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Abstract: Device-free localization (DFL) that aims to localize targets without carrying any electronic
devices is addressed as an emerging and promising research topic. DFL techniques estimate the
locations of transceiver-free targets by analyzing their shadowing effects on the radio signals that
travel through the area of interest. Recently, compressive sensing (CS) theory has been applied in DFL
to reduce the number of measurements by exploiting the inherent spatial sparsity of target locations.
In this paper, we propose a novel CS-based multi-target DFL method to leverage the frequency
diversity of fine-grained subcarrier information. Specifically, we build the dictionaries of multiple
channels based on the saddle surface model and formulate the multi-target DFL as a joint sparse
recovery problem. To estimate the location vector, an iterative location vector estimation algorithm is
developed under the multitask Bayesian compressive sensing (MBCS) framework. Compared with
the state-of-the-art CS-based multi-target DFL approaches, simulation results validate the superiority
of the proposed algorithm.

Keywords: device-free localization; wireless sensor networks; compressive sensing; frequency diversity;
joint sparse recovery

1. Introduction

Location information is an important ingredient for many location-based services (LBS) [1].
With the increasing demand of LBS, target localization technique has attracted considerable attention.
In the last decade, extensive research works on target localization have been carried out by the scientific
community. However, most previous approaches are device-based, which require targets to carry
electronic devices or tags [2]. Different from device-based solutions, device-free localization (DFL) [3–5]
do not have the requirement of equipping targets with any electronic devices, nor needs targets to
participate actively in the localization process. It is an attractive and challenging technique and can
significantly improve the usability and practicality of many localization applications, such as intruder
detection, security surveillance, elder monitoring, emergency rescue, etc. [6].

The DFL technique can empower existing wireless infrastructures with the ability of location
awareness while, at the same time, do not disturb the normal communication tasks [7]. In DFL,
the location information of transceiver-free targets is estimated by analyzing the target-induced
perturbations in the radio frequency (RF) field. In the literature, based on how to utilize the
radio signal measurement information, the DFL approaches can be categorized into three types:
geometry-based approaches, fingerprinting-based approaches, and radio tomographic imaging
(RTI)-based approaches [8]. The geometry-based DFL approach utilizes the geometry information
of shadowed links for location estimation [9–11], which needs a prior knowledge of the deployment
of wireless links and has a low localization accuracy. The fingerprinting-based DFL approach can
improve the localization accuracy [12,13], but a labor-intensive and time-consuming site survey is
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required to build and retraining the radio map to maintain fingerprint-location matching. The RTI
system can locate targets accurately based on the principle of computed tomography (CT) [14,15].
However, a sufficient number of wireless links is required to cover the monitoring area, which may
incur high energy consumption and high hardware cost.

Recent works have shown the potential of applying the compressive sensing (CS) [16,17] technique
in target localization. CS is a promising technique for signal processing, which asserts that far fewer
samples than Nyquist rate will suffice for recovering sparse or compressible signals. SLMLU [18]
translates target localization problem into CS problem, and utilizes an LU decomposition preprocessing
to make the measurement matrix meet restricted isometry property (RIP) [19]. Compared to the
traditional DFL approaches, the CS-based DFL approach can achieve much higher localization accuracy
with much less measurements (or wireless links). LCS [20] is a representative work, which estimates the
sparse location vector based on the greedy matching pursuit (GMP) algorithm and has proven that the
product of dictionary obeys RIP with high probability. As another CS-based DFL approach, E-HIPA [8]
adopts an adaptive orthogonal matching pursuit (OMP) algorithm to reconstruct the sparse location
vector. It can realize multi-target DFL without knowing the number of targets. Moreover, to mitigate
the influence of the environmental dynamics in changing environments, DR-DFL [21] conducts joint
location estimation and dictionary refinement based on the variational expectation-maximization
(VEM) [22,23] algorithm.

