initialization step we set up the initial conditions accordingly to the chosen simulation
parameters. This includes generating the initial unit quaternion ?q0 from a uniform distribution in
S3 , setting the initial angular velocity

?
ω′0 to zero, setting the update frequency fupdate , generating

the variances of the process noises σ2
ω and σ2

v from a uniform distribution in the intervals (0, Qω
max]

and (0, Qv
max] respectively, and initializing the estimation algorithm. The initialization of the MEKF

includes setting q0|0 = 1 , ω
′
0|0 = 0 rad/s , and P

q0|0
0|0 = 102 I . On the other hand, the initialization

of the MUKF includes setting q0|−1 = 1 , e
q0|−1
0|0 = 0 , ω

′
0|0 = (1, 1, 1)T rad/s , and P

q0|−1
0|0 = 102 I .

The angular velocity is not initialized to 0 in the MUKF because it has been observed that it is
sometimes necessary to “break the symmetry” for the algorithm to converge; especially when we do
not apply the chart update (when we perform the “reset operation”) for the RV chart. The covariance
matrices that appear in both algorithms are initialized as Qω

n = I rads2/s4 , Qv
n = 10−2 I p.d.u. (“p.d.u.”

stands for “Procedure Defined Unit”. In the present case it depends on the definition of the vector v ),
Rω

n = Rω I rads2/s2 , Rv
n = Rv I p.d.u., where Rω and Rv are the variances of the measurement noise

that will be used in the simulation. We give this information about the measurement noise to the
algorithms because it can be obtained offline, while the information about the process noise cannot.
Given that a priori we cannot know how the system will behave, the values of Qω

n and Qv
n have been

chosen according to what we understand could be normal. Choosing these values we are assuming
that after a second it is normal for the angular velocity to have changed by 1 rad/s , and also that it is
normal to find external noises added to the vector vt of magnitude 10−1 p.d.u. . For the mean values
we set qω

n = 0 rads/s2 , and qv = 0 p.d.u. .
In the convergence step we keep the system in the initial orientation ?q0 . Simulated measurements

are generated using (23) and (24). For each measurement, a different vt is sampled from a uniform
distribution in the unit sphere of R3 . The values for each component of qv

t , rv
t , and rω

t are obtained
from normal distributions with zero mean and variances σ2

v , Rv , and Rω respectively. The term
RT( qt ) in (23) is obtained from the true attitude ?qt , which in the convergence step takes the value of
?qt =

?q0 . The term ω′t in (24) is the true angular velocity, which in the convergence step takes the value
?
ω′t = 0 . The tested algorithm updates its state estimation until the inequality θe(t) < θ0

e is satisfied,
where θe(t) is the value of the error (72), and θ0

e is a parameter in the simulation. The convergence
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step could have been replaced by an initialization of the attitude estimated by the algorithm qt to the
real value ?qt , but then it would have also been necessary to fix a certain covariance matrix. Since the
metric of the space generated by each chart is different, it is difficult to set a covariance matrix that
provides the same information for each chart. It seemed more natural to the authors to allow the
algorithm to find the true attitude by its own means, and for the covariance matrix to converge to a
value in each case.

Finally, in the estimation step we generate a random but continuous orientation sequence using a
Wiener process for the angular velocity:

?
ω
′
t =

?
ω
′
t-δt + nt

√
δt , (75)

?qt =
?qt-δt ∗

 cos
(
‖?ω′t‖ δt

2

)
?
ω′t
‖?ω′t‖

sin
(
‖?ω′t‖ δt

2

)
 , (76)

where nt is a random vector whose components are sampled from a normal distribution with zero
mean and variance σ2

ω , and δt is the simulation time step that is related to the algorithm time step ∆t
trough dtdtsim δt = ∆t , being dtdtsim an integer parameter that determines the simulation updates
per algorithm update. Note that we multiply nt by

√
δt and not by δt . We do it this way so that the

covariance matrix after k steps does not depend on the simulation time step δt . In fact, after a time
T = k δt the covariance matrix of the angular velocity will have grown by ∆Pω = k I σ2

ω δt = I σ2
ω T ,

and not by (∆Pω)′ = k I σ2
ω (δt)2 = I σ2

ω T δt . After each dtdtsim simulation updates, a simulated
measurement is generated in the same way it was done in the convergence step, and the algorithm
is updated with it. The simulation will run for a time Tsim = k′ ∆t , where k′ is an integer number.
This way we will perform the last algorithm update at the end of the simulation. The error (72) will be
evaluated after each algorithm update, and it will be added up through the simulation to obtain the
averaged error (73). After each simulation, we will obtain a sample for the computation of eθ and σ2

eθ
.

We will perform Ns of these simulations to obtain the confidence interval (74).

