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Abstract: Recently, with the increasing demand for virtual reality (VR), experiencing immersive
contents with VR has become easier. However, a tremendous amount of calculation and bandwidth is
required when processing 360 videos. Moreover, additional information such as the depth of the video
is required to enjoy stereoscopic 360 contents. Therefore, this paper proposes an efficient method
of streaming high-quality 360 videos. To reduce the bandwidth when streaming and synthesizing
the 3DoF+ 360 videos, which supports limited movements of the user, a proper down-sampling
ratio and quantization parameter are offered from the analysis of the graph between bitrate and
peak signal-to-noise ratio. High-efficiency video coding (HEVC) is used to encode and decode the
360 videos, and the view synthesizer produces the video of intermediate view, providing the user
with an immersive experience.
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1. Introduction

As the virtual reality (VR) market is expanding rapidly, the need for efficient immersive VR
technology has become more important. To play high-quality VR video through a head-mounted
display (HMD), the minimum resolution of the video must be 4K. In this case, the amount of data
to be processed from the HMD increases rapidly. Therefore, the Moving Picture Experts Group
(MPEG) proposed a technology, which processes the viewport of the user, called motion-constrained
tile set (MCTS) [1] in 2016; further, a paper describing MCTS implementation for VR streaming was
submitted [2]. Moreover, to provide the user with high-quality 360 videos, region-wise packing [3] was
proposed. It encodes a region of interest (ROI) with high quality and the other regions with low quality.

To support immersive media, the MPEG-I group, established by MPEG, divided the
standardization associated with VR into three phases, namely three degrees of freedom (3DoF),
three degrees of freedom plus (3DoF+), and six degrees of freedom (6DoF) [4]. In 3DoF+ and 6DoF,
multi-view 360 videos are required and they comprise texture and depth images to support 3D
video [5]. Because both the phases provide 360 videos in response to a user’s movement, it is inevitable
to synthesize the immediate views using existing views. View Synthesis Reference Software (VSRS)
for 360 videos [6], Reference View Synthesizer (RVS) [7], and weighted-to-spherically-uniform peak
signal-to-noise ratio (WS-PSNR) for 360 video quality evaluation [8] were proposed to MPEG to create
virtual views and evaluate them.

A large amount of bandwidth is required for transmitting 3DoF+ or 6DoF 360 videos because such
videos need both high-resolution texture and depth. To overcome this problem, down-sampling or
region-wise packing could be applied. In this paper, we propose the View Location-based Asymmetric
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Down-sampling for Vie Synthesis (VLADVS) concept for the bitrate decreasing system with appropriate
down-sampling ratio and a quantization parameter for 3DoF+ texture and depth in view synthesis, as
shown in Figure 1. It introduces a pilot test with Super Multiview Video (SMV) [9] and 3DoF+ test
sequences. Finally, it provides the rate distortion (RD) curve of bitrate and WS-PSNR obtained by
3DoF+ test sequences using 360lib with HEVC.
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Figure 1. Viewport-dependent immersive VR service with VLADVS.

This paper is organized as follows: Section 2 introduces about related work such as the MPEG
360 video standard, multi-view video coding, and view synthesis. Section 3 explains the overall
experiment, including view synthesis with free viewpoint television (FTV) test sequences and 3DoF+
video test sequences. Section 4 summarizes the result of the experiment for proposed system. Lastly,
Section 5 presents our conclusions and future work.

2. Related Work

2.1. 360 Video Standard in MPEG

During the 116th MPEG meeting, the MPEG-I group was established for the support of immersive
media. They began work by standardizing the format of immersive, omnidirectional video in 2017 [10].
Figure 2 shows the standardization roadmap of MPEG. MPEG-I group divided the standardization
into three phases [11]. Phase 1a aims to provide 360 video and contents including stitching, projection,
and video encoding.
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Figure 3 introduces the 3DoF, 3DoF+, and 6DoF viewing angle and degree of freedom. If a user
watches the stereoscopic video, the movement of the user is defined along the three directions, namely
yaw, pitch, and roll. However, in the 3DoF video, the things behind the objects cannot be represented,
indicating the limited experience of VR.
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To overcome the limitations of 3DoF, the concept of 3DoF+, part of phase 1b in MPEG-I,
was proposed. 3DoF+ provides limited movements of yaw, pitch, and roll, as described in Figure 4.
Thus, it provides more immersive experience than 3DoF.
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In 3DoF+, the VR device must offer the video of view that the user watches. If this video of view
is not included in the original video, 3DoF+ system synthesizes the view that did not exist before.
Thus, Reference Intermediate View Synthesizer [12] is required. Further, to synthesize virtual views,
additional depth information, such as distances between camera and objects, must be supplied. As it
requires a large amount of data to be transmitted, optimization for data transmission and compression
must be proposed.

As the solutions to the abovementioned problems, enhanced communication technologies such as
5G mobile technology [13] and mobile data offloading [14] have been announced recently. Moreover,
the amount of resources used by the video transmission system is limited in a mobile platform.
Since the limited resource is a weakness to the mobile device, some solutions using adaptive video
transmission system [15] or interactive media system [16] were proposed. Considering the structure of
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CPU in a mobile device, asymmetric multicore processing [17,18] was proposed to use its resource
efficiently. Furthermore, scalable video coding [19,20] or multiple layer video coding [21] can be
applied as the 3DoF+ video contains multiple videos.

