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Abstract: In the era of the Internet of Things and Artificial Intelligence, the Wi-Fi fingerprinting-based
indoor positioning system (IPS) has been recognized as the most promising IPS for various
applications. Fingerprinting-based algorithms critically rely on a fingerprint database built from
machine learning methods. However, currently methods are based on single-feature Received
Signal Strength (RSS), which is extremely unstable in performance in terms of precision and
robustness. The reason for this is that single feature machines cannot capture the complete channel
characteristics and are susceptible to interference. The objective of this paper is to exploit the Time of
Arrival (TOA) feature and propose a heterogeneous features fusion model to enhance the precision
and robustness of indoor positioning. Several challenges are addressed: (1) machine learning
models based on heterogeneous features, (2) the optimization of algorithms for high precision and
robustness, and (3) computational complexity. This paper provides several heterogeneous features
fusion-based localization models. Their effectiveness and efficiency are thoroughly compared with
state-of-the-art methods.

Keywords: indoor localization; heterogeneous features fusion (HFF); machine learning; optimization

1. Introduction

With seamless integration of the physical world and the digital world through networks, the era
of the Internet of Things (IoT) beckons. It offers a tremendous amount of opportunities for numerous
novel applications that contribute to a significantly improved daily life [1]. With the surge in demand
for location services, Location-Based Services (LBSs) become one of the key applications. For outdoor
localization under the Line-Of-Sight (LOS) propagation conditions, the Global Positioning System
(GPS) has matured and been successfully applied in various fields. For indoor localization under the
None-Line-Of-Sight (NLOS) propagation conditions, extending the GPS to indoor environments is
extremely difficult due to irregular signal fading and multi-path interference [2]. Therefore, indoor
localization requires innovative solutions.

Typically, existing indoor positioning methods can be divided into three categories: the affinity
method, the geometric-based method and the fingerprint method. With the affinity method,
the location of the target node is approximated by the location of the service node when the mobile
target accesses the service node at the known location. The affinity method has low computational
complexity yet poor localization precision. Geometry-based positioning methods are either time
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based using the time-of-arrival (TOA) or time-difference-of-arrival (TDOA) methods [3], or by using
the angle-of-arrival (AOA) methods [4] or Received Signal Strength (RSS)-based methods [5,6].
The accuracy of localization depends on the accuracy of the measurement [7,8]. Since the measurements
are always disturbed by additive noise, multipath fading, shadowing and other interferences,
localization is not reliable [9]. More reliable techniques for RSS-based localization are based on
fingerprinting [10]. However, they need a preconfiguration phase where a collection of fingerprints
is stored. The advantage of the fingerprinting technique is that it takes into account the stationary
characteristics of the environment, such as multipath propagation and wall attenuation [11].

Most of the current fingerprint positioning technologies are based on single channel characteristics.
However, for the sake of using only the single channel feature, once the channel feature is
subject to greater interference, the precision in positioning will also decrease by a wide margin.
Furthermore, artificial intelligence (AI) technology has been successfully applied in various fields,
the indoor localization field being one such field. The motivation of this paper is to develop an
enhanced fingerprint localization technology based on heterogeneous feature fusion combined with
machine learning.

1.1. Related Works

The emerging techniques in the Fifth Generation (5G) communication system enable us to measure
the angle-of-arrival (AOA), RSS and time-of-arrival (TOA) with various types of mobile devices [12,13].
RSS-based schemes are being widely used on account of their low-power consumption and cost
competitiveness because no extra devices are needed. However, these schemes suffer from poor
localization accuracy due to additional signal attenuation resulting from transmission through walls
and other big obstacles and severe RSS fluctuation due to multipath fading and indoor noise [14–16].
Moreover, the NLOS propagation property may seriously degrade the performance of AOA-based and
TOA-based indoor localization due to the difficulty of detecting the direct signal path and measuring
the time of flight of the signal, respectively [17]. Thus, the metric arrived at using the AOA, RSS
or TOA solely is vulnerable to environmental changes [13]. To solve this problem, the authors of
Reference [18] proposed to use the metric of RSS/TOA to conduct the localization based on the
determining likelihood function, which is used to depict the relations between the measurements and
distances. The authors of Reference [19] presented a scheme in which the metrics of RSS and AOA are
integrated to restrain the NLOS fading. The authors of Reference [20] developed an efficient approach
to localize the mobile sensors using the metrics of TOA and AOA with the help of multiple seeds
adopted to obtain adequate observations [13]. Reference [21] proposed a RSS–AOA hybrid localization
method to enhance the accuracy and robustness. Compared to the geometric positioning method based
on single feature machines, this method utilized the slope (AOA) and the magnitude (RSS) between
target and transmitter, thus the target coordinates could be determined. Nevertheless, the chance of
error also increases with the increase in distance between anchor and target.

Some machine learning techniques are utilized in fingerprint localization. Well-known algorithms
are the Nearest Neighbor (NN) [22], K Nearest Neighbor (KNN) [23], Weighted K Nearest Neighbor
(WKNN) [24,25] and Support Vector Machines (SVM) [26] which belong to classification algorithms
in machine learning. In the KNN algorithm [23], the prediction results can be obtained by selecting
the nearest K samples in the training set according to the Euclidean distance between the position to
be estimated and the known offline positions [27]. In the WKNN algorithm [24], the RSS collected
by the nodes are compared to samples in the offline database, and the nodes’ positions are given
by weighted combinations of the K nearest neighboring positions; the nearness indicator for this
method is based on the Euclidean distance between RSSs [5]. In order to get better performance for the
non-linear multi-class scenarios, SVM has been used in indoor wireless positioning in Reference [28].
It transforms the data into high-dimensional feature space by nonlinear transformation, and constructs
the linear discriminant function in the high-dimensional space to realize the nonlinear discriminant
function in the original space and has high computing complexity [29,30]. However, the results
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obtained by classification algorithm are discrete and struggle to meet the high precision requirements
of indoor positioning. In order to improve the precision, some regression machine learning algorithms
are applied. Support Vector Regression (SVR) [31–33] is used to find the positioning function that
controls the accumulative error. However, the computational complexity of the SVR algorithm is
cubic in the number of training data, because its solution process involves n-order positive definite
matrix inversion [34]. Reference [35] proposed a deep-learning-based fingerprinting scheme which
can fully explore the features of wireless channel data and obtain the optimal weights as fingerprints.
However, the prediction performance of a deep neural network is highly dependent on the size of
the training data set and may not be better than a machine learning algorithm when the number of
training samples is small. Moreover, the training of a deep neural network requires a large amount
of matrix operations and may be time-consuming and costly. The ridge regression algorithm [36] is
another regression machine learning algorithm that has been used in localization [5]. Compared to
the least squares method, the ridge regression algorithm is more reliable [37]. However, finding the
optimal values for tuning regularization parameter and kernel parameter is the most complex part
in terms of computations [5,37], and compared with WKNN and SVR, ridge regression has the best
performance in terms of precision and robustness.