4.3. Results

In this section we present the results of the simulations. The algorithms are tested for update
frequencies fupdate = 1/∆t in the interval [2, 1000]Hz . This range has been chosen thinking about the
possible limitations of a real system. For example, the maximum data rate of a low cost IMU is around
1000 Hz . On the other hand, the update frequency may be limited by processing. The computational
cost of each estimator has been evaluated in two platforms: an Arduino MEGA 2560, and a Raspberry
Pi 3 Model B. The code has been written in c++. The resulting maximum update frequencies are
presented in Figure 4, which indicates that the MEKF can be executed approximately 3 times faster
than the MUKF.
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Figure 4. Maximum update frequency for each approach. The lines at the top represent the mean and
the deviation (3σ) of the distribution of maximum update frequencies. “CU” stands for Chart Update,
while “NCU” stands for No Chart Update.

Although the algorithms have been developed allowing a different ∆tn for each update,
the simulations are performed using a constant ∆t , and the simulation parameters depicted in Table 5.

Table 5. Parameters used in the simulations.

Parameter Value

θ0
e 1◦

Tsim 10 s
dtdtsim 100

Ns 1000
Qω

max 102 rads2/s3

Qv
max 1 p.d.u.
R { 10−2 , 10−4 , 10−6 }

Rω R rads2/s2

Rv R p.d.u.
W0 1/25

The parameters θ0
e , Tsim , dtdtsim , and Ns have been chosen trying to reach a compromise

between the precision of the results, and the execution time of the simulation. The values for Qω
max

and Qv
max have been chosen in such a way that the estimation algorithms face both normal situations

( Qω
n ≈ σ2

ω I and Qv
n ≈ σ2

v I ) and situations that were not foreseen ( Qω
n 6= σ2

ω I or Qv
n 6= σ2

v I ). A typical
low cost IMU has Rω ≈ 10−4 rad2/s2 and Rv ≈ 10−4 g2 . The values chosen for R represent an
imprecise sensor (10−2), a normal sensor (10−4), and a precise sensor (10−6). The value of W0 has been
chosen so that all sigma points have the same importance, but very similar results, if not identical,
have been obtained for other selections of W0 .

4.3.1. Chart Choice

The results of the simulation are presented in Figure 5. The average of the performance metric is
shown along with its confidence interval for each of the selected update frequencies. The results of the
MEKF and the MUKF are shown in different graphs, but drawn in the same one are the results for
each chart and for a given MKF. In this way we are able to distinguish if a chart has an advantage over
the others.

We observe that there is no chart that is especially advantageous. All things being equal, we would
opt for the RP chart. For this chart it is not necessary to worry about the domain since it maps q
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and −q with the same point of R3 and with the same T-matrix; or of the image since it is all R3 .
In addition, the expressions of ϕ−1 and the T-matrix for the MEKF are simpler for the RP chart. These
computational advantages make us prefer the RP chart over the others.
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Figure 5. Mean of the performance metric for each approach. Results from different charts are plotted
in the same graph. Results from different MKF are plotted in different graphs. Bars represent the
confidence interval (3σ) for the mean computation.

4.3.2. MEKF vs. MUKF

Figure 6 also presents the results of the simulations. This time, we display on the same graph the
resulting performance metrics for the MUKF and the MEKF when the RP chart is used. In this way,
we can distinguish if one MKF has an advantage over the other.
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Figure 6. Mean of the performance metric for each MKF. Only results for the RP chart are plotted.
Bars represent the confidence interval (3σ) in the mean computation.
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We note that the MEKF performs the same or better than the MUKF. This differs from the usual
experience, in which the UKF outperforms the EKF in traditional non-linear estimation applications.
The fact that the charts resemble the Euclidean space near the origin (see Section 2.3) might be favoring
the MEKF, since the Jacobian matrices, used to approximate the non-linear functions, are defined at
that point. However, the sigma points generated for the MUKF are sampled far from the origin of the
chart, where the non-linearities become notorious. We are facing a very particular scenario in which
the model is approximately linear for the MEKF, while for the MUKF it is not. In addition, due to the
difference in computational cost (see Figure 4), the MUKF update frequencies will generally be lower
than those of the MEKF, which will imply worse accuracy in its estimations. Then, the MEKF with the
RP chart seems to be our best option.

4.3.3. Chart Update vs. No Chart Update

Figure 7 presents the results of each MKF with each chart in a different graph, but displayed in
the same one are the results using the “chart update” and the results without using it.

1

10

100

101 102 103 101 102 103 101 102 103 101 102 103 101 102 103 101 102 103 101 102 103 101 102 103

or
ie

nt
at

io
n

er
ro

r
(◦

)

fupdate (Hz)

MUKF O

fupdate (Hz)

MUKF RP

fupdate (Hz)

MUKF MRP

fupdate (Hz)

MUKF RV

fupdate (Hz)

MEKF O

fupdate (Hz)

MEKF RP

fupdate (Hz)

MEKF MRP

fupdate (Hz)

MEKF RV

chart update, R = 10−2

chart update, R = 10−4

chart update, R = 10−6

no-chart update, R = 10−2

no-chart update, R = 10−4

no-chart update, R = 10−6

Figure 7. Mean of the performance metric for each approach. Results from the approach in which we
apply the chart update, and those of which we do not apply it are plotted together. Bars represent the
confidence interval (3σ) in the mean computation.