View synthesis assumes video transmission from the server to the client. Therefore, the video
must be compressed, as shown in Figure 4. The anchor view is used in view synthesis, which should
be encoded and decoded. Subsequently, phase 2 of MPEG-I deals with 6DoF, which means 3DoF+ with
translational movements along the X-, Y-, and Z-axes. It supports the user’s movements including
walking, as described in Figure 3.

2.2. Multi-View Video Coding

Multi-view video provides the user with an immersive 3D experience. Such video provides
diverse views gained from one scene simultaneously. Particularly, 3D multi-view video includes
both texture and depth information. It enables users to have multiple views of what they intend to
watch. MPEG defined a 3D video system [22], which is a part of FTV, and it contains multi-view video
acquisition, encoding, transmission, decoding, and display. To process the multi-view video efficiently,
multi-view video coding [23,24] is required.

Multi-view videos have common features as they contain the same scene at the same time.
The difference between each view is the indigenous point of view; that is, a multi-view video of one
viewpoint can be made by referencing another view.

Figure 5 shows the hierarchical B frame multi-view video encoding structure between primary
view and extended views. The blue box represents a key frame referenced by the B frame. The I frame
can be reconstructed while the P frame is referenced by one frame. The B frame is referenced by two
frames when predicting. Joint multi-view video model [25] for reference software model of multi-view
video coding was proposed to compress multi-view video while containing compatibility with H.264.
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2.3. View Synthesis

Although multi-view video provides some views, it cannot offer out-of-source views. Because
multi-view video coding requires a large amount of data and computing power to process, the number
of views the multi-view video can support is limited. Accordingly, view synthesis for multi-view
video [26,27] was developed to overcome the limitation of multi-view video coding. When using
view synthesis, the server does not need to send all the source views because it synthesizes dropped
views that were not sent. Further, if the video provider did not acquire many source views due to the
limitation of resources such as a camera and the amount of data, the other views not offered by the
provider can still be synthesized.
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Figure 6 illustrates how to synthesize the intermediate views with RVS 1.0.2 [28]. It requires a
texture video, depth map, and camera parameter. Depth map [29,30] represents the distance between
the camera and the object shown in the texture video. The purpose of the depth map is to represent a
3D space, which is also used by the haptic system [31,32]. If the depth map format is 8-bit, the range of
the depth value is between 0 and 255. The depth map can be obtained by a depth camera that uses a
depth sensor; otherwise, it can be generated by depth estimation software. MPEG-4 group proposed
Depth Estimation Reference Software [33,34] to obtain the depth map from the texture video efficiently.
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Generally, the multi-view video is obtained from a pinhole camera. It projects the actual object
onto a 2D plane image, as shown in Figure 7. The projection is implemented using a world coordinate
system and camera coordinate system. The world coordinate system presents a 3D space. The camera is
located in the world coordinate system, and it also has a 3D coordinate system. The center point of the
camera represents the location of the camera in the world coordinate system. The camera coordinate
system has X-, Y-, and Z-axes. The X-, Y-, and Z-axes represent the horizontal, vertical, and optical axis
(also called principal axis), respectively. The optical axis is the direction of the camera ray. The principal
point is the intersection point between the principal axis and the image plane. The distance from the
camera center to the principal is called focal length, as shown in Figure 8. Each point of the object in
the 3D space is projected onto a 2D image plane by the camera.

To obtain the intermediate view, the point coordinates from reference views must be converted
into the synthesized view. Each reference view, which is used to synthesize the intermediate view,
has its own camera coordinate system. If we realize the camera parameter of reference views and
intermediate view, the camera coordinate system of intermediate view can be generated using the
world coordinate system. Once the conversion is complete, texture mapping from the reference views
to intermediate view is performed.
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3. View Location-Based Asymmetric Down-Sampling for View Synthesis

This section explains VLADVS for efficient use of bandwidth in video transmission, as described
in Figure 9. It allocates the down-sampling ratio to the videos based on the distance between the input
video and the video that needs to be synthesized. If the input video is close to the synthesized video,
the proposed system assigns low down-sampling ratio because the video near the synthesized video
has a great influence on the quality of synthesized video. Section 3.1 explains view synthesis with FTV
multi-view test sequences to decide the down-sampling ratio. Section 3.2 presents the results of source
view synthesis with 3DoF+ video test sequences, which implies the impact of the input view number and
the relation of the correlation between the down-sampling ratio of texture and depth in view synthesis.
Finally, Section 3.3 proposes the intermediate view synthesis method and conditions for 3DoF+ video.
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3.1. View Synthesis with FTV Multi-View Test Sequences

To reduce the bitrate when transmitting multi-view video, this paper proposes a low-complexity
multi-view video transmit system including down-sampling and up-sampling. The feasibility of this
method was proved by a pilot test with FTV multi-view sequences [35].

