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Abstract: In this study we used a non-autonomous Chua’s circuit, and the fractional Lorenz chaos
system. This was combined with the Extension theory detection method to analyze the voltage signals.
The bearing vibration signals, measured using an acceleration sensor, were introduced into the master
and slave systems through a Chua’s circuit. In a chaotic system, minor differences can cause significant
changes that generate dynamic errors. The matter-element model extension can be used to determine
the bearing condition. Extension theory can be used to establish classical and sectional domains using
the dynamic errors of the fault conditions. The results obtained were compared with those from discrete
Fourier transform analysis, wavelet analysis and an integer order chaos system. The diagnostic rate of
the fractional-order master and slave chaotic system could reach 100% if the fractional-order parameter
adjustment was used. This study presents a very efficient and inexpensive method for monitoring the
state of ball bearings.
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1. Introduction

The ability to accurately monitor the state of wear and performance of ball bearings [1–8] in
machine tools is important for several reasons. The most serious being that an unexpected breakdown
can cause irreparable damage to other parts of the machine. However, over the long term, the wear of
bearings will result in machining accuracy loss, combined with poor performance reducing product
quality. This makes monitoring of the state of bearings important for the early detection of problems,
so that timely replacement can be made.

Many recent studies have been made into the various methods for ball bearing fault diagnosis.
The methods mainly used involve stator current [9–12], audio [13,14] and vibration signals [15,16].
For signal analysis, both discrete Fourier [17] transform and wavelet [18–24] were the most frequent
analyses used. Over the last few years, chaos systems have been extensively used for diagnosis [25,26] with
the fractional-order chaos method giving better diagnostic results, than a simpler chaotic system [27,28].

Although chaos system results are valid and useful, it is necessary to add signal pre-processing,
as used in fractal theory, to calculate fractal dimension and lacunarity, and allow real-time diagnosis.
In this paper we offer a new approach, using synchronized fractional chaos processing with Chua’s Circuit,
to remove less characteristic signals and diagnose the current state of a ball bearing system. The amount
of waveform data used can be downsized with a consequent reduction of calculation time. A much
better diagnosis ratio can also be achieved. The bearing system signals can be analyzed by extension
identification, and better order numbers can be chosen by observing the chaotic synchronizing motion

Sensors 2018, 18, 3069; doi:10.3390/s18093069 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8852-9106
https://orcid.org/0000-0002-1187-1771
http://www.mdpi.com/1424-8220/18/9/3069?type=check_update&version=1
http://dx.doi.org/10.3390/s18093069
http://www.mdpi.com/journal/sensors


Sensors 2018, 18, 3069 2 of 14

traces from different fractional orders. Figure 1 shows a flow chart of the system used in this study.
Details will be given in the following sections.
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Equation (2). 
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Figure 1. Ball bearing diagnosis system flow chart.

2. Chua’s Circuit

The simple layout of Chua’s circuit [29,30] is shown below. The circuit has three active components:
Capacitors, inductors, resistors, and a non-linear resistor. RL is the Chua’s diode, as shown in Figure 2.
The famous Chua’s circuit is used extensively in electronics in the analysis and processing of chaotic
phenomena. In this study, the Chua’s circuit is used to fill a vacancy in a fractional order chaotic system.
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According to Kirchhoff’s law, the Chua’s circuit’s state equation is as Equation (1):

C1
dVC1

dt = −gVC1 + iL1 − iL2

C2
dVC2

dt = iL1 − iRL

L1
diL1
dt = −VC1 + iL1R1 + Vin sin(2πk)

L2
diL2
dt = VC1 + VC2 + iL2R5

(1)

where k is a parameter corresponding to higher harmonics, and the current iRL is defined as
Equation (2).

iRL = GaVC2 +
1
2
(Gb − Ga)[|VC2 + Ea| − |VC2 − Ea|] (2)

wherein Ga and Gb are the slopes, and Ea is the breakpoint.
In this study, a non-autonomous Chua’s circuit is used to record ball bearing signals, and the

voltages Va and Vb waveform characteristics. which are introduced into chaos as an extension
matter-element model, using the extension algorithm.
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3. Experiment System

This paper has used simulation data from the US Case Western Reserve University Bearing Data
Center [31]. The database provides experimental data for both normal and faulty ball bearings. Figure 3
shows the experimental platform utilized by the database. It consists of a 2 HP (horsepower) motor,
encoders, a shaft for supporting the bearings, and a dynamometer. Faults are introduced in the bearings by
electro-discharge machining (EDM) on the inner ring raceway, outer ring raceway and the rolling element
of 0.007, 0.0014 and 0.0021-inch diameter, to a depth of 0.011 inch for monopoint faults. Loads were applied
in the range of 0–3 HP for testing. Please refer to Table 1 for detailed specifications. Accelerometers were
used to collect data from faulty and normal bearings. These were installed at the ends of the actuator and
motor case at the 12 o’clock position. The collected data were processed and stored using MATLAB.
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Table 1. Types of ball bearing faults.