We can observe that there is almost no difference between using the “chart update” and not using
it. The concepts used in this paper have helped us to understand the mechanisms of the MKF, and
ultimately to arrive to the concepts of “multiplicative update”, and of “covariance correction step”
with the T-matrix definition. However, it is not necessary to apply the latest update (47b) in practice:
we will obtain essentially the same accuracy in our estimations.

5. Conclusions

We have used concepts from manifold theory to define the expected value and the covariance
matrix of a distribution in a manifold. In particular, we have defined the expected value and covariance
matrix of a distribution of unit quaternions in S3 , the unit sphere in R4 , using the concept of chart.
These definitions have helped us to develop Kalman filters for orientation estimation, where the
attitude has been represented by a unit quaternion. They have also helped us solve the problem of the
“covariance correction step”. Two estimators have been developed: one based on the EKF (the MEKF),
and another based on the UKF (the MUKF). The MEKF and the MUKF have been tested in simulations,
and some results have been obtained. The conclusions of the simulations are:

• There is no chart that presents a clear advantage over the others, but the RP chart has some
characteristics that motivate us to prefer it.
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• The MEKF is preferable to the MUKF due to its lower computational cost and its greater accuracy
in orientation estimation.

• The “chart update” is not necessary for the MKF in practice.

Then, the MEKF with the RP chart and without applying the “chart update” is our best attitude
estimator according to the adopted performance metric. This algorithm resembles the conventional
“Multiplicative Extended Kalman Filter”, but we have obtained the MEKF without having to redefine
any aspect of the classic Kalman filter.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/1/149/s1:
SupplementaryMaterials.zip.
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Abbreviations

The following abbreviations are used in this manuscript:

EKF Extended Kalman Filter
UKF Unscented Kalman Filter
MKF Manifold Kalman Filter
MEKF Manifold Extended Kalman Filter
MUKF Manifold Unscented Kalman Filter
O Orthographic
RP Rodrigues Parameters
MRP Modified Rodrigues Parameters
RV Rotation Vector

Appendix A. Derivation of Transition Maps

This appendix contains the derivation of the transition map for each chart.

Appendix A.1. Orthographic

Using the inverse of the transformation that defines the chart, ϕ−1 ,

δq =

(√
1 − ‖eq‖2

4
eq/2

)
. (A1)

Introducing (A1) into (19),

δp = δ
∗ ∗ δq =

 δ0

√
1 − ‖eq‖2

4 + δ · eq

2

δ0
eq

2 −
√

1 − ‖eq‖2

4 δ − δ× eq

2

 . (A2)

Finally, applying the chart definition,

ep = 2 δ
p = δ0 eq −

√
4 − ‖eq‖2 δ − δ× eq. (A3)

http://www.mdpi.com/1424-8220/19/1/149/s1
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Appendix A.2. Rodrigues Parameters

Using the inverse of the transformation that defines the chart, ϕ−1 ,

δq =
1√

4 + ‖eq‖2

(
2
eq

)
. (A4)

Introducing (A4) into (19),

δp = δ
∗ ∗ δq =

1√
4 + ‖eq‖2

(
2 δ0 + δ · eq

δ0 eq − 2 δ − δ× eq

)
. (A5)

Finally, applying the chart definition,

ep = 2
δ

p

δ
p
0

= 2
δ0 eq − 2 δ − δ× eq

2 δ0 + δ · eq
. (A6)

Appendix A.3. Modified Rodrigues Parameters

Using the inverse of the transformation that defines the chart, ϕ−1 ,

δq =
1

16 + ‖eq‖2

(
16 − ‖eq‖2

8 eq

)
. (A7)

Introducing (A7) into (19),

δp = δ
∗ ∗ δq =

1
16 + ‖eq‖2

(
δ0
(
16− ‖eq‖2) + 8 δ · eq

8 δ0 eq −
(
16− ‖eq‖2) δ − 8 δ× eq

)
. (A8)

Finally, applying the chart definition,

ep = 4
δ

p

1 + δ
p
0

= 4
8 δ0 eq −

(
16− ‖eq‖2) δ − 8 δ× eq

16 + ‖eq‖2 + δ0 (16− ‖eq‖2) + 8 δ · eq
. (A9)

Appendix A.4. Rotation Vector

Using the inverse of the transformation that defines the chart, ϕ−1 ,

δq =

 cos
(
‖eq‖

2

)
êq sin

(
‖eq‖

2

) . (A10)

Introducing (A10) into (19),

δp = δ
∗ ∗ δq =

 δ0 cos
(
‖eq‖

2

)
+ δ · êq sin

(
‖eq‖

2

)
δ0 êq sin

(
‖eq‖

2

)
− cos

(
‖eq‖

2

)
δ − δ× êq sin

(
‖eq‖

2

) . (A11)

Finally, applying the chart definition,

ep = 2
δ

p

‖δp‖
arcsin ‖δp‖, (A12)
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with

δ
p = δ0 êq sin

(
‖eq‖

2

)
− cos

(
‖eq‖

2

)
δ − δ× êq sin

(
‖eq‖

2

)
. (A13)

Note that all transition maps are expressed using the δ quaternion. Given that e = ϕ
(
δ
)

we could
also have expressed them using e which is what we get after applying the Kalman update (41).
However, our choice makes transition maps to take a simpler form. In addition, having to compute the
quaternion δ to perform (43c), this choice does not imply a computational overhead.