Increasingly researchers focus their attention on the Wi-Fi fingerprint localization [38] and
Pedestrian Dead Reckoning (PDR) [39] localization system, which is based on inertial sensors for
reasons of low cost, good compatibility, extendibility etc. However, the single-mode localization
technology is unable to meet the demand of people in the complex indoor environment because of its
own limitations. Thus, some fusion models, which are built based on two or more existing models,
have been proposed. The most general fusion scheme is based on Wi-Fi fingerprint and PDR [40–42]
since they possess complementary properties. For building the fusion model, Reference [43] makes
use of the Kalman filter, which is the optimal filter for the linear model. However, since Kalman is
a linear optimal filter, it cannot solve complex non-linear localization problems. To overcome this
problem, the EKF (extended Kalman filter) [44] and UKF (unscented Kalman filter) [45,46], which are
non-linear developments of the Kalman filter, are generally utilized. Compared with the Kalman filter,
the particle filter [47] has better generalization ability, thus is more suitable for the non-linear problem.
However, the localization model built with the particle filter is much more complicated, which could
be destructive for real-time performance of the model. Besides this, some other methods, such as the
Hidden Markov Model (HMM) and Conditional Random Field (CRF), are also utilized.

1.2. Motivation and Contribution

After summarizing the above references, we note that among the machine learning algorithms,
regression methods are able to provide better performance in the accuracy of indoor localization.
On the other hand, exploiting different features provides another way to improve the accuracy of
localization. In order to address the above issue, we propose heterogeneous features fusion (HFF)
machines to effectively improve localization. Multiple features fusion machine learning models
are given. First, we propose the Heterogeneous Feature Fusion ridge regression (HFF-RR) model.
The results show that precision is improved and the robustness to noise is also improved compared
with Reference [5]. Second, in order to eliminate the bias caused by noisy data, we propose the
heterogeneous feature selection (HFS) model by employing group LASSO [48]. Additionally, we have
designed a fast algorithm to solve the model which combines the Newton iteration method with
gradient descent. The algorithm is operated via the backtracking line search method, which accelerates
convergence. Third, in order to separate the impact of each feature, we provide another machine
model by using L1-Norm Penalty. Fourth, to reduce HFF-RR computational complexity, we simplify
the HFF model as a set of underdetermined equations, then transform it as a constraint optimization
problem. Numerical results show that, compared with other proposed learning methods, ours has
the lowest computation complexity but relatively high accuracy of localization. We compare our
proposed localization algorithms with two state-of-the-art localization algorithms based on feedback
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and correction of Wi-Fi signals and PDR information fusion: EKF and UKF [43]. Simulation data shows
that our HFF model outperformances EKF and UKF when considering both localization accuracy and
time efficiency.

1.3. Organizations

The rest of the paper is organized as follows. The general model for localization is firstly
introduced in Section 2. Our proposed hybrid features machine learning models and algorithm
are presented and compared in Section 3. In Section 4, the real data collection procedure is elaborated,
and then the performance of the proposed methods is evaluated on both simulated and real-world
signals. Finally, Section 5 concludes the work.

2. Machine Learning for Indoor Localization

We consider an environment of D dimensions in which the points denoted by p = [p1, . . . , pD] are
filled. In addition, two types of sensors are considered: Access Point (AP) and mobile nodes. APs as
signal emission nodes are evenly distributed in the D-dimensional space, denoted by ar = [a1

r , . . . , aD
r ],

r ∈ {1, . . . , Na}, where Na is the total number of APs. Mobile nodes are used for receiving signals,
whose locations are known as training samples, denoted by pl = [p1

l , . . . , pD
l ],l ∈

{
1, . . . , Np

}
, where

Np is the total number of mobile nodes. The fingerprinting localization scheme consists of two
phases, namely offline and online phases, respectively, as illustrated in Figure 1. In the offline phase,
the broadcast signals are transmitted by APs at a constant initial power. Meanwhile, each sensor placed
at a known position is used to detect the signal features transmitted by all Na APs. Let Fl = [f1

l , . . . , fM
l ]

be the feature matrix at the offline training position pl , where fm
l = [ f m

l1 , . . . , f m
lNa

]T is a Na column
vector denoting the mth feature of the lth training sample. m is the index of feature, m ∈ {1, . . . , M}.
Hence, the offline fingerprint database includes M features which can be expressed as {(Fl ; pl)}

Np
l=1.
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Therefore, an offline training set
{
(Fl ; pd

l )
}Np

l=1
is available to learn the model for the estimation of

the dth dimensional coordinate pd, where d ∈ {1, . . . , D}. The function used to estimate pd would be
indicated as follows

ϕd(·) : RNa×M 7→ R, d ∈ {1, . . . , D} (1)

Therefore, the estimated dth coordinate can be obtained by

p̂d = ϕd(F) (2)

As one of the most popular machine learning tools, kernel machine is properly effective for
learning a nonlinear function [49]. In kernel machine, the input data is implicitly embedded into a
high-dimensional space by a nonlinear mapping. Linear functions in the transformed kernel space are
naturally equivalent to a rich class of nonlinear functions in the original data space, which constitute
the so-called reproducing kernel Hilbert space (RKHS) [50,51]. We make ϕd(·) to be a kernel-based
machine learning model, and the reproducing kernel function could be defined as

K : RNp ×RNp 7→ R

In practice, the classic kernels functions are such as the linear, polynomial and Gaussian kernel
functions. Here, we select the Gaussian kernel functions

Km(fm, fm
l ) = exp

(
− 1

2σ2
m
‖fm − fm

l ‖
2
2

)
(3)

where fm is a Na column vector denoted the mth feature of input sample. Additionally, for each
feature m, the similarity metric between two samples is represented by Km(fm, fm

l ). Then we model
the regression function by

p̂d = ϕd(F) = β0 +
Np

∑
l=1

M

∑
m=1

βm
l Km( f m, f m

l ) (4)

where βm
l is the unknown kernel regression coefficient associated with the lth sample and the mth

feature. β0 is the bias. The new model provides a flexible way to fuse multiple features, where the
fusion weights are formulated as part of the kernel regression coefficients and will be adaptively
estimated from the data.