Sampling
Frequency (Hz) Motor Load (HP) Fault Single Point

Diameter (inches)
Fault Single Point

Depth (inches) Fault Condition

12 k
48 k

0
1
2
3

0.007
0.014
0.021

0.011

Normal
ball bearing fault
inner ring fault
outer ring fault

4. Chaos Theory

Chaos theory deals with the behavior of non-linear dynamic systems which is very sensitive to
small changes in initial conditions. Motion traces can be created by chaos attractors which are ordered
but non-periodic. Original motion signals may be small, but will result in the output of much bigger
signals. In the chaos signal synchronizing system, there is both a Master (MS) and Slave (SS) chaos
system. These two systems have different initial values and this will result in two motion traces,
one for each chaotic phenomenon. However, the master-slave systems can be synchronized by adding
a controller to the slave system to track the master. In this section, the design of the fractional-order
chaotic self-synchronization process is described in detail. Table 2 shows the definitions and notations
used in the paper.
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Table 2. Nomenclature.

Notation Definition Notation Definition

X The system states of the master system Г( ) Gamma function
Y The system states of the slave system a’, b’, c’ System parameters of fractional–order system
f Non-linear function Φi Dynamic error equation
U Control input g, h The upper and lower limits of the classical domain
A System parameter vector r, s The upper and lower limits of the joint domain

a, b, c System parameters of the Chen-Lee Chaos System O The name of a matter-element
e System error state vector ε The characteristics of the matter-element
D Differential operator µ The values corresponding to the characteristics
α The value of differential order Ω The universe of discourse

The characteristic quantities adopted in this paper are subject to the size of the natural dynamic
errors between the master and slave, and master-slave synchronizing systems. This means the
master-slave systems mentioned here have not been designed with controllers, and the dynamic
error conditions can be acquired simply by subtracting one from the other. It is intended that the
master-slave chaotic system be used to control the system and maintain its stability. The master (MS)
and slave systems (SS) [32,33], can be expressed in Equations (3) and (4):

MS =
.

X = AX + f (X) (3)

SS =
.

Y = AY + f (Y) + U (4)

X ∈ RN and Y ∈ RN are state vectors, A is an N×N system matrix, the f (x) and f (y) vectors are
non-linear and U is also a non-linear control term. Signal processing is done by a non-linear chaotic system,
such as that of Lorenz [34], where N = 3 is used. The MS dynamic equations can be shown in matrix form:

•
x1 = α(x2 − x1)x1

•
x2 = βx1 − x1x3 − x2

•
x3 = x1x2 − γx3

•
y1 = α(y2 − y1)

•
y2 = βy1 − y1y3 − y2

•
y3 = y1y2 − γy3

(5)

The dynamic error is defined as e1 = x1 − y1, e2 = x2 − y2, e3 = x3 − y3 and e = [e1, e2, e3]
T ,

calculation of the dynamic error function and the matrix form yields:

.
e =

 (1− α) α 0
β 0 0
0 0 (1− γ)


 e1

e2

e3

+

 0
−e3

e2

e1 (6)

A Grünwald-Letnikov fractional order approximation [20,24,35–37] gives Equation (7)

D±α
e em ≈ Γ(m + 1)

Γ(m + 1± α)
em±α (7)

e is the dynamic error, m a real (arbitrary) number, and α is the desired phenomenon, see Figure 4.
From |α|, the following rules apply:
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1. 0.00 < |α| ≤ 0.20: For arithmetic quantification as well as proportional application
2. 0.20 < |α| ≤ 1.00: For classification and control of non-arithmetical values
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Figure 4. Dynamic error caused by fractional-order changes (α = ±0.02, m = 1).

To express fractional changes, fractional order modifications on the first-order differential system
can be expressed as in Equation (8).

d
dt

d−α

dt−α ≈ A(e) d−α

dt−α

 e1
1

e1
2

e1
3

+ d−α

dt−α

 e0
1
−e1e3

e1e2



⇒

 Dqe1

Dqe2

Dqe3

 ≈
 −α′ α′ 0

β′ 0 0
0 0 −γ′


 e1+α

1
e1+α

2
e1+α

3

+


Γ(1)eα

1
Γ(1+α)

Γ(1)e1e3eα
2

Γ(1+α)
Γ(1)e1e2eα

3
Γ(1+α)


(8)

where q = (1− α), 0 < q ≤ 1 is to achieve fractional order, and Γ(•) is a gamma function. Γ(1) = Γ(2) = 1,
wherein the system parameters

.
α,

.
β and

.
γ are non-zero constants. They must therefore be converted into

an expression, such as in Equation (9).