Appendix B. Details in the Derivation of the MEKF

This appendix contains the details in the derivation of the Manifold Extended Kalman Filter used
in this study.

Appendix B.1. State Prediction

This subsection contains the derivation of the equations for the state prediction.

Appendix B.1.1. Evolution of the Expected Value of the State

Taking expected values in Equation (21) we obtain

d ω
′

dt
= qω =⇒ ω

′(t) = ω
′
0 + qω

t t, (A14)

with qω
t the expected value of the random variable qω at time t . Doing ω

′
0 = ω

′
n-1|n-1 we arrive at

ω
′
t|n-1 = ω

′
n-1|n-1 + qω

t t. (A15)

On the other hand, approximating (22) with its Taylor series up to first order around the current
state ( q , ω

′ ) , and taking its expected value we obtain

E
[

d q(t)
dt

]
≈ 1

2
q(t) ∗ω′(t). (A16)

This differential equation has no general closed solution. But if we assume that the expected value of
the process noise qω(t) is zero when t ∈ (tn-1, tn) , so that ω

′(t) is constant in that interval, then we
will have the matrix differential equation

d q(t)
dt

= Ω̌n q(t), (A17)

with

Ω̌n :=
1
2


0 −ω′1 −ω′2 −ω′3

ω′1 0 ω′3 −ω′2
ω′2 −ω′3 0 ω′1
ω′3 ω′2 −ω′1 0


n|n-1

. (A18)

This differential equation has the solution

q(t) = eΩ̌ t q0, (A19)
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where q0 represents the initial conditions. After taking q0 = qn-1|n-1 , we obtain the prediction qt|n-1 ,
that can be expressed using the quaternion product as

qt|n-1 = qn-1|n-1 ∗ δω
t = qn-1|n-1 ∗

 cos
(
‖ω′t|n-1‖∆t

2

)
ω
′
t|n-1

‖ω′t|n-1‖
sin
(
‖ω′t|n-1‖∆t

2

)
 , (A20)

with ∆t = t− tn-1 .

Appendix B.1.2. Evolution of the State Covariance Matrix

For a continuous nonlinear system of the form

d x
dt

= f( x , t ) + g( q ), (A21)

we know [18] that the covariance matrix satisfies the following differential equation:

d P
dt

= F P + P FT + G Q GT , (A22)

where F = ∂ f
∂x , and G = ∂ g

∂q . This is so because the evolution equation for ∆x = x − x is
approximately given by:

d x
dt

≈ d x
dt

+
∂ f
∂x

∣∣∣∣
x=x

( x − x ) +
∂ g
∂q

∣∣∣∣
q=q

( q − q ) , (A23)

and P is defined as P = E
[

∆x (∆x)T ] . However, we have a different definition for P :

P = E

 ( eq − eq

ω′ − ω
′

) (
eq − eq

ω′ − ω
′

)T
 . (A24)

Then we need to find the evolution equation for eq . Recall that we are assuming eq = 0 at the
beginning of the iteration. Knowing that any quaternion in the unit sphere can be expressed as a
deviation from a central quaternion q as q = q ∗ δ , and using the differential Equations (22) and
(A16), we can find a differential equation for the quaternion δ :

q = q ∗ δ =⇒ (A25a)

=⇒ q̇ = q̇ ∗ δ + q ∗ δ̇ =⇒ (A25b)

=⇒ 1
2

q ∗ω′ ≈ 1
2

q ∗ω′ ∗ δ + q ∗ δ̇, (A25c)
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where a dot over a symbol represents time derivative, and we have obviated the time dependence.
Isolating the time derivative δ̇ ,

δ̇ ≈ 1
2

δ︷ ︸︸ ︷
q∗ ∗ q ∗ω′ − 1

2

1︷ ︸︸ ︷
q∗ ∗ q ∗ω′ ∗ δ = (A26a)

=
1
2
[

δ ∗ω′ − ω′ ∗ δ
]

= (A26b)

=
1
2

[ (
δ0
δ

)
∗
( 0

ω′
)
−
(

0
ω
′

)
∗
(

δ0
δ

) ]
= (A26c)

=
1
2

(
−
(

ω′ − ω
′ ) · δ

δ0
(

ω′ − ω
′ ) − (ω′ + ω

′ )× δ

)
= (A26d)

=
1
2

(
−∆ω′ · δ

δ0 ∆ω′ −
(

2 ω
′ + ∆ω′

)
× δ

)
. (A26e)

Knowing that, for each of our charts, the δ quaternion can be approximated by (10) as e → 0 ,
then we can obtain an approximate differential equation for a point e expressed in the q-centered chart.
Note that we have not explicitly denoted eq or δq . This will be assumed implicitly, since these
quantities will always be expressed in the q-centered chart in this appendix. Using the chain rule for a
time derivative and expression (A26e),