To solve ϕd(F), we minimize the following loss function

Cd = L((pd
1, ϕd(F1)), . . . , (pd

Np
, ϕd(FNp))) + λR(ϕd) (5)

where L denotes the empirical loss over training set, λ is tuning parameter, and the regularization
term R is usually a monotone function of the RKHS norm of ϕd. The regression loss is chosen
because: (a) it produces a relatively good performance on localization accuracy while the other
machine learning algorithms cannot compare; (b) it gives continuous results which are much more
accurate than classification results; (c) ridge regression loss function is sometimes differentiable, which
is preferred for optimization. We will show later that such a loss function gives rise to an efficient
learning algorithm.

3. Fusion Machines Models and Algorithms

In this section, we need to find a set of functions ϕd(F), d ∈ {1, . . . , D}, which associates each
feature matrix F to the corresponding coordinates pd. We propose several learning models and efficient
algorithms to find the appropriate ϕd(F).
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3.1. Heterogeneous Feature Fusion Ridge Regression (HFF-RR)

In this subsection, we define the function ϕd(·) to minimize the following regularized risk:

min
ϕd

{ Np

∑
j=1

(pd
j − ϕd(Fj))

2
+ λ

Np

∑
l=1
‖βl‖2

2

}
(6)

where βl are the corresponding coefficients of the lth sample, denoted by.βl = [β1
l , . . . , βM

l ]

Let β be a Np ×M + 1 column vector which consists of scalar β0 and Np column vectors, denoted

by β = [β0,βT
1 , . . . ,βT

Np
]
T

. By plugging (4) into (6), the optimization problem (6) could be written in
the following matrix format:

min
β
{(pd −Kβ)

T
(pd −Kβ) + λβTE

′
β} (7)

where K is denoted by K =
[

l K
′
]
, l is the Np − by− Np × M + 1 identity matrix, and K

′
is a

Np − by− Np ×M matrix whose (l, l′ ×m) entry is Km(fm, fm
l ), E

′
can be denoted by E

′
=

[
0 0T

0 I

]
.

The solution is obtained by taking the derivative with respect to β and setting it to zero:

KT(Kβ− pd) + λE
′
β = 0 (8)

This leads to the following form of β:

β = (KTK + λE)
−1

KTpd (9)

It is noticed that we can find an appropriate regularization coefficient λ to make the matrix
(KTK + λE

′
) to be nonsingular.

3.2. Heterogeneous Feature Selection using Group LASSO Penalty (HFS-GLP)

Due to the large number of parameters, in order to prevent an overfitting problem and try to
remove the noisy samples, we employ the group LASSO [52] regularization. To learn a group sparse
model, the final cost function is defined as

min
β

{ Np

∑
j=1

(pd
j − ϕd(Fj))

2
+ λ

Np

∑
l=1
‖βl‖2

}
(10)

where ‖·‖2 denotes the l2 norm. The group LASSO leads to a sparse constraint at group level by
combining l1 norm and l2 norm, and it uses l2 norm within a group and l1 norm between groups.

An Efficient Iterative Optimization (EIO) Algorithm

Since the group LASSO regularization term is not differentiable, an iterative algorithm should
be employed to minimize the model. In this paper, we proposed an efficient approach to solve our
optimization problem (10). A gradient descent method the step size of which is acquired by the
backtracking line search is a desirable algorithm. However, due to its extremely slow convergence near
the point at which the target function achieves its minimum value, it is still hard to obtain the optimal
solution. Meanwhile, the Newton iterative algorithm has quadratic convergence speed. The algorithm
could reach convergence by only one iteration for the optimization problem when its Hessian matrix is
positive definite. Therefore, we propose an improved learning algorithm which combines these two
iterative algorithms. We call it Efficient Iterative Optimization (EIO). For simplicity, we outline the
framework of EIO in Algorithm 1.
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Algorithm 1: Outline of EIO algorithm

1: let β(0) be the initial point
2: let tM be the number of iterations, do the gradient descent method whose step size is acquired by the
backtracking line search, and output β

′
opt.

3: let β
′
opt be the initial point, do Newton iterative algorithm until the algorithm is converged.

Output: Obtain the precision βopt

EIO consists of two phases. In the first phase, we set an arbitrary point as the initial point and
then obtain a point quite close to the optimal solution by using the gradient descent method the step
size of which is acquired by the backtracking line search, executed by repeating

β(k+1) = β(k) − αk∇Cd(β(k)) (11)

where k denotes the kth iteration. The step size is obtained by using the backtracking line search
method. In this method, αk is updated by αk = ναk,ν ∈ (0, 1) until the Armijo rule is met, i.e.,
the following inequality holds:

Cd(β(k) − αk∇Cd(β(k))) ≤ Cd(β(k))− µαk‖∇Cd(β(k))‖
2
2 (12)

where µ is an arithmetic number and µ ∈ (0, 0.5).
In the second phase, we use the Newton iterative method. We let the result of the previous phase

be the initial point. In practice, the Newton iterative method exploits first-order and second-order
information of the cost function to get the optimal β. Within the kth iteration, it is calculated by

β(k) = β(k−1) −H−1
k−1∇Cd(β(k−1)) (13)

where Hk−1 is the Hessian matrix of the target function Cd at the point β(k−1).
We illustrate the effectiveness of the EIO algorithm through simulation experiments. In this

simulation, the three iterative algorithms use the same initial value points. The simulation results are
shown in Figure 2, which demonstrates the comparison among the objective function curves of these
three iterative algorithms, i.e., the EIO algorithm and the individual Newton method and backtracking
line search gradient decent method. The simulation results show that the objective function reaches
0.08 after 10,001 iterations in the EIO algorithm. However, the backtracking line search gradient
descent algorithm still does not converge after more than 100,000 iterations, and the Newton iteration
method does not converge.