Champagne_Tower and Pantomime sequences, as shown in Figure 10, were used. The resolution
and number of frames of Champagne_Tower and Pantomime sequences are 1280 × 960 (acquired from
80 cameras) and 300, respectively.
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Figure 10. FTV test sequences from Nagoya University. (a) Champagne_tower (1280 × 960), obtained
from 80 cameras with stereo distance, consists of 300 frames with 30 fps; (b) pantomime (1280 × 960),
gained from 80 cameras with stereo distance, consists of 300 frames with 30 fps; (c) depth map of
Champagne_tower; (d) depth map of Pantomime.
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Figure 11 introduces the proposed system architecture with FTV multi-view test sequences. First,
it selects the anchor view, i.e., the source view used to synthesize the intermediate view. Test sequences
provide the depth map of 37, 39, and 41 views, i.e., anchor view which requires both texture and
depth. The combinations of view synthesis are presented in Table 1. Second, it down-samples the
selected anchor views. The down-sampling ratios are 0, 20, 40, 50, and 75(%), as shown in Table 2.
For down-sampling and up-sampling, the DownConvertStatic executable in Joint Scalable Video
Model (JSVM) [36] was used. Third, it encodes and decodes the down-sampled views. For encoding
and decoding, HEVC reference software (HM) version 16.16 [37] was used. VSRS 4.2 [38] was used to
synthesize the intermediate view. Fourth, it up-samples the decoded views. Fifth, it synthesizes the
intermediate view by referencing up-sampled anchor views. Finally, it measures the PSNR between
the original intermediate views and synthesized views for objective quality evaluation. For PSNR
measurement, the PSNR static executable of JSVM was used.
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Table 1. Combinations of view synthesis.

No. of Left Views No. of Synthesized Views No. of Right Views

37 38 39
37 39 41
39 40 41

Table 2. Combination and resolution of down-sampling ratios.

Down-Sampling Ratio (%) 0 20 40 50 75

Champagne_tower 1280 × 960 1024 × 768 768 × 576 640 × 480 320 × 240
Pantomime 1280 × 960 1024 × 768 768 × 576 640 × 480 320 × 240

For encoding, the quantization parameter (QP) values are 22, 27, 32, and 37. In a pilot test with
FTV multi-view sequences, the experiment was executed for every combination of down-sampling
ratio, QP, and view synthesis. The pilot test results are shown in Figures 12 and 13. The figures show
the RD-curve between PSNR and average bitrate with different QPs. The reason why the graph shows
the combination 0-0 to 20-40 is because it only includes the combinations whose difference values
with the original view combination (0-0) are under 1. Even though the average down-sampling ratio
of the combination 0-40 (left view-right view) is equal to 20-20, the PSNR value of 20-20 was higher
than 0-40. Moreover, the average bitrate of 20-20 was smaller than 0-40. Figure 12 implies that PSNR
of the uniform down-sampling ratio assignment of left and right view is higher than non-uniform
down-sampling ratio assignment. Furthermore, the performance of 20-40 was better than 0-50 because
the down-sampling ratio difference value for each left and right view of 20-40 was lower than 0-50 even
though the average down-sampling ratio of 20-40 was greater than 0-50.
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Figure 13. RD-curve between PSNR and average bitrate with different down-sampling
ratio combinations.

Figure 13 shows the RD-curve between PSNR and average bitrate with different down-sampling
ratio combinations. In the case of 20-20, the difference value between QP = 27 and QP = 22 is 0.17,
which is very low whereas the difference value of bitrate is 862.6038, which is very high.
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3.2. Source View Synthesis with 3DoF+ Test Sequences

For the 3DoF+ experiment, MPEG provides Classroom-Video [39], TechnicolorMuseum,
and TechnicolorHijack as test sequences, which are illustrated in Figure 14. The pilot test was
conducted on ClassroomVideo. To verify if the number of input views influences the quality in
view synthesis, RVS set v0, v11, and v14 as source views, which are not encoded, and v13 for the
intermediate view. Figure 15 shows the pilot test of ClassroomVideo for subjective quality evaluation.
As the number of input views increased, the overlapped regions of the synthesized views decreased.
That is, the subjective quality increases when RVS achieves several input views. However, the texture
quality of the synthesized view decreased when the number of input views increased.
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Figure 14. 3DoF+ test sequences. (a) ClassroomVideo (4096 × 2048), 360◦ × 180◦ FOV ERP, consists of
15 source views, has 120 frames, 30 fps; (b) TechnicolorMuseum (2048 × 2048), 180◦ × 180◦ FOV ERP,
consists of 24 source views, has 300 frames, 30 fps; (c) TechnicolorHijack (4096 × 4096), 180◦ × 180◦

FOV ERP, consists of 10 source views, has 300 frames, 30 fps; (d) depth map of ClassroomVideo;
(e) depth map of TechnicolorMuseum; (f) depth map of TechnicolorHijack.
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Figure 15. View synthesis of ClassroomVideo for subjective quality evaluation. (a) View v13
synthesized from view v0; (b) view v13 synthesized from view v0, v11; (c) view v13 synthesized
from view v0, v11, v14.
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In another experiment, view v0 was defined as a synthesized view; v1, v2, v3, v4, v5, and v6
were called near views; and v9, v10, v11, v12, v13, v14 were called far views, as shown in Figure 16.
The distances between the synthesized view and the near and far views are same. For objective quality
evaluation, WS-PSNR tool [40] was used.