DFL techniques estimate the locations of transceiver-free targets by analyzing their shadowing
effects on wireless links. Received signal strength (RSS) [24] is one of the most widely used signatures
of target locations, and the variance of RSS is commonly employed in DFL to characterize the
shadowing effects caused by targets. As coarse-grained MAC-layer information, RSS readings are
readily available in many commercial off-the-shelf (COTS) transceivers. It represents the overall
signal power across all subcarriers of a wireless link. However, due to multipath fading and noises
in changing environment [25], RSS readings are unreliable and vary with time. This has a negative
effect on the localization performance of DFL. In view of the various drawbacks of RSS, channel state
information (CSI) [26,27] has recently been leveraged for target localization. As fine-grained PHY-layer
information, CSI represents the subcarrier-level channel measurements [28]. It can provide the signal
strength and phase information of multiple channels.

In this paper, we propose to exploit the fine-grained subcarrier information for CS-based
multi-target DFL in wireless sensor networks (WSN). To enrich the measurement information,
we extract the signal features of CSI measurements from multiple channels. Then, the multi-target DFL
is formulated as a joint sparse recovery problem. To solve this problem, an iterative location vector
estimation algorithm is developed under the multitask Bayesian compressive sensing (MBCS) [29]
framework. Subsequently, the location vector is estimated based on the recovered sparse vectors of
multiple channels. Finally, we estimate the number and locations of multiple targets according to the
estimated location vector.

Different from previous CS-based DFL methods, the proposed method leverages the frequency
diversity of fine-grained subcarrier information to improve the localization accuracy. LCS and E-HIPA
realize sparse reconstruction by greedy algorithms, while DR-DFL and the proposed method are based
on Bayesian approaches. Moreover, conventional CS-based DFL methods estimate target locations by
reconstructing a single sparse vector, while the proposed method needs to reconstruct multiple sparse
vectors corresponding to multiple channels which share a joint sparsity pattern. Note that, the sparse
reconstruction of each channel is not only based on its own measurements but also promoted by the
measurement information from other channels. This offers the opportunity to adaptively borrow
strength from the measurements of multiple channels to enhance the sparse recovery performance.
In summary, the main contributions of this paper are as follows:

• We propose to use CSI measurements for CS-based DFL. Furthermore, we experimentally validate
the feasibility of utilizing the fine-grained subcarrier information to improve the localization
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accuracy. To the best of our knowledge, this is the first work to leverage the frequency diversity of
CSI measurements for CS-based DFL.

• We formulate the multi-target DFL as a joint sparse recovery problem, and develop a novel
location vector estimation algorithm to solve this problem under the MBCS framework. The sparse
reconstruction performance can be improved by sharing the measurement information among
different channels.

• Target locations are estimated based on the recovered sparse vector of the channel that has the
minimum residual error. We design a filter algorithm to mitigate the influence of the negligible
but nonzero coefficients of the recovered sparse vector.

The rest of the paper is organized as follows: In Section 2, we review the related work of the
DFL methods that use CSI. In Section 3, we give the signal model and formulate the multi-target
DFL problem as a joint sparse recovery problem. The design and implementation of the proposed
location vector estimation algorithm are illustrated in Section 4, and the simulation results are shown
in Section 5. Finally, conclusions are given in Section 6.

2. Related Work

Pilot [30] is the first work that using CSI for DFL, which belongs to the fingerprinting-based
DFL approaches. In Pilot, the correlation patterns of CSI measurements are regarded as fingerprints.
Zhou et al. [31] proposed another fingerprinting-based DFL method to leverage CSI, which establishes
a nonlinear relationship between CSI fingerprints and location information by support vector machine
(SVM) regression. Gao et al. [32] construct a radio image based on CSI measurements and use the
machine learning method to estimate the location of a target.

However, the fingerprinting-based DFL approaches involve site survey, which is labor-intensive
and time-consuming, especially in the multi-channel case. To avoid this, Wang et al. [33] proposed
a power fading model to characterize the relationship of CSI measurements and target location
information. The target location can be estimated by solving a set of equations that are established
based on the model. However, a dense deployment of wireless links is needed to ensure that the target
is always sufficiently close to the line-of-sight (LOS) path of the wireless link. Moreover, Qian et al. [34]
proposed a CSI-based tracking system. It can simultaneously estimate a target’s moving velocity and
location based on a theoretical model, which geometrically quantifies the relationships between CSI
measurements and the target location and velocity.