3.3. Heterogeneous Feature Selection Using L1-Norm Penalty (HFS-LNP)

The model in Equation (10) removes the noisy samples which contain multiple features. In this
subsection, we propose a learning model to remove the ruined features instead of multiple features of
the sample. The corresponding optimization problem could be expressed as follow:

min
β

{
1
2
‖pd −Kβ‖2

2 + λ‖β‖1

}
(14)

As the interpretation of Reference [53], SALSA (Split Augmented Lagrangian Shrinkage
Algorithm) which combines the augmented Lagrangian approach and the variable splitting technique
is available for solving linear inverse problems with sparse regularization. By applying variable
splitting to Equation (14), the constraint optimization problem is written as:

min
x,u

{
1
2‖pd −Kβ‖2

2 + λ‖u‖1

}
s.t. u−β = 0

(15)
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We exploit the conclusion of Reference [53], and use the following solution to solve the
optimization problem in Equation (15)

initialized µ > 0, d
repeat

v← soft(β+ d, λl/µ)− d (16a)

β← (KHK + µI)
−1

(KHpd + µv) (16b)

d← d− u +β (16c)

end

where v = u− d and the operator KH is the Hermitian conjugate transformation of K.

3.4. Heterogeneous Feature Fusion by Solving Underdetermined Equations (HFF-UE)

For the algorithm proposed in previous sections, finding the optimal values for tuning
regularization parameter and kernel parameter is the most complex part in terms of computations.
Its computational cost would be increased by ten times as one parameter is added. In this subsection,
we try to remove the regularization parameter to reduce the computation complexity. We formulate

the training set
{
(Fl ; pd

l )
}Np

l=1
as a group of equations



ϕd(F1) = pd
1

...
ϕd(Fl) = pd

l
...

ϕd

(
FNp

)
= pd

Np

(17)
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Since the number of features in Equation (17) are much more than the number of equations, it is
underdetermined. It could be rewritten as

Kβ = pd (18)

where pd is a Np column vector which is denoted by pd = [pd
1, . . . , pd

Np
]
T

and K is a “wide” matrix
whose columns more than the rows, its rows are linearly independent. In this case, we formulate it as
an optimization problem.

min
β
‖β‖2

2

s.t. pd = Kβ
(19)

By using Lagrange multipliers, we can derive the closed-form solution in Equation (20).

β = KT(KKT)
−1

pd (20)

3.5. The Relationship between the Proposed Four Learning Models

In this subsection, we address the differences and connections between our models. Table 1 lists
the formulas for the four models and shows the performance of the four models in terms of precision,
time efficiency and sparsity. These four learning models consist of the fitness term L and the penalty
term R. The fitness terms are based on the smallest square error criterion. The penalty terms are
diverse due to the different goals in positioning performance. HFF-RR applied L2-norm penalty term.
Since the cost function is differentiable, there is an exact solution of this model which leads to the
highest accuracy and robustness in positioning. In order to remove the noisy samples, the group
LASSO which combines L1-norm and L2-norm is selected as the penalty term in HFS-GLP. HFS-LNP
removes the ruined features by using L1-norm penalty term. Since L1-norm term is not differentiable
everywhere, the optimal solution would be obtained by the iterative algorithm. Considering the
computational burden, we propose an efficient approach to solve our optimization problem. Since
the solution is calculated by iterations, the performance in terms of precision and robustness are poor
in positioning. Furthermore, iterative computation leads to a reduction in computational efficiency.
In HFF-UE, the optimization problem model is transformed from the Underdetermined Equations.
It removes the regularization parameter so that the computational complexity is significantly reduced
in the cross-validation phase. Therefore, it has the highest computation efficiency.

Table 1. The relationship between the proposed four learning model.

Learning Model Error (m) Time (ms) Sparsity

min
ϕd

{
Np

∑
j=1

(pd
j − ϕd(Fj))

2
+ λ

Np

∑
l=1
‖βl‖2

2

}
0.57 ± 0.55 1.0 × 105 ± 1.5× 104 No sparsity

min
β

{
Np

∑
j=1

(pd
j − ϕd(Fj))

2
+ λ

Np

∑
l=1
‖βl‖2

}
1.43 ± 1.23 4.27 × 108 ± 2.0 × 107 Sample-level sparsity which

can denoise at the sample level

min
β

{
1
2‖pd −Kβ‖2

2 + λ‖β‖1

}
1.36 ± 0.88 5.21 × 107 ± 2.50× 106 Feature-level sparsity which

can denoise at the feature level
min
β
‖β‖2

2

s.t. pd = Kβ
1.04 ± 0.71 5.01 × 103 ± 1.50× 103 No sparsity

4. Numerical Analysis and Results

In this section, we evaluate the performance of the proposed approaches by simulation with real
data. The system is reviewed first with the data collection and zone division, then computational
efficiency and accuracy of the approaches are evaluated by comparison among different machine
learning based popular methods and other popular data fusion methods. In the second part,
the proposed heterogeneous feature machine is compared with the RSS-based kernel machines in
different noise scenarios.
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4.1. Real Experiment Setup

To test the performance of the proposed models and algorithms, we did experiment in a school
building. The floor plan is shown in Figure 3. The experiment area includes a long west-east oriented
aisle and four shorter north-south oriented aisles. The long aisle is around 40 m while the shorter
aisle is nearly 8.5 m. There are over ten APs arranged in the area with uniform specifications but
unknown position. The direction from east to west is marked as X axis. The direction from south to
north is marked as Y axis. The anchor points are set symmetrically with a 1.2 m spacing. There are 126
anchor points in total. In the office stage, we use TL-WN823N USB wireless network adapter which is
compatible with the IEEE 802.11 n/g/b standard. The frequency of the system is operated on 2.4 GHz.
In order to have enough data to do the simulation, we scan Wi-Fi RSS information at every anchor
point 100 times, at a sampling interval of 1 s. The collected data is stored in text files. We import these
data and perform simulation experiments on version 2015a of Matlab on a Sony laptop with Windows
7 and Intel® Core™ i5 CPU.

1 
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815
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807 801

N

 
Figure 3. Floor plan of experiment area and anchor distribution.