ėi = ∑
j

≈2 δij︷︸︸︷
∂ ei
∂δj

δ̇j︷︸︸︷
∂ δj

∂t
≡ (A27a)

≡ ė ≈ δ0 ∆ω
′ −

(
2 ω
′ + ∆ω

′ )× δ ≈ (A27b)

≈
(

1− ‖e‖
2

8

)
∆ω
′ −

(
2 ω
′ + ∆ω

′ )× e
2

. (A27c)

Then, the first order approximation to differential Equation (A27c) would be

ė ≈ ∆ω
′ − ω

′ × e. (A28)

On the other hand, combining Equations (21) and (A14) we obtain

d ∆ω′

dt
=

d (ω′ − ω
′)

dt
= qω − qω = ∆qω. (A29)

Summarizing,

d
dt

(
e

∆ω′

)
≈

(
−
[
ω
′]
× I

0 0

) (
e

∆ω′

)
+

(
0

∆qω

)
, (A30)
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therefore matrices F , G , and Q in (A22) are in our case

F =

(
−
[
ω
′]
× I

0 0

)
, (A31)

G = I, (A32)

Q =

(
0 0
0 E[∆qω (∆qω)T ]

)
. (A33)

We are now in a position to solve the differential Equation (A22). Let us consider its homogeneous
version first:

d PH
dt

= F PH + PH FT , (A34)

which has as solution
PH = eF t C0 eFT t. (A35)

Taking into account the definition of matrix exponential, and after computing the powers of F
we obtain

eF t =

 ∞
∑

n=0

(−Ω)n tn

n!

∞
∑

n=1

(−Ω)n−1 tn

n!

0 I

 ≈
(

RT( δω ) I t
0 I

)
, (A36)

where we have denoted Ω =
[
ω
′]
× , and δω =

(
cos ‖ω

′‖ t
2 , ω

′

‖ω′‖ sin ‖ω
′‖ t
2

)
. We also have assumed

that t takes small values so we can approximate the infinite sums truncating in the first term. To find
the solution of the non-homogeneous differential equation we use the variation of constants method:

P = eF t C(t) eFT t =⇒ (A37)

=⇒ d P
dt

= F eF t C(t) eFT t + eF t C(t) eFT t FT + eF t d C(t)
dt

eFT t = (A38)

= F P + P FT + eF t d C(t)
dt

eFT t. (A39)

Identifying terms with (A22) we obtain that

eF t d C(t)
dt

eFT t = G Q GT =⇒ (A40)

=⇒ d C(t)
dt

= e−F t Q e−FT t =
∞

∑
n=0

∞

∑
m=0

(−F)n tn

n!
Q

(−FT)m tm

m!
=⇒ (A41)

=⇒ C(t) = C0 +
∞

∑
n=0

∞

∑
m=0

(−F)n

n!
Q

(−FT)m

m!
tn+m+1

n + m + 1
. (A42)

Finally, truncating the summation in (A42) at the first non-zero elements, and inserting the result
into (A37), we obtain (32) where we have identified C0 = P(0) through the initial conditions.

Appendix B.2. Measurement Prediction

This subsection contains the derivation of the equations for the measurement prediction.
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Appendix B.2.1. Expected Value of the Measurement Prediction

Taking expected values on (24), and assuming rω
t = 0 we arrive at (35). On the other hand,

approximating (23) with its Taylor series up to first order around the current estimation of the state
( q , ω

′ ) , taking its expected value, and assuming rv
t = 0 we obtain (34).

Appendix B.2.2. Covariance Matrix of the Measurement Prediction

In order to find the covariance matrix of the measurement prediction we need the linear
approximation of the vector measurement around the point x0 := ( e = 0 , qv = qv , rv = rv ) :

vm ≈ vm +
∂ vm

∂e

∣∣∣∣
x0

e +
∂ vm

∂qv

∣∣∣∣
x0

(qv − qv) +
∂ vm

∂rv

∣∣∣∣
x0

(rv − rv) . (A43)

It is direct to identify

∂ vm

∂qv

∣∣∣∣
x0

= RT( q ), (A44)

∂ vm

∂rv

∣∣∣∣
x0

= I. (A45)

On the other hand, rewriting (23) as

vm = δ∗ ∗ q∗ ∗ ( qv + v ) ∗ q ∗ δ + rv ≡ (A46)

≡ vm = RT(δ) RT(q) ( qv + v ) + rv, (A47)

and noting that setting e = 0 is equivalent to do δ = 1 ,

∂ vm
i

∂ej

∣∣∣∣∣
x0

= ∑
k

∂ vm
i

∂δk

∣∣∣∣
x0

∂ δk
∂ej

∣∣∣∣∣
e=0

= ∑
kl

∂ RT
il (δ)

∂δk

∣∣∣∣∣
δ=1

[
RT(q) ( qv + v )

]
l

∂ δk
∂ej

∣∣∣∣∣
e=0

. (A48)

Now, recalling (5) we have

∂ RT(δ)