The aforementioned CSI-based DFL approaches focus on seeking appropriate location-dependent
CSI features and trying to establish a robust and precise relationship between the CSI features and the
location of a single target. How to make full use of the frequency diversity of CSI measurements to
realize CS-based multi-target DFL is still a challenging issue. In this paper, to exploit the frequency
diversity of the CSI measurements collected from multiple channels, we model the DFL problem as a
joint sparse recovery problem and develop an iterative location vector estimation algorithm to solve
this problem under the MBCS framework.

3. Problem Formulation

An illustration of the CS-based multi-target DFL in WSN is shown in Figure 1. The monitoring
area is a two-dimensional (2D) (We consider the 2D location estimation in this paper. To estimate
the 3D location of target, a shadowing model for 3D case is required. However, finding an accurate
showing model for 3D case is still an open issue) rectangle region. K transceiver-free targets are
randomly located in the region. To locate the targets, a WSN with M wireless links is deployed in the
area of interest. Intuitively, targets in the monitoring area may inevitably shadow some radio signals
of the wireless links, and the shadowing effects are closely related to the locations of targets. Therefore,
by analyzing the target-induced shadowing effects, target location information can be inferred. Owing
to the spatially distributed sparsity of targets, target location information can be considered as a sparse
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signal. We divide the monitoring area into N equal-sized grids, thus the target locations can be sparsely
represented by

s = [s1, s2, ..., sn, ..., sN ]
T , (1)

where s ∈ RN×1 denotes the location vector, sn ∈ {0, 1} is its n-th element. If there exists a target
in grid n, we set sn = 1; otherwise, sn = 0. Therefore, the locations of K targets can be denoted as
L = {(xn, yn) |sn = 1, n ∈ {1, ..., N}}, where (xn, yn) represents the Cartesian coordinate of the center
of grid n.

... ...

... ...

...
......

...

Sensor Node

Target

Shadowed Link

Figure 1. An illustration of CS-based multi-target DFL in WSN.

As K � N, s is a K-sparse vector. The main task of the CS-based multi-target DFL is to estimate s
by analyzing the measurement information collected from M wireless links. In this paper, we propose
to aggregate the fine-grained subcarrier information of multiple channels as the measurements and take
advantage of their frequency diversity to improve the target counting and localization performance.
As a fine-grained PHY-layer information, CSI provides the signal strength and phase information
of multiple channels. It can be obtained from many COTS devices that implement an orthogonal
frequency division multiplexing (OFDM) system [35,36]. We assume the CSI measurements are
collected from F different channels. For link m and channel f , the CSI value is given as

H f
m = |H f

m|ejsin{∠H f
m}, f = 1, 2, ..., F, (2)

where H f
m is a complex value, ∠H f

m denotes the phase response, and |H f
m| denotes the amplitude

response. It is noteworthy that |H f
m| is defined in linear (voltage) space, which represents the change

of amplitude between the transmitter and receiver. By converting it into logarithmic (power) space,
we can obtain the power fading with the unit of dB as [37]

H̃ f
m = 20 log10(|H

f
m|), (3)

where H̃ f
m denotes the power fading corresponding to link m and channel f . As discussed earlier,

the target presented in the monitoring area will inevitably shadow some propagation paths of wireless
signals. In this paper, we consider the change of power fading between the transmitter and receiver
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as the signal feature to characterize the target-induced shadowing effects. For link m, the change of
power fading on channel f can be approximated as

∆H̃ f
m = H̃ f

m − H̃ f
m (0) ≈ ϕ

f
m + ε

f
m, (4)

where H̃ f
m (0) denotes the reference power fading, which is recorded when the monitoring area is

vacant. ϕ
f
m represents the shadowing loss induced by the targets within the spatial impact area of

link m. ε
f
m represents the measurement noise. Based on the collected CSI values, the power fading

corresponding to M links and F channels can be obtained, which are written as

Y =
[
y1, y2, ..., y f , ..., yF

]
=


y1

1 y2
1 · · · yF

1
y1

2 y2
2 · · · yF

2
...

...
. . .