4.2. Localization Accuracy and Computational Cost Evaluation

In this subsection, we mainly discuss the performance of the proposed four fusion machine
models in terms of positioning accuracy and time efficiency. Meanwhile, we compare them with
two state-of-the-art localization algorithms based on feedback and correction of Wi-Fi signals and
PDR information fusion: EKF and UKF [43]. To evaluate the performance of various localization
algorithms in terms of precision and time efficiency, the corresponding simulation results are recorded
in Figures 4 and 5 and Table 2. Figure 4 demonstrates the cumulative distribution function (CDF) of
position estimation error of each positioning algorithm. The Figure 5 shows the root mean square error
(RMSE) in terms of Signal Noise Ratio (SNR). The RMSE, running time of parameters optimization and
corresponding optimal parameter are shown in Table 2. In terms of positioning accuracy, EKF and UKF
have higher localization accuracy and localization stability than RSS-based Wi-Fi fingerprint location
algorithm i.e., WKNN. Table 2 shows that the average error of EKF and UKF is about 3 m, while WKNN
is about to reach 4 m. In Figure 4, the positioning error probability of EKF and UKF is significantly
lower than WKNN. Although EKF and UKF improve positioning accuracy and stability, our proposed
localization algorithms outperform them in terms of positioning accuracy and positioning stability.
From Table 2, the positioning accuracy of the four positioning algorithms proposed in this paper is
higher than EKF and UKF. From Figure 4, the probability of HFF-RR positioning error at 3 m reaches
95%, HFF-UE and HFS-LNP are close to 90%, while EKF and UKF are less than 80%. From the results
in Figure 5, we can observe that the value of RMSE decreases as the SNR increases. In terms of
time efficiency, since finding the optimal value of the tuning parameters is the most complex part
in terms of computations, we measured the average running time for the parameters optimization
phase for each algorithm. To reduce the computational complexity of EKF and UKF, we used the
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WKNN clustering algorithm to cluster the Wi-Fi fingerprint database. The K parameter denotes the
number of classifications in WKNN. From Table 2, we observe that EKF and UKF are both faster
than other algorithms, and the HFF-UE algorithm performs slightly slower than EKF and UKF in
terms of time efficiency. However, the HFF-UE algorithm outperforms EKF and UKF in terms of
positioning accuracy. Compared to the HFF-RR algorithm with the highest accuracy, the accuracy of
HFF-UE algorithm is only slightly poorer, but the time complexity is much lower than that of HFF-RR.
Therefore, the HFF-UE algorithm is a good localization model while considering both localization
accuracy and time efficiency. Another point worth noting from Table 2 is that the performance of the
first two learning algorithms outperform the follow two algorithms in terms of whether precision or
computation complexity. The large number of iterations in the follow two algorithms contribute to
large amounts of running time in parameters optimization phase. Moreover, the result of an iteration
is an approximation instead of an exact value of the optimal value.
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Table 2. Estimation error and computation complexity for different algorithms under TOA & RSS
noise conditions.

Learning Model
and Algorithm λNp σ1 σ2 K Average Running Time of

Parameters Optimization (s) Error (m)

HFF-RR 2−5 26 29 — 102.59 1.5238
HFF-UE — 26 29 — 4.35 1.8756

HFS-LNP 24 26 29 — 56,635.99 2.2409
HFS-GLP 2−24 220 210 — 407,395.65 2.6627

EKF — — — 5 1.35 3.1274
UKF — — — 5 1.78 2.9601

WKNN — — — 5 0.99 3.8901

4.3. Heterogeneous Feature Fusion Machines vs. Single Feature Machines

In this subsection, we compare our proposed heterogeneous feature machine with the RSS-based
single feature machine proposed in Reference [5] in different noise scenarios. Same as the previous
subsection, simulations are run on version 2015a of Matlab on a SONY laptop with Windows 7 and
Intel® Core™ i5 CPU. The simulation is set up in a 100 m× 100 m 2D environment where 16 static
APs and 100 offline training positions are set. The offline training set is denoted as {(Fl ; pl)}

100
l=1 where

matrix Fl = [f1
l , f2

l ] describes the features of the lth known training sample whose position is denoted
as pl = [p1

l , p2
l ]. As the component of Fl , fm

l = [ f m
l1 , . . . f m

l16]
T represents the features which are received

at location pl . We utilize RSS and TOA features. It represents RSS when m = 1 or represents TOA
feature when m = 2.

The entries of f1
l are the RSS values at position pl emitted by different APs. They are generated

utilizing the well-known Okumura–Hata model [54]. The power f 1
lr received at position pl from the

AP ar can be expressed by:
f 1
lr = ρ0 − 10np log10 ‖ar − pl‖+ ε lr (21)

where ρ0 is the initial power set to a fixed value 150 dBm, np is the path-loss exponent set to 4, ‖ar − pl‖
is the Euclidian distance between the position pl and the position ar, and ε lr is the noisy in indoor
wireless channel.

For the element of f2
l , f 2

lr is the propagation time of the signal transmission from the position ar to
the position pl . Its value can be obtained by the following formula:

f 2
lr = ‖ar − pl‖/c + τlr (22)

where c is 3.0× 108 m/s which is the velocity of light, τlr is the time delay caused by the propagation
of light.

For any learning algorithms, it is necessary to choose the optimum parameter for accurate
positioning. We use the cross-validation to choose the optimal parameters. We use k-fold
cross-validation, the basic form of cross-validation, consists of separating the data into k probably
equally sized folds. At each iteration, k–1 folds are used for training and the rest for validation.
For each group of parameters which just provides for a certain learning algorithm, the performance
are measured by the mean error of validation set in k iterations. The optimal tuning parameters are
these may contribute to the minimum mean error of validation. The value of k is set to 10.

For each learning model, our simulation experiment can be divided into the following steps:

• Optimizing the relevant parameters using 10-fold cross-validation method.
• Learning the location model ψ(·) = [ϕ1(·), ϕ2(·)] in training set by using current

learning algorithm.
• Validating the model learned from the previous step in validation set.
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Figure 6 demonstrates the comparison between the estimated curves of the generated trajectory
in several simulations by the heterogeneous feature machine and single feature-based kernel machine
mentioned in Reference [5]. The heterogeneous feature machine learned via HFF-RR and HFS-LNP in
the absence of noise. The single feature-based kernel machine learned by using single feature ridge
regression. The estimation error, measured by the root mean squared distance between the exact
positions and the estimated ones, as well as each optimal parameter, are shown in Table 3. We notice
that the heterogeneous feature machine outperforms single feature-based kernel machine whether
with HFF-RR or HFS-LNP.
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Figure 6. Estimation of trajectory simulated several times by heterogeneous feature machine and single
feature-based kernel machines learned by different learning algorithms in absence of noise.