∂δk

∣∣∣∣
δ=1

= 2

 0 δ3k −δ2k
−δ3k 0 δ1k
δ2k −δ1k 0

 ≡ − 2 ∑
n

εinl δnk, (A49)

with εinl the Levi-Civita symbol, and δnk the Kronecker delta. Recalling (10) we also have

∂ δ

∂ej
=


−ej/4
δ1j/2
δ2j/2
δ3j/2


∣∣∣∣∣∣∣∣∣
e=0

≡ (1− δ0k) δkj/2. (A50)

Then, introducing in (A48) Equations (A49), (34), and (A50),

∂ vm
i

∂ej

∣∣∣∣∣
x0

≈ −∑
kln

εinl δnk vm
l (1− δ0k) δkj = ∑

l
εil j vm

l ≡
[

vm ]
×, (A51)

where we have used εijl = −εil j . Finally, assuming the independence of the random variables
xt = ( et , ω′t )

T , qv
t , rv

t , and rω
t , and computing the covariance matrix St = E

[
(zt − zt)(zt − zt)T ]

with zt = ( vm
t , ωm

t )T and (A43), we arrive at (37) and (38).
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Appendix C. Derivation of the T-matrices

This appendix contains the derivation of the T-matrix for each chart.

Appendix C.1. Orthographic

Our transition map (A3) can be written as

ep
i (e

q) = δ0 eq
i −

√
4 − ∑k(e

q
k )

2 δi − ∑
lm

εilm δl eq
m, (A52)

being εilm the Levi-Civita symbol. Finding (45) for (A52) we obtain

(T)ij =

[
δ0 δij −

−∑k eq
k δkj√

4 − ∑k(e
q
k )

2
δi − ∑

lm
εilm δl δmj

]
eq=eq

= (A53a)

= δ0 δij +
eq

j√
4 − ∑k(e

q
k )

2
δi − ∑

l
εil j δl , (A53b)

This expression can be rewritten in matrix form as

T = δ0 I +
δ (eq)T√

4 − ‖eq‖2
−
[

δ
]
×. (A54)

Finally, recalling that for this chart δ0 =
√

1 − ‖eq‖2/4 and δ = eq/2 , we arrive at the
final expression

T = δ0 I +
δ δ

T

δ0
−
[

δ
]
×. (A55)

Appendix C.2. Rodrigues Parameters

First, let us denote the numerator of (A6) as N(eq) , and its denominator as D(eq) :

N
(

eq ) := δ0 eq − 2 δ − δ× eq, (A56)

D
(

eq ) := 2 δ0 + δ · eq. (A57)

Now let us evaluate (A56) at eq :

N
(

eq ) =

0︷ ︸︸ ︷
δ0 eq︸︷︷︸

2 δ/δ0

− 2 δ −

= 0 ( δ ‖ eq )︷ ︸︸ ︷
δ× eq = 0. (A58)

Then, the approximation of N
(

eq ) does not have terms of order O(1) . This means that we will
only need to approximate D

(
eq) to the zeroth order. Any further approximation would produce,

after multiplying by the linear approximation of N
(

eq ) , a higher order term. Let us then calculate
each approximation.

We can rewrite (A56) as

Ni
(
eq) = δ0 eq

i − 2 δi − ∑
kl

εikl δk eq
l , (A59)
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with εikl the Levi-Civita symbol. Applying (44) to (A59),

Ni
(

eq ) ≈ ∑
j

[
δ0 δij − ∑

kl
εikl δk δl j

]
eq=eq

(
eq

j − eq
j

)
= (A60a)

= ∑
j

[
δ0 δij − ∑

k
εikj δk

] (
eq

j − eq
j

)
, (A60b)

being δij the Kronecker delta. Returning to matrix notation, the linear approximation of N
(
eq) is

N
(

eq ) =
[

δ0 I −
[

δ
]
×

] (
eq − eq

)
+ O

(
‖eq − eq‖2

)
. (A61)

On the other hand, evaluating (A57) at eq we obtain the zeroth order approximation:

D
(

eq ) = 2 δ0 + δ · 2 δ

δ0
+ O

(
‖eq − eq‖

)
= (A62a)

=
2
δ0

(
δ

2
0 + ‖δ‖2

)
︸ ︷︷ ︸

1

+ O
(
‖eq − eq‖

)
= (A62b)

=
2
δ0

+ O
(
‖eq − eq‖

)
. (A62c)

Finally, combining (A61) and (A62c) we can compute the linear approximation of (A6) :

ep( eq ) = 2
{ [

δ0 I −
[

δ
]
×

] (
eq − eq) + O

(
‖eq − eq‖2

)} [ δ0

2
+ O

(
‖eq − eq‖

) ]
= (A63a)

= δ0

[
δ0 I −

[
δ
]
×

] (
eq − eq) + O

(
‖eq − eq‖2

)
. (A63b)

Appendix C.3. Modified Rodrigues Parameters

First, let us denote the numerator of (A9) as N(eq) , and its denominator as D(eq) :

N
(

eq ) = 8 δ0 eq −
(

16 − ‖eq‖2
)

δ − 8 δ× eq, (A64)