Table 3 shows the WS-PSNR for synthesized source views of ClassroomVideo. WS-PSNR value of
(6) was higher than (1) although (6) has fewer views. Adding more views, which are down-sampled, is
not appropriate for the quality of the synthesized view. If the input views were closer to the synthesized
view, its PSNR value would be higher, as we can see by comparing (1) and (3). Interestingly, the PSNR
value of (1) was higher than (2) although the depth maps of (2) were not down-sampled. It implies
both the texture and the depth should be down-sampled with the same ratio.
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Table 3. PSNR of synthesized views for ClassroomVideo.

Input Views (Down-Sampling
Ratio: 50%)

WS-PSNR_Y
(dB)

WS-PSNR_U
(dB)

WS-PSNR_V
(dB)

(1) nearOrg + farDown 31.83 48.90 51.50
(2) nearOrg + farTextureDown 31.49 47.84 50.67
(3) nearDown + farOrg 31.41 48.56 51.16
(4) nearTextureDown + farOrg 31.44 43.74 50.58
(5) nearOrg + farOrg 32.73 49.91 52.49
(6) nearOrg 31.83 48.91 51.50
(7) farOrg 31.43 48.56 51.16

3.3. Intermediate View Synthesis with 3DoF+ Test Sequences

In Section 3.2, the source view synthesis with 3DoF+ test sequences was introduced. Because
the 3DoF+ common test condition (CTC) of 3DoF+ requires the ability to synthesize the intermediate
views, which do not exist in source views, this section introduces the view synthesis of intermediate
view. The proposed system architecture, VLADVS, includes anchor view selection, down-sampling
ratio combination selection, down-sampling, encoding, decoding, up-sampling, view synthesis,
and measuring WS-PSNR, as described in Figure 17.
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Figure 17. Proposed system architecture for intermediate view synthesis of 3DoF+ video.

In CTC, the QPs used for texture and depth are shown in Table 4. The difference value between
the texture and depth QP is 5, which was decided by an experiment [41]. Table 5 shows the resolution
of the down-sampling ratio for ClassroomVideo. Down-sampling is applied to both texture and depth.
360ConvertStatic of 360lib 5.1 was used for down-sampling. Table 6 shows the anchor-coded views per
class or ClassroomVideo. Class A1 uses all views for view synthesis, whereas class A2 and class A3
use the subset of views. To reduce the view synthesis runtime, frame ranges for view synthesis were
set in CTC as shown in Table 7. Because the proposals for 3DoF+ are required to generate ERP video
for all intermediate view positions, the experiment was designed to synthesize the intermediate views
using A1, A2, and A3 class views. Figure 18 shows the positions of the source and intermediate views.

The goal of this experiment is to reduce the bitrate while conserving the PSNR. Modifying
parameters such as down-sampling ratio, QP, and the number of input views to optimize them are
included in the experiment, which is explained in Section 4.

Table 4. QPs used for texture and depth.

QP R1 R2 R3 R4

Texture 22 27 32 37
Depth 17 22 27 32

Table 5. Resolution for down-sampling ratio.

Down-Sampling Ratio 0% 12.5% 25% 37.5% 50%

ClassroomVideo 4096 × 2048 3584 × 1792 3072 × 1536 2560 × 1280 2048 × 1024

Table 6. Anchor-coded views per class.

Test Class Sequence Name No. of Source
Views

No. of Anchor-Coded
Views

Anchor-Coded
Views

A1 ClassroomVideo 15 15 All
A2 ClassroomVideo 15 9 v0, v7, . . . , v14
A3 ClassroomVideo 15 1 v0
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Table 7. 3DoF+ test sequence view synthesis frame range.

Test Class Sequence Name Frames

A1 ClassroomVideo 89–120
A2 ClassroomVideo 89–120
A3 ClassroomVideo 89–120

Sensors 2018, 18, x FOR PEER REVIEW  13 of 20 

 

Table 7. 3DoF+ test sequence view synthesis frame range. 

Test Class Sequence Name Frames 
A1 ClassroomVideo 89–120 
A2 ClassroomVideo 89–120 
A3 ClassroomVideo 89–120 

 

 
(a) (b) 

Figure 18. Source and intermediate view position. (a) Source view; (b) intermediate view. 

4. Experimental Results 

In Section 3.3, the intermediate view synthesis was introduced. As described in Section 2.3, RVS 
was used for view synthesis. In addition, the tool used for down-sampling and up-sampling is 
360Convert in 360lib 5.1, and for HEVC encoding and decoding, the HM 16.16 encoder and decoder 
are used. The used version of RVS is 1.0.2 with openCV 3.4.1, and the server used for experiment has 
2 Intel Xeon E5-2687w v4 CPU and 128 GB. 