Table 3. Performance comparison of heterogeneous feature machine and single feature-based kernel
machine learned by different algorithms in absence of noise.

Learning Model and Algorithm Prediction Model λNp σ1 σ2 Error (m)

Single feature ridge regression
RSS-based kernel machine 2−32 27 — 0.1995

TOA-based kernel machine 2−35 — 210 0.0258

HFF-RR heterogeneous feature machine 2−34 213 210 0.0215

HFS-LNP heterogeneous feature machine 23 26 210 0.6698

To prove the robustness of the proposed model, we carried out simulations in certain noisy
scenarios. We set RSS with Gaussian random noise. We set TOA with non-line-of-sight errors.
The estimation error and optimal parameters of our proposed model HFF-RR and the model introduced
by Reference [5] are shown in Table 4. We consider three kinds of noise scenarios: noisy RSS but true
TOA; noisy TOA but true RSS; and finally noisy TOA and noisy RSS. The results indicate that the
mean error of localization using heterogeneous feature machine is far less than the single feature-based
kernel machine in noise conditions.
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Table 4. Performance comparison of heterogeneous feature machine and single feature-based kernel
machine learned by HFF-RR algorithms under noise conditions.

Noise Conditions Prediction Model λNp σ1 σ2 Error (m)

Noisy RSS and True TOA
RSS-based kernel machine 2−5 26 — 1.8756

heterogeneous feature machine 2−34 223 210 0.0137

Noisy TOA and True RSS
TOA-based kernel machine 2−7 — 29 2.0300

heterogeneous feature machine 2−22 26 233 0.2288

Noisy TOA and Noisy RSS heterogeneous feature machine 2−5 26 29 1.2569

It is noted that the HFF model (4) adaptively selects features based on noise conditions in Tables 3
and 4. From Tables 3 and 4, we observed that σm corresponding to the mth feature increase as the noise
increases. According to Reference [3], increasing the value of σm will reduce the correlation between
the input vector fm and the value of kernel function. Therefore, the impact of the mth feature on the
position coordinate estimation will decrease.

5. Conclusions

In this paper, we proposed several heterogeneous feature machine learning models for localization,
namely, HFF-RR, HFS-GLP, HFS-LNP and HFF-UE. In the model of HFS-GLP, in order to solve the
corresponding optimization problem, we proposed a novel iterative algorithm which combines the
Newton iteration method and gradient descent. From the aspect of time efficiency, HFF-UE model
shows the best performance among all four models. From the aspect of localization accuracy, HFF-RR
model provides the highest precision and robustness to noise. From the aspect of removing outlier
noise, HFS-GLP model can remove the noise at the sample level and the HFS-LNP can remove the noise
at the feature level. In contrast to other latest data fusion method for indoor localization, the proposed
methods outperform others in computational cost and localization accuracy by doing real experiments.
On the other hand, in contrast to the single feature-based kernel machine, in our proposed localization
model based on heterogeneous features, the accuracy is improved significantly. In the case of relatively
poor channel environment, the positioning accuracy of the proposed model can still be maintained at a
high level.

Author Contributions: Conceptualization, L.Z., N.X. and J.L.; Data curation, L.Z. and N.X.; Formal analysis, L.Z.;
Funding acquisition, L.Z.; Investigation, L.Z. and N.X.; Methodology, L.Z. and N.X.; Resources, L.Z.; Supervision,
L.Z.; Validation, L.Z. and N.X.; Visualization, N.X.; Writing—original draft, L.Z. and N.X.; Writing—review &
editing, L.Z., N.X. and W.Y.

Funding: This paper is supported by “the Fundamental Research Funds for the Central Universities No.
2017JBM016”.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Evans, D. The Internet of Things—How the Next Evolution of the Internet Is Changing Everything doc.
Available online: https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.
pdf (accessed on 27 September 2018).

2. Qiu, Z.; Zou, H.; Jiang, H.; Xie, L.; Hong, Y. Consensus-Based Parallel Extreme Learning Machine for
Indoor Localization. In Proceedings of the IEEE Global Communications Conference, Washington, DC, USA,
4–8 December 2016; pp. 1–6.

3. Okello, N.; Fletcher, F.; Musicki, D.; Ristic, B. Comparison of Recursive Algorithms for Emitter Localisation
using TDOA Measurements from a Pair of UAVs. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1723–1732.
[CrossRef]

https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://dx.doi.org/10.1109/TAES.2011.5937261


Sensors 2019, 19, 125 15 of 17

4. Rong, P.; Sichitiu, M. Angle of arrival localization for wireless sensor networks. In Proceedings of the 3rd
Annual IEEE Communications Society on Sensor and Ad Hoc Communications and Networks, SECON,
Reston, VA, USA, 28 September 2006; pp. 374–382.

5. Mahfouz, S.; Mourad-Chehade, F.; Honeine, P.; Farah, J.; Snoussi, H. Kernel-based machine learning using
radio-fingerprints for localization in WSNs. IEEE Trans. Aerosp. Electron. Syst. 2015, 51, 1324–1336. [CrossRef]

6. Gholami, M.R.; Vaghefi, R.M.; Ström, E.G. RSS-Based Sensor Localization in the Presence of Unknown
Channel Parameters. IEEE Trans. Signal Process. 2013, 61, 3752–3759. [CrossRef]

7. Jin, Y.; Soh, W.S.; Wong, W.C. Indoor localization with channel impulse response based fingerprint and
nonparametric regression. IEEE Trans. Wirel. Commun. 2010, 9, 1120–1127. [CrossRef]

8. Seow, C.K.; Tan, S.Y. Non-Line-of-Sight Localization in Multipath Environments. IEEE Trans. Mob. Comput.
2008, 7, 647–660. [CrossRef]

9. Seco, F.; Jimenez, A.R.; Prieto, C.; Roa, J.; Koutsou, K. A survey of mathematical methods for indoor
localization. In Proceedings of the IEEE International Symposium on Intelligent Signal Processing, Budapest,
Hungary, 26–28 August 2009; pp. 9–14.

10. Lin, T.N.; Lin, P.C. Performance comparison of indoor positioning techniques based on location fingerprinting
in wireless networks. In Proceedings of the International Conference on Wireless Networks, Communications
and Mobile Computing, Maui, HI, USA, 13–16 June 2005; Volume 2, pp. 1569–1574.