...
y1

M y2
M · · · yF

M


M×F

, (5)

where Y ∈ RM×F denotes the measurement matrix. Its f -th column y f ∈ RM×1 is a measurement
vector corresponding to channel f . The m-th component of y f is y f

m, which is equal to ∆H̃ f
m. In the

monitoring area, if any two targets are located sparsely [8], the shadowing loss ϕ
f
m can be approximated

as a summation of the attenuations that occur in the grids within the spatial impact area of link m.
That is, the change of power fading can be expressed as the superposition of the perturbations caused
by multiple targets, i.e.,

y f
m =

N

∑
n=1

sn · ψ f
m,n + ε

f
m, (6)

where ψ
f
m,n denotes the shadowing loss on link m and channel f that caused by a target in grid n.

Based on Equation (6), the measurement vector corresponding to channel f is given as

y f = Ψ f s + ε f , (7)

where ε f ∈ RM×1 is a noise vector whose m-th component is ε
f
m. Ψ f ∈ RM×N denotes the dictionary

of channel f whose (m, n)-th element is ψ
f
m,n. According to the saddle surface model [38], ψ

f
m,n can be

described as

ψ
f
m,n = γ f ·

(
1− ρ f

λ2
1

U2
m,n + ρ f ·

(
1−

V2
m,n

λ2
2

))
,

s.t.
U2

m,n

λ2
1

+
V2

m,n

λ2
2

6 1,

(8)

where γ f denotes the maximum shadowing loss on the LOS path, ρ f ∈ (0, 1) denotes the shadowing
ratio that is the normalized shadowing loss at the midpoint of the LOS path. Only the targets within
the spatial impact area of link m can cause a nonzero ψ

f
m,n. Figure 2 depicts the spatial impact area

of a wireless link, which is an ellipse between the transmitter and receiver. As shown in Figure 2,
a U-V coordinate system is built in the spatial impact area. The midpoint of the LOS path is taken
as the origin of the coordinates. The U-axis coincides with the LOS path, and the V-axis is vertical
to it. In Equation (8), (Um,n, Vm,n) denotes the coordinate of grid n under the U-V coordinate system
of link m. λ1 and λ2 denote the semi-major and semi-minor axes of the elliptical spatial impact
area, respectively.
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Figure 2. Spatial impact area of a wireless link.

As mentioned before, the target location vector s is a sparse vector. This means that s has only
a few nonzero elements, i.e., ‖s‖0 = K (K � N). Therefore, by taking advantage of the CS theory
for accurate recovery of sparse signals, s can be reconstructed accurately with a few measurements
(M� N). In this case, Equation (7) is an under-determined linear system. This means that a unique
solution for s may not exist. Taking into account the sparsity of s, recovering a unique solution for
Equation (7) is possible. In particular, a sparsest solution can be obtained by solving the following
`0-norm minimization problem

ŝ = arg min
s
‖s‖0,

s.t. ‖y f −Ψ f s‖2 ≤ ε f .
(9)

However, in terms of computational complexity, directly solving the problem with `0-norm
is NP-hard [39]. The `0-norm penalty encourages a maximally sparse solution, which is usually
difficult to obtain. Fortunately, when Ψ f satisfies the RIP, Equation (9) can be approximated by
the `1-norm minimization that is polynomial-time solvable. LASSO [40] and basic pursuit (BP) [41]
are well-known algorithms that realize sparse recovery via `1-norm minimization. Using the linear
programming technique to solve `1-norm minimization problem and reconstruct the sparse vector is
effective. However, it incurs considerable computational burden, especially in large-scale applications.
Therefore, many greedy algorithms have been introduced to efficiently reconstruct the sparse signal.
OMP [42] and GMP [20] are representative greedy algorithms. Furthermore, the problem could be
solved in a Bayesian framework. Compared with the aforementioned linear programming and greedy
algorithms, Bayesian compressed sensing (BCS) [43] recovers the sparse signal based on the posterior
probability instead of a single value and could yield better sparse reconstruction performance.

In order to combat the negative effect of measurement noises and achieve better counting and
localization performance, we propose to exploit the frequency diversity of the measurements collected
from multiple channels and realize joint sparse recovery in DFL. For each channel, we set θ f = γ f · s
and φ

f
m,n = ψ

f
m,n/γ f . Then, the measurement model Equation (7) can be rewritten as

y f = Φ f θ f + ε f , (10)

where Φ f is a dictionary whose (m, n)-th element is φ
f
m,n. {θ f }F

f=1 are unknown sparse vectors which
share a common support with s. In this situation, the main task of target counting and localization is
to reconstruct the jointly sparse vectors {θ f }F

f=1 and find their common sparse supports.