Table 8 shows the summary of WS-PSNR_Y with different down-sampling ratios for regular 
outputs and masked outputs in synthesizing the intermediate views. It contains the WS-PSNR_Y 
values of synthesized intermediate views. The results of the regular output were better than the 
masked outputs. Further, class A2 and class A3, which discarded some source views, showed low 
WS-PSNR. For down-sampling the anchor views, the ratio 12.5% is reasonable. Table 9 contains WS-
PSNR_Y of synthesized views for different QPs with A1 class. This shows that the difference value 
of WS-PSNR_Y between R1 and R2 is not high. 

Figure 19 depicts the RD-curve between WS-PSNR_Y and bitrate of A1 with 12.5%, 25%, 37.5%, 
and 50% down-sampling ratios. The values of the X-axis were QP of R1–R4. R2 can be used instead 
of R1; the gap between R1 and R2 was not high. With QP of R2 and 12.5% down-sampling ratio, it 
saved approximately 87.81% bitrate while losing only 8% WS-PSNR, compared to the result of R1 
and 0% down-sampling ratio. 
  

Figure 18. Source and intermediate view position. (a) Source view; (b) intermediate view.

4. Experimental Results

In Section 3.3, the intermediate view synthesis was introduced. As described in Section 2.3,
RVS was used for view synthesis. In addition, the tool used for down-sampling and up-sampling is
360Convert in 360lib 5.1, and for HEVC encoding and decoding, the HM 16.16 encoder and decoder
are used. The used version of RVS is 1.0.2 with openCV 3.4.1, and the server used for experiment has
2 Intel Xeon E5-2687w v4 CPU and 128 GB.

Table 8 shows the summary of WS-PSNR_Y with different down-sampling ratios for regular
outputs and masked outputs in synthesizing the intermediate views. It contains the WS-PSNR_Y
values of synthesized intermediate views. The results of the regular output were better than the
masked outputs. Further, class A2 and class A3, which discarded some source views, showed low
WS-PSNR. For down-sampling the anchor views, the ratio 12.5% is reasonable. Table 9 contains
WS-PSNR_Y of synthesized views for different QPs with A1 class. This shows that the difference value
of WS-PSNR_Y between R1 and R2 is not high.

Figure 19 depicts the RD-curve between WS-PSNR_Y and bitrate of A1 with 12.5%, 25%, 37.5%,
and 50% down-sampling ratios. The values of the X-axis were QP of R1–R4. R2 can be used instead
of R1; the gap between R1 and R2 was not high. With QP of R2 and 12.5% down-sampling ratio,
it saved approximately 87.81% bitrate while losing only 8% WS-PSNR, compared to the result of R1
and 0% down-sampling ratio.
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Table 8. WS-PSNR_Y of synthesized views for different down-sampling ratios.

WS-PSNR_Y (dB) Regular Output Masked Output

Down-Sampling
Ratio (%)

ClassroomVideo

A1 A2 A3 A1 A2 A3

0 39.46 38.32 29.16 39.34 37.35 26.70
12.5 37.92 37.25 29.10 37.78 36.54 26.86
25 37.33 36.71 29.03 37.21 36.11 26.84

37.5 36.55 36.00 28.90 36.45 35.51 26.83
50 35.30 34.85 28.70 35.22 34.49 26.86

Table 9. WS-PSNR_Y of synthesized views for different QPs with A1 class.

WS-PSNR_Y (dB) A1 (ClassroomVideo)

QP DR 1 0% 12.5% 25% 37.5% 50%

R1 42.08 39.31 38.58 37.59 36.06
R2 40.39 38.62 37.99 37.12 35.74
R3 38.62 37.58 37.04 36.34 35.17
R4 36.77 36.16 35.73 35.16 34.23

1 DR represents down-sampling ratio.
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Figure 19. RD-curve between WS-PSNR_Y and bitrate of A1. (a) RD-curve with 12.5% down-sampling;
(b) RD-curve with 25% down-sampling; (c) RD-curve with 37.5% down-sampling; and (d) RD-curve
with 50% down-sampling.
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In addition, experiment with two down-sampling ratios was conducted. After sorting the source
views by the distance between the source views and intermediate views, the experiment assigned
two down-sampling ratios to the source views. If the source views are close to the intermediate
view, they got low down-sampling ratios. To decide the combination of two down-sampling ratios,
the following formula is used:

nCr (1)

Here, n is the number of the entire down-sampling ratios, and r is the number of the
down-sampling ratios to assign. Table 10 shows the combinations of two down-sampling ratios
deducted by Equation (1).

Table 10. Combination of two down-sampling ratios (DR: down-sampling ratio).

Down-Sampling Combination DR 1 (%) DR 2 (%)

D1 0 12.5
D2 0 25
D3 0 37.5
D4 0 50
D5 12.5 25
D6 12.5 37.5
D7 12.5 50
D8 25 37.5
D9 25 50

D10 37.5 50

To obtain the number of DR1 and DR2 to the source views, the following equations are used:

n(DR1) =
⌈

n(source views)
2

⌉
(2)

n(DR2) = n(source views)− n(DR1) (3)

Equation (2) explains how to calculate the number of DR1. After dividing the number of source
views with 2, which means the number of down-sampling ratios to assign, the formula rounds up the
result. DR2 is set to the difference value between the number of source views and the number of DR1,
as shown in Equation (3).