D
(

eq ) = 16 + ‖eq‖2 + δ0

(
16 − ‖eq‖2

)
+ 8 δ · eq. (A65)

Now let us evaluate (A64) at eq :

N
(

eq ) = 8 δ0

4δ/(1+δ0)︷︸︸︷
eq −

(
16 −

16‖δ‖2/(1+δ0)
2︷ ︸︸ ︷

‖eq‖2 )
δ − 8

= 0 ( eq‖ δ )︷ ︸︸ ︷
δ× eq = (A66a)

=
16 δ

1 + δ0

[
2 δ0 −

(
1 + δ0 −

1−δ
2
0︷︸︸︷

‖δ‖2

1 + δ0

)]
= 0. (A66b)

Then, as with the RP chart, the approximation of N
(
eq) does not have terms of order O(1) ,

and we will only need to approximate D
(
eq) to the zeroth order.

We can write (A64) as

Ni
(

eq ) = 8 δ0 eq
i −

(
16−∑

k
(eq

k )
2
)

δi − 8 ∑
lm

εilm δl eq
m, (A67)
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with εilm the Levi-Civita symbol. Applying (44) to (A67),

Ni
(

eq ) ≈ ∑
j

[
8 δ0 δij + ∑

k
2 eq

k δkj δi − 8 ∑
lm

εilm δl δmj

]
eq=eq

(
eq

j − eq
j

)
= (A68a)

= ∑
j

[
8 δ0 δij + 2 eq

j δi − 8 ∑
l

εil j δl

] (
eq

j − eq
j

)
, (A68b)

being δij the Kronecker delta. Returning to matrix notation, the linear approximation of N
(

eq ) is

N
(

eq ) =
[

8 δ0 I + 2 δ (eq)T − 8
[

δ
]
×

] (
eq − eq

)
+ O

(
‖eq − eq‖2

)
= (A69a)

= 8

[
δ0 I +

δ δ
T

1 + δ0
−
[

δ
]
×

] (
eq − eq

)
+ O

(
‖eq − eq‖2

)
. (A69b)

On the other hand, evaluating (A65) at eq we obtain the zeroth order approximation:

D
(

eq ) ≈ 16 + 16
‖δ‖2

(1 + δ0)2
+ δ0

(
16 − 16

‖δ‖2

(1 + δ0)2

)
+ 8 δ · 4 δ

1 + δ0
= (A70a)

=
16

1 + δ0

[
(1 + δ0) +

‖δ‖2

1 + δ0
+ δ0

(
(1 + δ0) −

‖δ‖2

1 + δ0

)
+ 2 ‖δ‖2

]
= (A70b)

=
16

1 + δ0

[
2 + δ0

(
2 δ0

)
+ 2

(
1− δ

2
0

) ]
=

64
1 + δ0

, (A70c)

where we have used the equality ‖δ‖2 = 1 − δ
2
0 for unit quaternions. Finally, combining

(A69b) and (A70c) we can compute the linear approximation of (A9):

ep( eq ) = 4

{
8

[
δ0 I +

δ δ
T

1 + δ0
−
[

δ
]
×

] (
eq − eq) + O

(
‖eq − eq‖2

)}[ 1 + δ0

64
+ O

(
‖eq − eq‖

) ]
= (A71a)

=
1 + δ0

2

[
δ0 I +

δ δ
T

1 + δ0
−
[

δ
]
×

] (
eq − eq) + O

(
‖eq − eq‖2

)
= (A71b)

=
1
2

[ (
1 + δ0

) (
δ0 I −

[
δ
]
×

)
+ δ δ

T
] (

eq − eq) + O
(
‖eq − eq‖2

)
. (A71c)

Appendix C.4. Rotation Vector

Let us start evaluating the vector δ
p in (A12) and (A13) at the point eq :

δ
p( eq ) =

= 0︷ ︸︸ ︷
δ0 ê

q
sin
(
‖eq‖

2

)
︸ ︷︷ ︸

δ

− cos
(
‖eq‖

2

)
︸ ︷︷ ︸

δ0

δ −

= 0︷ ︸︸ ︷
δ× ê

q
sin
(
‖eq‖

2

)
︸ ︷︷ ︸

δ

= 0. (A72)

Then, the first order approximation of δ
p around eq will have the form

δ
p = T̃

(
eq − eq

)
+ O

(
‖eq − eq‖2

)
, (A73)

and ‖δp‖ → 0 as eq → eq . Taking the Taylor series of the arcsin x ,

arcsin ‖δp‖
‖δp‖

=
‖δp‖ + O

(
‖δp‖3

)
‖δp‖

= 1 + O
(
‖δp‖2

)
= 1 + O

(
‖eq − eq‖2

)
, (A74)
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so that (A12) is linearized as

2
δ

p

‖δp‖
arcsin ‖δp‖ = 2 T̃

(
eq − eq

)
+ O

(
‖eq − eq‖2

)
. (A75)

We only lack the T̃ matrix. We will need the linear approximations of cos
(
‖eq‖/2

)
and

êq sin
(
‖eq‖/2

)
around eq . To this end we will first obtain the linear approximation of ‖x‖ :