4. Joint Sparse Recovery

In the previous section, we formulate the CS-based multi-target DFL as a joint sparse recovery
problem. In this section, we approach this problem under the MBCS framework. A hierarchical



Sensors 2018, 18, 3110 7 of 16

Bayesian model for the joint sparse recovery is illustrated in Figure 3. The unknown sparse vectors
{θ f }F

f=1 are regarded as stochastic variables, and a non-separable sparsity inducing prior model is

imposed on them [44]. It is a two-layer hierarchical prior model. In the first layer, we assume θ f

follows a zero-mean Gaussian prior distribution

p(θ f |α ) =
N

∏
n=1
N
(

θ
f
n

∣∣∣0, α−1
n

)
= (2π)−N/2|Λ|1/2 exp

(
1
2
(θ f )

T
Λθ f

)
, (11)

where αn denotes the inverse variance (precision) of {θ f
n}F

f=1, α = [α1, α2, ..., αN ]
T , and Λ = diag (α).

As shown in Figure 3, {αn}N
n=1 are common hyperparameters of {θ f }F

f=1. In the second layer of the
prior model, we impose the following Gamma distribution on α since Gamma distribution is conjugate
to Gaussian distribution

p (α;a, b) =
N

∏
n=1

Gamma (αn |a, b ) =
N

∏
n=1

1
Γ (a)

baαa−1
n exp (−bαn) , (12)

where Gamma (· |a, b ) is a Gamma distribution with parameters a and b. Γ (a) =
∫ ∞

0 xa−1e−xdx
represents the Gamma function. The proposed hierarchical prior model is used to promote
the joint sparsity of the sparse vectors {θ f }F

f=1. It can achieve efficient information-sharing
between channels. The measurements from all channels contribute to the learning of the common
hyperparameters, thus making it possible to transfer information between channels. In particular,
the sparse reconstruction of each individual channel is affected by both its own measurements and
the measurement information from other channels. This offers the opportunity to adaptively borrow
strength from the measurements of different channels to enhance the sparse recovery performance.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

β

1y 2y Fy

2
Nθ F

Nθ1
Nθ

1
1θ

1
2θ 2

2θ 2
Fθ

1
Fθ2

1θ

a b

c d

1α

2α

Nα

α 1θ 2θ Fθ

Figure 3. A hierarchical Bayesian model for joint sparse recovery.

The measurement noise ε f is considered as a zero-mean Gaussian random variable, and the
inverse variance of ε

f
m is assumed to be β. Therefore, the likelihood function for θ f can be written as

p(y f |θ f , β) =

(
2π

β

)−M
2

exp
(
− β

2
‖y f −Φ f θ f ‖2

2

)
. (13)
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A Gamma distribution is imposed on β, i.e.,

p(β f ; c, d) = Gamma(β|c, d) =
1

Γ(c)
dcβc−1exp (−dβ), (14)

where c and d are deterministic parameters. The Gamma distribution is chosen since it is conjugate
to the Gaussian likelihood, and thus the associated Bayesian inference can be performed in closed
form [23]. The posterior distribution for θ f can be derived as

p(θ f |y f , α, β) =
p(y f |θ f , β)p(θ f |α)∫

p(y f |θ f , β)p(θ f |α)dθ f = N
(

θ f |µ f , Σ f
)

, (15)

with mean vector µ f and covariance matrix Σ f given by

µ f = βΣ f (Φ f )Ty f , (16)

and

Σ f =
(

β(Φ f )
T

Φ f + Λ
)−1

. (17)

Note that, Equation (17) contains matrix inversion operation. To obtain {Σ f }F
f=1, the computational

complexity is O
(

N3F
)
. Using the matrix inversion lemma [45], Σ f can be evaluated as

Σ f = Λ−1 −Λ−1(Φ f )T(Θ f )−1Φ f Λ−1, (18)

where
Θ f = Φ f Λ−1(Φ f )T + β−1IM. (19)