Figure 20 represents the RD-curve between WS-PSNR_Y and bitrate of A1 with D1 − D10.
In Section 3.1, uniform down-sampling ratio assignment showed better PSNR value than non-uniform
down-sampling ratio assignment. Likewise, although the average down-sampling ratio of Figures
20d and 19b are the same, but the WS-PSNR value of the latter is better. It implies the uniform
down-sampling is an advantage for view synthesis.

In Section 3.3, down-sampling the source views far from the intermediate view is better in
WS-PSNR value than down-sampling the near views from intermediate view. Equally, the WS-PSNR
value of down-sampling the near views from intermediate views, as described from Figure 20a,
is higher than Figure 19a. Although the former requires more bitrate than latter, the difference value is
23,371 Kbps when QP is R2, which is not greatly high. It implies down-sampling the far views from
intermediate views can be a method for saving bitrate while preserving the WS-PSNR value.
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D2; (c) RD-curve with D3; (d) RD-curve with D4; (e) RD-curve with D5; (f) RD-curve with D6; (g) RD-
curve with D7; (h) RD-curve with D8; (i) RD-curve with D9; and (j) RD-curve with D10. 

5. Conclusions 

This paper proposes a bitrate-reducing method for 3DoF+ video synthesis and transmission. 
Particularly, by down-sampling and up-sampling the texture and depth, the proposed method saves 
the bitrates of bitstream file while degrading the objective video quality very little in WS-PSNR. In 
addition, down-sampling the far views brings higher WS-PSNR value than down-sampling all the 
source views. However, because the number of the parameters for the experiment was not enough to 
deduct the optimal parameter for view synthesis, the experiment using video compression methods 
such as region-wise packing [42] must be conducted to reduce the bitrates for immersive 360 VR 
video streaming. Furthermore, intensive experiments should be carried out to derive an equation 
which defines the relation with the distances between the source views and intermediate views and 
down-sampling ratios. 
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Figure 20. RD-curve between WS-PSNR_Y and bitrate of A1. (a) RD-curve with D1; (b) RD-curve
with D2; (c) RD-curve with D3; (d) RD-curve with D4; (e) RD-curve with D5; (f) RD-curve with D6;
(g) RD-curve with D7; (h) RD-curve with D8; (i) RD-curve with D9; and (j) RD-curve with D10.

5. Conclusions

This paper proposes a bitrate-reducing method for 3DoF+ video synthesis and transmission.
Particularly, by down-sampling and up-sampling the texture and depth, the proposed method saves
the bitrates of bitstream file while degrading the objective video quality very little in WS-PSNR.
In addition, down-sampling the far views brings higher WS-PSNR value than down-sampling all the
source views. However, because the number of the parameters for the experiment was not enough to
deduct the optimal parameter for view synthesis, the experiment using video compression methods
such as region-wise packing [42] must be conducted to reduce the bitrates for immersive 360 VR
video streaming. Furthermore, intensive experiments should be carried out to derive an equation
which defines the relation with the distances between the source views and intermediate views and
down-sampling ratios.

Author Contributions: Conceptualization and Data curation and Writing—original draft, J.J.; Data curation and
Investigation, D.J. and J.S.; Project administration and Supervision and Writing—review & editing, E.R.

Funding: This work was supported by the Institute for Information & Communications Technology Promotion
(IITP) grant funded by the Korea government (MSIT) (No. 2018-0-00765, Development of Compression and
Transmission Technologies for Ultra High-Quality Immersive Videos Supporting 6DoF).

Conflicts of Interest: The authors declare no conflict of interest.



Sensors 2018, 18, 3148 18 of 20

References

1. Wang, Y.K.; Hendry; Karczewicz, M. Viewport Dependent Processing in VR: Partial Video Decoding;
Technical Report ISO/IEC JTC1/SC29/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy,
2016; MPEG116/m38559.

2. Son, J.W.; Jang, D.M.; Ryu, E.S. Implementing Motion-Constrained Tile and Viewport Extraction for VR
Streaming. In Proceedings of the 28th ACM SIGMM Workshop on Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV2018), Amsterdam, The Netherlands, 12–15 June 2018.

3. Oh, S.J.; Hwang, S.J. OMAF: Generalized Signaling of Region-Wise Packing for Omnidirectional Video;
Technical Report ISO/IEC JTC1/SC29/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy,
2017; MPEG2017/m40423.

4. Jung, J.; Kroon, B.; Doré, R.; Lafruit, G.; Boyce, J. Update on N17618 v2 CTC on 3DoF+ and Windowed 6DoF;
Technical Report ISO/IEC JTC1/SC29/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy,
2018; MPEG123/m43571.

5. Tanimoto, M.; Fujii, T. FTV—Free Viewpoint Television; Technical Report ISO/IEC JTC1/SC29/WG11; Moving
Picture Experts Group (MPEG): Villar Dora, Italy, 2002; MPEG2002/m8595.