α′ =
αΓ(2)

Γ(2 + α)
, β′ =

βΓ(2)
Γ(2 + α)

, γ′ =
γΓ(2)

Γ(2 + α)
(9)

The chaos system used here employs a non-linear Chua’s circuit with signal transform inputs VA

and VB and e1, e2, and e3, to make trace diagrams of the phase domain. The important characteristics
are the four bearing state signals: Normal signal, bearing fault, inner ring fault and outer ring fault.
The dynamic errors are: 

e1[i] = x[i]− y[i]

e2[i] = x[i + 1]− y[i + 1]

e3[i] = x[i + 2]− y[i + 2]

(10)
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where x and y are the VA and VB signals.
The chaos system employed in this study was used for the diagnosis of ball bearing faults by

the analysis of vibration signals. The data were downloaded from the Center website, as previously
mentioned. Originally around 240,000 entries were collected at a frequency of 48k. This included
about 48,000 from the motor startup transient state, which were discarded. The remainder was divided
into two, each including about 96,000 entries. One was used for analysis, and the other for the result
verification. The trajectories of the dynamic errors e1, e2, e3 formed key characteristics, according to
the phase planes and signals representing four different bearing conditions: Normal, ball fault, fault
in the inner race and in the outer race. The signals resulting from dynamic errors were acquired by
the introduction of VA and VB test signals into the master synchronization (MS) system. The e2 and
e3 dynamic error signals were used for plotting the trace diagrams. The trajectories existing for each
state were used to establish a matter-element model. The signals emanating from the output of the
monitoring system were identified using an extension theory.

Figure 5 refers to the fault diameters 0.007, 0.014, 0.021 inches and normal signals. They have
been substituted using the integer order chaos system to manage the ball bearing dynamic error
diagrams. Under the integer order chaos system, the dynamic errors of different states would be
too concentrated in the same regions, and the characteristics would not be obvious. This means
misjudgment could easily occur during the dynamic error distribution calculation of the extension
theory matter-element models. Such order numbers are unsuitable for signal processing by this
system. Figures 6–9 refer to the dynamic error trace diagrams in which the fractional-order chaos
system is used for processing the ball bearing signal. According to the simulation results for the fault
diameters of 0.007, 0.014 and 0.021 inches, compared to the order 0.9, 0.7, 0.5 and 0.3 of the integer
order chaos system, the dynamic errors among the states are more decentralized, and the trace diagram
for order 0.3 is more characteristically different. This is such that, during the calculation of the dynamic
error distribution, excellent identification results are provided; order 0.3 is more suitable therefore,
for processing signal in the flow chart of Figure 1.
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5. Extension Theory

The extension theory, fully described by Su and Zhao [38], was derived from the observation of
diverse conditions in various objects. and seeking regularity using their extensibility. Finally, mathematical
operations were used to characterize conditions. The extension theory can generally be divided into two
parts: The matter-element model and extension set which can both be used to quantify objects according
to their similarity. The model allows for easy description of the images and objects. The fuzzy set [39,40]
range can be extended from (0, 1) to (−∞,∞). See Figure 10 for an illustration of the fuzzy and extension
sets. Wang et al. [41,42] give a more detailed description of the matter-element theory and the extension set.

5.1. Matter-Element Theory

A study of properties is the essence of the matter-element theory and among these are change,
transformation and extensibility. Various objects can be distinguished by their specific characteristics and
used in an analysis that clearly indicates any differences between them. Differences in object position, form,
or mode can be conveyed by values in mathematical terms, more specifically by a matrix (11):

∅i =
[

Oi εi µi

]∣∣∣
i=1,2,...,N

(11)

N is the matter-element, ε the matter-element characteristics and µ the characteristics value. In an
object with n characteristics, the vector of the characteristics can be expressed by its corresponding
value, referred to as an n-dimension matter-element.

When these values are spread across a particular range, this is referred to as a classical domain
and is part of a joint domain. Assuming intervals of F0 = (g, h) and F = (r, s), where: F0 ∈ F, g and
h are the high and low limits of a classical domain, and r and s are the high and low limits of the
joint domain.