With the above matrix transformation, we only need to compute the inversion of Θ f . Because Θ f

is an M×M matrix, the computational complexity can be reduced to O
(

M3F
)
. In addition, Λ is an

N × N diagonal matrix, and its inversion is easy to obtain.
Subsequently, we have to estimate the common hyperparameters α and β. The estimation can be

derived by maximizing the following logarithm marginal likelihood

L(α, β) =
F

∑
f=1

log p(y f |α, β)

=
F

∑
f=1

log p(y f |θ f , β)p(θ f |α)dθ f (20)

=− 1
2

F

∑
f=1

(
M log 2π + log |Θ f |+ (y f )

T
(Θ f )

−1
y f
)

.

Differentiating L(α, β) with respect to αn, and setting the result to zero and rearranging, yields

αNew
n =

F− αn ∑F
f=1 Σ f

n,n

∑F
f=1 (µ

f
n)

2 , (21)

where αNew
n denotes the updated hyperparameter, Σ f

n,n is the (n, n)-th element of Σ f , and µ
f
n is the n-th

component of µ f . Next, differentiate L(α, β) with respect to β, and then set the results to zero, yielding

βNew =
∑F

f=1

(
M− N + ∑N

n=1 αnΣ f
n,n

)
∑F

f=1
∥∥y f −Φ f µ f

∥∥2
2

. (22)
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Based on the above update rules, we develop a novel iterative location vector estimation algorithm,
which iterates between Equations (16)–(19) and Equations (21) and (22), until a convergence criterion
has been satisfied. The procedure of location vector estimation is specified in Algorithm 1. We set the
convergence criterion of the iterative procedure as the second norm of the residual error γ smaller
than a threshold γth, or the iteration number τ has reached a maximal allowable value τmax.

After estimating the posterior distributions of the sparse vectors {θ f }F
f=1, their common support

can be inferred from the mean vectors {µ f }F
f=1. In Algorithm 1, we estimate the location vector s based

on µ f̂ , where f̂ denotes the index of the channel that achieves the minimum residual error. However,
µ f̂ may not be strictly sparse. It usually contains many negligible but nonzero coefficients. To mitigate
the effect of small coefficients, we filter out them with a sparsity threshold ηth, which is shown in Line
9 of Algorithm 1. When we obtain the estimated location vector ŝ, the target number can be estimated
as K̂ = ‖ŝ‖0, and the estimated target locations are given as L̂ = {(xn, yn) |ŝn = 1, n ∈ {1, ..., N}}.

Algorithm 1 Location Vector Estimation

1: Initialization:
2: γth = 10−3, τmax = 103, ηth = −10dB, γ = τ = 0.
3: while (γ > γth or τ 6 τmax) do
4: Calculate µ f and Σ f by using Equation (16)–(19).
5: Update α and β by using Equation (21)–(22).
6: γ← ∑F

f=1 ‖y f −Φ f µ f ‖2, τ ← τ + 1.
7: end while
8: Choose f̂ that minimizes ‖y f −Φ f µ f ‖2.

9: If 20 lg
(

µ
f̂
n/max

i

∣∣∣∣µ f̂
i

∣∣∣∣) < ηth, set µ
f̂
n = 0; otherwise, µ

f̂
n = 1.

10: Let the estimated location vector ŝ = µ f̂ .

5. Simulation Results

5.1. Simulation Setup

In this section, a series of numerical simulations are conducted to illustrate the performance of
the proposed scheme. The simulations are carried out in MATLAB R2015b 64bit version running on a
PC with i7-8550U CPU and 16 GB memory. We consider an l × l square region as the monitoring area.
It has been divided into N equal-sized grids, and K targets are randomly located in it. Sensor nodes
are uniformly deployed along the perimeter of the monitoring area, and each node is placed at
the midpoint of a grid side. They can transmit and receive radio signals on F channels, and we
establish M bidirectional wireless links between them. In real environments, it is inevitable for
measurements to be corrupted with noises. In our simulation, to validate the reliability and robustness
of DFL methods, we intentionally add zero-mean white Gaussian noises to the measurements of
multiple channels. For channel f , the signal-to-noise ratio (SNR) of the measurements y f is defined as