6. Senoh, T.; Tetsutani, N.; Yasuda, H. MPEG-I Visual: View Synthesis Reference Software (VSRSx);
Technical Report ISO/IEC JTC1/SC29/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy,
2018; MPEG2018/m42911.

7. Kroon, B.; Lafruit, G. Reference View Synthesizer (RVS) 2.0 Manual; Technical Report ISO/IEC
JTC1/SC29/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy, 2018; MPEG2018/n17759.

8. Sun, Y.; Lu, A.; Yu, L. WS-PSNR for 360 Video Quality Evaluation; Technical Report ISO/IEC JTC1/WG11;
Moving Picture Experts Group (MPEG): Villar Dora, Italy, 2016; MPEG2016/m38551.

9. Senoh, T.; Wegner, K.; Stankiewicz, O.; Lafruit, G.; Tanimoto, M. FTV Test Material Summary; Technical Report
ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy, 2016; MPEG2016/n16521.

10. WG11 (MPEG). MPEG Strategic Standardisation Roadmap; Technical Report ISO/IEC JTC1/WG11; Moving
Picture Experts Group (MPEG): Villar Dora, Italy, 2016; MPEG2016/n16316.

11. Champel, M.L.; Koenen, R.; Lafruit, G.; Budagavi, M. Working Draft 0.4 of TR: Technical Report on Architectures
for Immersive Media; Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG):
Villar Dora, Italy, 2017; MPEG2017/n17264.

12. Doré, R.; Fleureau, J.; Chupeau, B.; Briand, G. 3DoF Plus Intermediate View Synthesizer Proposal;
Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy,
2018; MPEG2018/m42486.

13. Mitra, R.N.; Agrawal, D.P. 5G mobile technology: A survey. ICT Express 2016, 1, 132–137. [CrossRef]
14. Kim, Y.; Lee, J.; Jeong, J.S.; Chong, S. Multi-flow management for mobile data offloading. ICT Express 2016, 3,

33–37. [CrossRef]
15. Kim, H.; Ryu, E.; Jayant, N. Channel-adaptive video transmission using H.264 SVC over mobile WiMAX

network. In Proceedings of the 2010 Digest of Technical Papers International Conference on Consumer
Electronics (ICCE), Las Vegas, NV, USA, 9–13 January 2010; pp. 441–442.

16. Ryu, E.S.; Yoo, C. An approach to interactive media system for mobile devices. In Proceedings of the
12th Annual ACM International Conference on Multimedia, New York, NY, USA, 10–16 October 2004;
pp. 160–161.

17. Roh, H.J.; Han, S.W.; Ryu, E.S. Prediction complexity-based HEVC parallel processing for asymmetric
multicores. Multimed. Tools Appl. 2017, 76, 25271–25284. [CrossRef]

18. Yoo, S.; Ryu, E.S. Parallel HEVC decoding with asymmetric mobile multicores. Multimed. Tools Appl. 2017,
76, 17337–17352. [CrossRef]

19. Dong, J.; He, Y.; He, Y.; McClellan, G.; Ryu, E.S.; Xiu, X.; Ye, Y. Description of Scalable Video Coding Technology
Proposal by InterDigital Communications; Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts
Group (MPEG): Villar Dora, Italy, 2012; MPEG2012/m26569.

20. Ryu, E.; Jayant, N. Home gateway for three-screen TV using H.264 SVC and raptor FEC. IEEE Trans.
Consum. Electron. 2011, 57, 1652–1660. [CrossRef]

http://dx.doi.org/10.1016/j.icte.2016.01.003
http://dx.doi.org/10.1016/j.icte.2016.08.011
http://dx.doi.org/10.1007/s11042-017-4413-7
http://dx.doi.org/10.1007/s11042-016-4269-2
http://dx.doi.org/10.1109/TCE.2011.6131138


Sensors 2018, 18, 3148 19 of 20

21. Ye, Y.; McClellan, G.W.; He, Y.; Xiu, X.; He, Y.; Dong, J.; Bal, C.; Ryu, E. Codec Architecture for Multiple layer
Video Coding. U.S. Patent No. 9,998,764, 12 June 2018.

22. International Organization for Standardization (ISO); International Electrotechnical Commission (IEC).
Introduction to 3D Video. In Proceedings of the 84th SC 29/WG 11 Meeting, Archamps, France, 28 April–
2 May 2008. ISO/IEC JTC1/SC29/WG11, MPEG2008/n9784.

23. Merkle, P.; Smolic, A.; Müller, K.; Wiegand, T. Multi-view video plus depth representation and coding.
In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA,
16–19 September 2007; pp. 201–204.

24. Müller, K.; Schwarz, H.; Marpe, D.; Bartnik, C.; Bosse, S.; Brust, H.; Hinz, T.; Lakshman, H.; Merkle, P.;
Rhee, F.H.; et al. 3D High-Efficiency Video Coding for Multi-View Video and Depth Data. IEEE Trans.
Image Process. 2013, 22, 3366–3378. [CrossRef] [PubMed]

25. Vetro, A.; Pandit, P.; Kimata, H.; Smolic, A. Joint Multiview Video Model (JMVM) 7.0; Technical Report ISO/IEC
JTC1/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy, 2008; MPEG2008/n9578.