11. Lin, T.N.; Fang, S.H.; Tseng, W.H.; Lee, C.W.; Hsieh, J.W. A Group-Discrimination-Based Access Point
Selection for WLAN Fingerprinting Localization. IEEE Trans. Veh. Technol. 2014, 63, 3967–3976. [CrossRef]

12. Gustafsson, F.; Gunnarsson, F. Mobile positioning using wireless networks: Possibilities and fundamental
limitations based on available wireless network measurements. IEEE Signal Process. Mag. 2005, 22, 41–53.
[CrossRef]

13. Jiang, Q.; Qiu, F.; Zhou, M.; Tian, Z. Benefits and impact of joint metric of AOA/RSS/TOF on indoor
localization error. Appl. Sci. 2016, 6, 296. [CrossRef]

14. Yang, Z.; Zhou, Z.; Liu, Y. From RSSI to CSI: Indoor localization via channel response. ACM Comput. Surv.
2013, 46, 1–32. [CrossRef]

15. Xiao, J.; Wu, K.; Yi, Y.; Wang, L.; Ni, L.M. Pilot: Passive Device-Free Indoor Localization Using Channel
State Information. In Proceedings of the IEEE International Conference on Distributed Computing Systems,
Philadelphia, PA, USA, 8–11 July 2013; pp. 236–245.

16. Zafari, F.; Gkelias, A.; Leung, K. A Survey of Indoor Localization Systems and Technologies. arXiv 2018,
arXiv:1709.01015.

17. Gazzah, L.; Najjar, L.; Besbes, H. Improved selective hybrid RSS/AOA weighting schemes for NLOS
localization. In Proceedings of the IEEE International Conference on Multimedia Computing and Systems,
Marrakech, Morocco, 14–16 April 2014; pp. 746–751.

18. Prieto, J.; Mazuelas, S.; Bahillo, A.; Fernandez, P.; Lorenzo, R.M.; Abril, E.J. Adaptive Data Fusion for Wireless
Localization in Harsh Environments. IEEE Trans. Signal Process. 2012, 60, 1585–1596. [CrossRef]

19. Wang, S.C.; Jackson, B.R.; Inkol, R. Hybrid RSS/AOA emitter location estimation based on least squares
and maximum likelihood criteria. In Proceedings of the IEEE Biennial Symposium on Communications,
Kingston, ON, Canada, 28–29 May 2012; pp. 24–29.

20. Chan, F.K.; Wen, C.Y. Adaptive AOA/TOA Localization Using Fuzzy Particle Filter for Mobile WSNs.
In Proceedings of the IEEE Vehicular Technology Conference, Yokohama, Japan, 15–18 May 2011; pp. 1–5.

21. Salman, N.; Khan, M.W.; Kemp, A.H. Enhanced hybrid positioning in wireless networks II: AoA-RSS.
In Proceedings of the IEEE International Conference on Telecommunications and Multimedia, Heraklion,
Greece, 28–30 July 2014; pp. 92–97.

22. Xiao, W.; Liu, P.; Soh, W.S.; Huang, G.B. Large scale wireless indoor localization by clustering and Extreme
Learning Machine. In Proceedings of the IEEE International Conference on Information Fusion, Singapore,
9–12 July 2012; pp. 1609–1614.

23. Torteeka, P.; Chundi, X. Indoor positioning based on Wi-Fi Fingerprint Technique using Fuzzy K-Nearest
Neighbor. In Proceedings of the IEEE International Bhurban Conference on Applied Sciences and Technology,
Islamabad, Pakistan, 14–18 January 2014; pp. 461–465.

24. Koyuncu, H.; Yang, S.H. A 2D positioning system using WSNs in indoor environment. Int. J. Electr.
Comput. Sci. 2011, 11, 70–77.

http://dx.doi.org/10.1109/TAES.2015.140061
http://dx.doi.org/10.1109/TSP.2013.2260330
http://dx.doi.org/10.1109/TWC.2010.03.090197
http://dx.doi.org/10.1109/TMC.2007.70780
http://dx.doi.org/10.1109/TVT.2014.2303141
http://dx.doi.org/10.1109/MSP.2005.1458284
http://dx.doi.org/10.3390/app6100296
http://dx.doi.org/10.1145/2543581.2543592
http://dx.doi.org/10.1109/TSP.2012.2183126


Sensors 2019, 19, 125 16 of 17

25. Yu, F.; Jiang, M.; Liang, J.; Qin, X.; Hu, M.; Peng, T.; Hu, X. Expansion RSS-based Indoor Localization Using
5G WiFi Signal. In Proceedings of the IEEE International Conference on Computational Intelligence and
Communication Networks, Bhopal, India, 14–16 November 2014; pp. 510–514.

26. Chriki, A.; Touati, H.; Snoussi, H. SVM-based indoor localization in Wireless Sensor Networks.
In Proceedings of the IEEE Wireless Communications and Mobile Computing Conference, Valencia, Spain,
26–30 June 2017.

27. Bahl, P.; Padmanabhan, V.N. RADAR: An In-Building RF-based User Location and Tracking System.
In Proceedings of the INFOCOM 2000 Conference on Computer Communications and Nineteenth Joint
Conference of the IEEE Computer and Communications Societies, Tel Aviv, Israel, 26–30 March 2000;
Volume 2, pp. 775–784.

28. Crouse, R.H.; Jin, C.; Hanumara, R.C. Unbiased ridge estimation with prior information and ridge trace.
Commun. Stat. Theory Methods 1995, 24, 2341–2354. [CrossRef]

29. Wu, Z.L.; Li, C.H.; Ng, J.K.Y.; Leung, K.R. Location Estimation via Support Vector Regression. IEEE Trans.
Mob. Comput. 2007, 6, 311–321. [CrossRef]

30. Zhang, L.; Li, Y.; Gu, Y.; Yang, W. An Efficient Machine Learning Approach for Indoor Localization.
China Commun. 2017, 14, 141–150. [CrossRef]

31. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
32. Shi, K.; Ma, Z.; Zhang, R.; Hu, W.; Chen, H. Support Vector Regression Based Indoor Location in IEEE 802.11

Environments. Mob. Inf. Syst. 2015, 2015, 295652. [CrossRef]
33. Berz, E.L.; Tesch, D.A.; Hessel, F.P. RFID indoor localization based on support vector regression and k-means.

In Proceedings of the IEEE, International Symposium on Industrial Electronics, Buzios, Brazil, 3–5 June 2015;
pp. 1418–1423.