10 lg(‖Ψ f s‖2
2/(Mσ f )), where σ f represents the variance of ε f . Table 1 gives the default values of some

simulation parameters.
In our simulations, all results are averaged over T Monte Carlo trials. When the channel number

is large, the proposed method is time-consuming. Therefore, if we set T to be a very large value,
the overall simulation time will be extremely long. In view of this, we set T = 500 to balance the
simulation time and the accuracy of results. In addition, it should be noted that, in real deployment,
the localization algorithm is conducted on a server that for data processing and analysis. For each trial,
the localization error Et is computed as

Et =
∑K

k=1

√
(x̂k − xk)

2
+ (ŷk − yk)

2

K
, (23)
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where (xk, yk) and (x̂k, ŷk) denote the ground-truth location and estimated location of target k,
respectively. There are min{K, K̂} pairs of {(xk, yk), (x̂k, ŷk)}, and we need to find the optimal values
for (xk, yk) and (x̂k, ŷk) from L and L̂, respectively. Intuitively, there are (max{K, K̂})!/(|K − K̂|)!
different conditions of the pairs, and we choose the condition that achieves the minimum Et as the
matching result. To evaluate the counting and localization performance of the multi-target DFL,
we define the following three metrics:

• Average localization error (EA), which denotes the average Euclidean distance between the true
and estimated target locations, i.e.,

EA =
∑T

t=1 Et

T
. (24)

• Root-mean-square localization error (ER), which is defined as

ER =

√
∑T

t=1 E2
t

T
. (25)

• Correct counting rate (PC), which denotes the probability of correctly estimating the target number
(i.e., K̂ = K).

Table 1. Default values of simulation parameters.

Parameters Explains Default Values

l length of wireless link 14 m
λ1 semi-major axis 7 m
λ2 semi-minor axis 2.75 m
N number of grids 784
M number of wireless links 56
K number of targets 5
F number of channels 12

SNR signal-to-noise ratio 25 dB
τ number of iterations 50

5.2. Impact of the Number of Iterations

In the first simulation, we investigate the impact of the iteration number τ on the target counting
and localization performance. In Section IV, an iterative location vector estimation algorithm is
proposed to solve the joint sparse recovery problem. Intuitively, the estimation accuracy of the
algorithm is closely related to the number of iterations. To reveal the relationship between the iteration
number and the estimation performance, we test EA and PC of the proposed method when τ varies
from 5 to 60. The results are shown in Figure 4. As seen, with the increasing of τ, EA decreases and
PC increases accordingly. We also compare the performance of the proposed method when F = 5, 12,
and 20. It can be observed from Figure 4 that increasing the number of channels can result in a more
accurate estimation of the target number and locations. It should be noted that although we can
achieve a better performance with a larger value of τ, it may result in heavy computational load.
For this reason, we set τmax = 50 as a tradeoff between accuracy and computational cost.
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Figure 4. Counting and localization performance when the number of iterations varies from 5 to 60.

5.3. Impact of the Number of Channels

In the second simulation, we test the effect of the channel number F on the target counting and
localization performance of the proposed method. Figure 5 shows the average localization error EA
and correct counting rate PC as functions of the channel number F. The figure illustrates that increasing
F has a positive effect on both quantities. This trend is consistent with the fact that increasing the
number of channels, more useful information will be provided for the target counting and localization.
The simulation results confirm the effectiveness of the proposed method for exploiting the frequency
diversity of CSI measurements. With the increase of F, EA decreases and PC increases accordingly.
However, when F > 12, very little performance improvement can be obtained by increasing the
channel number F. In fact, a large F means a complex Bayesian model and the posteriors of more
stochastic variables need to be inferred. For this analysis, an excessively large F may have a negative
effect on the accuracy of the posterior inference. When F > 12, the negative effect of increasing the
complexity of the Bayesian model will almost offset the positive effect contributed by increasing the
frequency diversity of CSI measurements. In view of this, we choose the channel number F = 12 as
our default setting.
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Figure 5. Counting and localization performance when the number of channels varies from 1 to 20.
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5.4. Comparison of Localization Accuracies for Different DFL Methods