‖x‖ =
√

∑k x2
k = (A76a)

= ‖x‖ + ∑
j

 ∑k xk δkj√
∑k x2

k


x=x

(
xj − xj

)
+ O

(
‖x− x‖2

)
= (A76b)

= ‖x‖ + ∑
j

 xj√
∑k x2

k

 (xj − xj
)
+ O

(
‖x− x‖2

)
= (A76c)

= ‖x‖ + x̂
T
(x− x) + O

(
‖x− x‖2

)
. (A76d)

Noticing that
∂ ‖x‖

∂x
= x̂

T
+O (‖x− x‖) , (A77)

our computations are straightforward:

cos
(
‖x‖

2

)
= cos

(
‖x‖

2

)
−
[

sin
(
‖x‖

2

)
1
2

[
x̂

T
+O (‖x− x‖)

]]
x=x

(x− x) + O
(
‖x− x‖2

)
= (A78a)

= cos
(
‖x‖

2

)
− 1

2
sin
(
‖x‖

2

)
x̂

T
(x− x) + O

(
‖x− x‖2

)
. (A78b)

For our particular case,

cos
(
‖eq‖

2

)
= δ0 −

1
2

δ
T
(

eq − eq
)
+ O

(
‖eq − eq‖2

)
. (A79)

On the other hand,

sin
(
‖x‖

2

)
‖x‖ = (A80a)

=
sin
(
‖x‖

2

)
‖x‖ +

[(
cos

(
‖x‖

2

)
‖x‖

1
2
−

sin
(
‖x‖

2

)
‖x‖2

) [
x̂

T
+O (‖x− x‖)

] ]
x=x

(x− x) + O
(
‖x− x‖2

)
= (A80b)

=
sin
(
‖x‖

2

)
‖x‖ +

 cos
(
‖x‖

2

)
‖x‖

1
2
−

sin
(
‖x‖

2

)
‖x‖2

 x̂
T

 (x− x) + O
(
‖x− x‖2

)
. (A80c)

Now, taking x = x + (x− x) we arrive at

x
‖x‖ sin

(
‖x‖

2

)
= [x + (x− x)]

sin
(
‖x‖

2

)
‖x‖ = (A81a)

= x̂ sin
(
‖x‖

2

)
+

[
sin
(
‖x‖

2

)
‖x‖ +

1
2

cos
(
‖x‖

2

)
x̂ x̂

T −
sin
(
‖x‖

2

)
‖x‖ x̂ x̂

T
]
(x− x) + O

(
‖x− x‖2

)
. (A81b)
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For our particular case,

eq

‖eq‖ sin
(
‖eq‖

2

)
= δ +

[
‖δ‖

2 arcsin ‖δ‖
+

δ0

2
δ̂ δ̂

T
− ‖δ‖

2 arcsin ‖δ‖
δ̂ δ̂

T
] (

eq − eq) + O
(
‖eq − eq‖2

)
= (A82a)

= δ +
1
2

[(
I− δ̂ δ̂

T
)

‖δ‖
arcsin ‖δ‖

+ δ0 δ̂ δ̂
T
] (

eq − eq) + O
(
‖eq − eq‖2

)
. (A82b)

Finally, we just have to replace (A79) and (A82b) in (A13) to obtain the required linear
approximation. Returning to the original notation we have

2
δ

p

‖δp‖
arcsin ‖δp‖ = 2 δ

p + O
(
‖eq − eq‖2

)
= (A83a)

= 2 δ0 êq sin
(
‖eq‖

2

)
− 2 cos

(
‖eq‖

2

)
δ − 2 δ× êq sin

(
‖eq‖

2

)
+ O

(
‖eq − eq‖2

)
= (A83b)

= 2 δ0 δ + δ0

[(
I − δ̂ δ̂

T
)

‖δ‖
arcsin ‖δ‖

+ δ0 δ̂ δ̂
T
] (

eq − eq
)
−
(

2 δ0 − δ
T
(

eq − eq
))

δ +

− δ×
{

2 δ +

[(
I − δ̂ δ̂

T
)

‖δ‖
arcsin ‖δ‖

+ δ0 δ̂ δ̂
T
] (

eq − eq
)}

+ O
(
‖eq − eq‖2

)
= (A83c)

=

[(
δ0

(
I − δ̂ δ̂

T)
−
[

δ
]
×

)
‖δ‖

arcsin ‖δ‖
+ δ

2
0 δ̂ δ̂

T
+ δ δ

T
] (

eq − eq
)

+ O
(
‖eq − eq‖2

)
= (A83d)

=

[ (
δ0

(
I − δ̂ δ̂

T)
−
[

δ
]
×

)
‖δ‖

arcsin ‖δ‖
+ δ̂ δ̂

T
] (

eq − eq
)

+ O
(
‖eq − eq‖2

)
. (A83e)

Note that the linear approximations of our transition maps are valid for eq near of eq . However,
we have not made any assumption about the δ quaternion. This means that our linear approximations
are exact for any δ = ϕ−1(eq) in the domain of each T-matrix, provided that eq is close enough to eq .
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