34. Abdou, A.S.; Aziem, M.A.; Aboshosha, A. An efficient indoor localization system based on Affinity
Propagation and Support Vector Regression. In Proceedings of the International Conference on Digital
Information Processing & Communications, Beirut, Lebanon, 21–23 April 2016; pp. 1–7.

35. Wang, X.; Gao, L.; Mao, S.; Pandey, S. CSI-Based Fingerprinting for Indoor Localization: A Deep Learning
Approach. IEEE Trans. Veh. Technol. 2017, 66, 763–776. [CrossRef]

36. Mcdonald, G.C. Ridge regression. Wiley Interdiscip. Rev. Comput. Stat. 2010, 1, 93–100. [CrossRef]
37. Marquardt, D.; Snee, R. Ridge Regression in Practice. Am. Stat. 1975, 29, 3–20.
38. He, S.; Chan, S.H.G. Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons.

IEEE Commun. Surv. Tutor. 2017, 18, 466–490. [CrossRef]
39. Zhang, M.; Wen, Y.; Chen, J.; Yang, X.; Gao, R.; Zhao, H. Pedestrian Dead-Reckoning Indoor Localization

Based on OS-ELM. IEEE Access 2018, 6, 6116–6129. [CrossRef]
40. Li, L.; Lin, X. Apply Pedestrian Dead Reckoning to indoor Wi-Fi positioning based on fingerprinting.

In Proceedings of the IEEE International Conference on Communication Technology, Guilin, China,
17–19 November 2013; pp. 206–210.

41. Zhang, P.; Zhao, Q.; You, L.I.; Niu, X.; Liu, J.; Center, G. PDR/WiFi Fingerprinting/Magnetic Matching-Based
Indoor Navigation Method for Smartphones. J. Geomat. 2016, 3, 29–32.

42. Lee, D.M. W-13 Capstone Design Project: A Hybrid Indoor Positioning Algorithm using PDR and Fingerprint
at a Multi-Story Building under Wi-Fi Environment. In Proceedings of the JSEE Conference International
Session Proceedings, Tokyo, Japan, 30 August 2017; Japanese Society for Engineering Education: Tokyo,
Japan, 2017.

43. Yang, Q.; Mao, Y.; Ping, X.U. Research on indoor positioning and fusion algorithm based on improved
WIFI_PDR. Video Eng. 2017, Z3, 122–128.

44. Bailey, T.; Nieto, J.; Guivant, J.; Stevens, M.; Nebot, E. Consistency of the EKF-SLAM Algorithm.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,
9–15 October 2006; pp. 3562–3568.

45. Pan, Q.; Yang, F.; Ye, L.; Liang, Y.; Cheng, Y.M. Survey of a kind of nonlinear filters-UKF. Control Decis. 2005,
20, 481–489, 494.

46. Fang, J.; Savransky, D. Automated alignment of a reconfigurable optical system using focal-plane sensing
and Kalman filtering. Appl. Opt. 2016, 55, 5967. [CrossRef] [PubMed]

47. Du, G.; Lei, Y.; Shao, H.; Xie, Z.; Zhang, P. A human—Robot interface using particle filter, Kalman filter,
and over-damping method. Intell. Serv. Robot. 2016, 9, 323–332. [CrossRef]

http://dx.doi.org/10.1080/03610929508831620
http://dx.doi.org/10.1109/TMC.2007.42
http://dx.doi.org/10.1109/CC.2017.8233657
http://dx.doi.org/10.1155/2015/295652
http://dx.doi.org/10.1109/TVT.2016.2545523
http://dx.doi.org/10.1002/wics.14
http://dx.doi.org/10.1109/COMST.2015.2464084
http://dx.doi.org/10.1109/ACCESS.2018.2791579
http://dx.doi.org/10.1364/AO.55.005967
http://www.ncbi.nlm.nih.gov/pubmed/27505378
http://dx.doi.org/10.1007/s11370-016-0202-9


Sensors 2019, 19, 125 17 of 17

48. Rao, N.S.; Nowak, R.D.; Cox, C.R.; Rogers, T.T. Classification with the Sparse Group Lasso. IEEE Trans.
Signal Process. 2015, 64, 448–463. [CrossRef]

49. Saitoh, S. Theory of Reproducing Kernels. In Analysis and Applications—ISAAC 2001; Springer: Boston, MA,
USA, 2003; pp. 135–150.

50. Reininghaus, J.; Huber, S.; Bauer, U.; Kwitt, R. A stable multi-scale kernel for topological machine learning.
In Proceedings of the IEEE Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015;
pp. 4741–4748.

51. Lin, Z.; Yan, L. A support vector machine classifier based on a new kernel function model for hyperspectral
data. Mapp. Sci. Remote Sens. 2016, 53, 85–101. [CrossRef]

52. Yuan, M.; Lin, Y. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. 2006,
68, 49–67. [CrossRef]

53. Selesnick, I.W. L1-Norm Penalized Least Squares with SALSA. 2014. Available online: http://cnx.org/
content/m48933/ (accessed on 5 June 2018).

54. Medeisis, A.; Kajackas, A. On the use of the universal Okumura-Hata propagation prediction model in rural
areas. In Proceedings of the Vehicular Technology Conference Proceedings, VTC 2000-Spring, Tokyo, Japan,
15–18 May 2000; Volume 3, pp. 1815–1818.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TSP.2015.2488586
http://dx.doi.org/10.1080/15481603.2015.1114199
http://dx.doi.org/10.1111/j.1467-9868.2005.00532.x
http://cnx.org/content/m48933/
http://cnx.org/content/m48933/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Motivation and Contribution 
	Organizations 

	Machine Learning for Indoor Localization 
	Fusion Machines Models and Algorithms 
	Heterogeneous Feature Fusion Ridge Regression (HFF-RR) 
	Heterogeneous Feature Selection using Group LASSO Penalty (HFS-GLP) 
	Heterogeneous Feature Selection Using L1-Norm Penalty (HFS-LNP) 
	Heterogeneous Feature Fusion by Solving Underdetermined Equations (HFF-UE) 
	The Relationship between the Proposed Four Learning Models 

	Numerical Analysis and Results 
	Real Experiment Setup 
	Localization Accuracy and Computational Cost Evaluation 
	Heterogeneous Feature Fusion Machines vs. Single Feature Machines 

	Conclusions 
	References