In the following, we compare the localization accuracies of the proposed method and the CS-based
multi-target DFL approaches that using the following sparse recovery algorithms: OMP, BP, GMP, BCS,
and VEM (these abbreviations are explained at the end of the article). Figure 6 depicts the average
localization error EA and root-mean-square localization error ER of these DFL approaches. The 95%
confidence interval of EA is also shown in this figure. As can be seen, the proposed method significantly
outperforms all the other approaches in terms of both EA and ER. Furthermore, we can also see that the
Bayesian methods (i.e., BCS, VEM, and MBCS) can achieve a better performance than other methods.
Particularly, although the improvement on EA of the proposed method is only 0.0135 m by increasing
the channel number F from 12 to 20, the corresponding reduction in ER is 0.0909 m. This indicates that
the increase in the number of channels can lead to a more robust localization performance.
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Figure 6. Comparison of localization accuracies for different DFL methods.

5.5. Localization Error vs. Number of Targets

Next, we examine the localization performances of multiple DFL approaches under different
number of targets. Figure 7 shows the comparison of the average localization error EA versus the
number of targets K. As expected, EA is an increasing function of K. When K increases from 1 to 8,
the average localization errors for all DFL methods increase dramatically. This is because, with the
increase in K, the sparsity level of location vector and the joint sparsity level of {θ f }F

f=1 will decease
accordingly. In this case, the reconstruction accuracy of the location vector will be degraded according
to the principle of the CS theory. Furthermore, owing to the ability of exploiting the frequency diversity
of the CSI measurements, the proposed method can achieve the lowest EA among all the other methods.
Additionally, it is observed that the localization performance of the proposed method will be improved
when F increases. This indicates that, under the same sparsity level, the increase of channel number
can enrich the measurement information and lead to more accurate localization.

5.6. Localization Error vs. SNR

In the last simulation, we turn our attention to the impact of SNR on the localization accuracies
of multiple DFL approaches. Figure 8 plots the average localization error EA versus SNR. As SNR
increases from 5dB to 40dB, the average localization errors of all six DFL approaches experience
a significant drop. When SNR < 25 dB, the localization performance of the proposed method is
drastically affected by the noise increase. It can also be observed that the proposed method outperforms
other DFL methods in most cases (SNR > 13.2 dB). Particularly, in the case where the SNR is high
(e.g., SNR = 30 dB), we notice that the proposed method leads to improvements in terms of EA are
0.798 m and 0.299 m over the BP-based DFL and VEM-based DFL, respectively.
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Figure 7. Impact of target number on average localization error.
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Figure 8. Impact of SNR on average localization error.

6. Conclusions

In this paper, we presented a novel CS-based multi-target DFL method, which exploits the
fine-grained subcarrier information for target counting and localization in WSN. The key novelty of the
proposed method is the making use of the frequency diversity of CSI measurements for the CS-based
multi-target DFL. We formulate the multi-target DFL as a joint sparse recovery problem, and adopt
an MBCS-based algorithm to simultaneously reconstruct the sparse vectors of multiple channels.
The target counting and localization performance can be improved with the assistance of the frequency
diversity. To validate the merits of the proposed method, we perform an extensive simulation study to
compare with the state-of-the-art CS-based multi-target DFL approaches. Simulation results confirmed
the effectiveness and robustness of the proposed method.
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Abbreviations

The following abbreviations are used in this manuscript:

DFL Device-free localization
CS Compressive sensing
MBCS Multitask Bayesian compressive sensing
LBS Location-based service
RF Radio frequency
RTI Radio tomographic imaging
CT Computed tomography
SLMLU Sparse localization approach with a mobile beacon based on LU decomposition
RIP Restricted isometry property
LCS Device-free localization based on compressive sensing
GMP Greedy matching pursuit
E-HIPA The energy-efficient framework for high-precision multi-target-adaptive device-free localization
OMP Orthogonal matching pursuit
DR-DFL Dictionary refinement based device-free localization
VEM Variational expectation-maximization
RSS Received signal strength
COTS Commercial off-the-shelf
CSI Channel state information
WSN Wireless sensor networks
SVM Support vector machine
LOS Line-of-sight
OFDM Orthogonal frequency division multiplexing
LASSO Least absolute shrinkage and selection operator
BP Basic pursuit
BCS Bayesian compressive sensing
SNR Signal-to-noise ratio
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