26. Martinian, E.; Behrens, A.; Xin, J.; Vetro, A. View Synthesis for Multiview Video Compression. In Proceedings
of the Picture Coding Symposium, Beijing, China, 24–26 April 2006.

27. Yea, S.; Vetro, A. View synthesis prediction for multiview video coding. Signal Process. Image Commun. 2008,
24, 89–100. [CrossRef]

28. Fachada, S.; Kroon, B.; Bonatto, D.; Sonneveldt, B.; Lafruit, G. Reference View Synthesizer (RVS) 1.0.2 Manual;
Technical Report ISO/IEC JTC1/SC29/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy,
2018; MPEG123/m42945.

29. Zhang, J.; Hannuksela, M.M.; Li, H. Joint Multiview Video Plus Depth Coding. In Proceedings of the
2010 IEEE International Conference on Image Processing, Hong Kong, China, 26–29 September 2010;
pp. 2865–2868.

30. Ho, Y.S.; Oh, K.J.; Lee, C.; Lee, S.B.; Na, S.T. Depth Map Generation and Depth Map Coding for MVC;
Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy,
2007; MPEG2007/m14638.

31. Ryu, Y.; Ryu, E.S. Haptic Telepresence System for Individuals with Visual Impairments. Sens. Mater. 2017,
29, 1061–1067.

32. Park, C.H.; Ryu, E.; Howard, A.M. Telerobotic Haptic Exploration in Art Galleries and Museums for
Individuals with Visual Impairments. IEEE Trans. Haptics 2015, 8, 327–338. [CrossRef] [PubMed]

33. Tanimoto, M.; Fujii, T.; Suzuki, K. Depth Estimation Reference Software (DERS) with Image Segmentation and
Block Matching; Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG): Villar Dora,
Italy, 2009; MPEG2009/m16092.

34. Tanimoto, M.; Fujii, T.; Tehrani, M.P.; Suzuki, K.; Wildeboer, M. Depth Estimation Reference Software (DERS)
3.0; Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy,
2009; MPEG2009/m16390.

35. International Organization for Standardization (ISO); International Electrotechnical Commission (IEC).
FTV Test Material Summary. In Proceedings of the 116th SC 29/WG 11 Meeting, Chengdu, China,
17–21 October 2016. ISO/IEC JTC1/SC29/WG11, MPEG2016/n16521.

36. Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG. Joint Scalable Video Model; Joint Video Team: Geneva,
Switzerland, 2007; Doc. JVT-X202.

37. Joint Collaborative Team on Video Coding (JCT-VC). HEVC Reference Software Version HM16.16.
Available online: https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.16 (accessed on
16 August 2018).

38. Senoh, T.; Yamamoto, K.; Tetsutani, N.; Yasuda, H.; Wegner, K. View Synthesis Reference Software (VSRS)
4.2 with Improved Inpainting and Hole Filling; Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts
Group (MPEG): Villar Dora, Italy, 2017; MPEG2017/m40657.

39. Kroon, B. 3DoF+ Test Sequence ClassroomVideo; Technical Report ISO/IEC JTC1/WG11; Moving Picture
Experts Group (MPEG): Villar Dora, Italy, 2018; MPEG2018/m42415.

40. International Organization for Standardization (ISO); International Electrotechnical Commission (IEC). ERP
WS-PSNR Software Manual. In Proceedings of the 122st SC 29/WG 11 Meeting, San Diego, CA, USA,
16–20 April 2018. ISO/IEC JTC1/SC29/WG11, w17760.

http://dx.doi.org/10.1109/TIP.2013.2264820
http://www.ncbi.nlm.nih.gov/pubmed/23715605
http://dx.doi.org/10.1016/j.image.2008.10.007
http://dx.doi.org/10.1109/TOH.2015.2460253
http://www.ncbi.nlm.nih.gov/pubmed/26219098
https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-16.16


Sensors 2018, 18, 3148 20 of 20

41. Wang, B.; Sun, Y.; Yu, L. On Depth Delta QP in Common Test Condition of 3DoF+ Video; Technical Report
ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG): Villar Dora, Italy, 2018; MPEG2018/m43801.

42. Oh, S.J.; Lee, J.W. OMAF: Signaling of Projection/Region-wise Packing Information of Omnidirectional Video in
ISOBMFF; Technical Report ISO/IEC JTC1/WG11; Moving Picture Experts Group (MPEG): Villar Dora,
Italy, 2017; MPEG2018/m39865.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Work 
	360 Video Standard in MPEG 
	Multi-View Video Coding 
	View Synthesis 

	View Location-Based Asymmetric Down-Sampling for View Synthesis 
	View Synthesis with FTV Multi-View Test Sequences 
	Source View Synthesis with 3DoF+ Test Sequences 
	Intermediate View Synthesis with 3DoF+ Test Sequences 

	Experimental Results 
	Conclusions 
	References