5.2. Extension Sets

Sets and correlation functions are the essence of mathematical extension and serve to extend
a specific set into a continuous value range (−∞, ∞) expressing object properties by means of a
correlation function. The set is within a range of real numbers (−∞, ∞) and conveys the degree to
which the features of an object are of interest. The concept of an extension set and its definitions are:

Take Ω to be the universe of discourse, and any element such as ω in Ω (i.e., ω ∈ Ω) has a related
real number (i.e., K(ω) ∈ (−∞, ∞)). An extension set can be defined as in Equation (12):

∏ =
+

∏∪
0

∏∪
−
∏ (12)
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∏+, ∏0 and ∏− are positive, zero and negative domain of the extension set. See Figure 10 and
Equations (13)–(15):

+

∏ = { (ω, y)| ω ∈ Ω, y = K(ω) > 0} (13)

0

∏ = { (ω, y)| ω ∈ Ω, y = K(ω) = 0} (14)

−
∏ = { (ω, y)| ω ∈ Ω, y = K(ω) < 0} (15)

An examination of Figure 10 shows that, as an object gets closer to the classical domain,
its correlation function becomes greater in value, and the more likely it is that the data will fall
into that class. On the other hand, the value of the correlation function will become smaller the further
away the object moves from the classical domain, and the less likely it is to fall into that class.
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5.3. An Extension Theory Matter-Element Model

The establishment of a model for a mathematical problem causes it to become idealized.
The question now arises as to whether the model might differ from the problem. Extension theory uses
a matter-element model to deal with this issue. In extension, O refers to an object, with characteristics
ε, and corresponding values µ. These elements are the essential matter-element factors and describe
the object. Equation (16) can be used to express an object with multiple characteristics:

∅ =


O ε1 µ1

ε2 µ2
...

...
εN µN

 (16)
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Classification using condition equations is intuitive: Should a fault test point lie within the range
of a certain condition, it belongs to that specific state. If a test point lies outside any condition, it will
not be possible to use a condition-based method to correctly identify the fault state, and a wrong
diagnosis is the most likely outcome. The extension theory and condition-based classification method
differs from others, such as the fuzzy theorem, in that it emphasizes the amount of correlation using
distance. A system that is based on extension theory, will automatically determine the nature of the
fault at a specific point by finding the fault state to which the point in question lies closest.

In this study we used the extension theory for identification in backend detection of the FOCLCS
system. Signals indicative of the present state of a bearing were classified using the amount of
correlation. A high correlation value meant the matter-element object under test was close to the
classical field and would fall within the related class.

6. Experiment Results

The fractional Lorenz chaos synchronous dynamic error system was utilized to make the ball bearing
signals transform. Dynamic trace diagrams of e1, e2 and e3 have been made from observations. The different
states provided by the experimental database include normal, outer ring, roll ring and inner ring faults.
Extension matter-element models were designed for distinguishing intelligent monitoring output systems
which work on a 48 k (Hz) base sampling rate. One second data volumes are formed from observation of
important characteristics of the different state dynamic errors, e2 and e3.

In the establishment of the extension matter-element model, four characteristic items, α1, α2, x
and y were used as a basis for judging the state of a ball bearing. α1 represents the left-half distribution
area of the horizontal axis of the dynamic error trace diagram, α2 the right-half distribution area of the
horizontal axis of the dynamic error trace diagram. x stands for the left-half distribution area of the
dynamic error trace diagram, and y stands for the right-half distribution area of the dynamic error trace
diagram. Equation (17) is the fault matter-element model of a ball bearing at 0 HP for all diameters.

Normal α1 [0, 2]
α2 [2, 4]
x [−0.01, 0.05]
y [−0.01, 0.03]




0.007 α1 [0, 2]
α2 [2, 4]
x [−0.05, 0.045]
y [−0.09, 0.15]


0.014 α1 [0, 2]

α2 [2, 4]
x [−0.02, 0.01]
y [−0.021, 0.02]




0.021 α1 [0, 2]
α2 [2, 4]
x [−0.05, 0.03]
y [−0.05, 0.15]


(17)

The matter-element model established in this paper has four characteristics, each having a 0.25 weight
setting. Each characteristic goes through extension calculations and is accurately identified for
ball bearing condition. In this paper discrete Fourier transform, wavelet packet analysis, different
order ranking of fractional chaos systems, and other methods were used to identify random data.
The statistical method used, collected data on each state from 20 ball bearings and was used to
calculate the likelihood of accurate judgment. An examination of Figures 6–9 clearly shows that the
order 0.3 fractional Lorenz chaos system was superior to other methods and orders. In addition,
another advantage is that only vibration signals need to be collected for processing, and the cost of
the sensors is minimal. Figure 11 shows the accuracy of results from each method used with a model
built from the data of 20 tests. A total of 500 random readings (125 for each state) were used to test our
diagnosis system. The results showed that when the fractional order parameter was 0.3, the accuracy
rate approached 100%. However, with a fractional order of 0.5, accuracy was only 84%.
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7. Conclusions

In this paper a method was presented for the evaluation of faults in ball bearings integrating
fractional-order chaos synchronization dynamic error and extension theory. Implementation of such
a ball bearing intelligent state monitoring system can be done using the LabVIEW human–machine
interface. The results of our experiments show the method has some distinct advantages in that cost is low
because only one sensor is needed, calculations can be made quickly, and the accuracy of diagnosis is good.
This method can be used to monitor the ball bearings in every part of a machine tool. Such an intelligent
system would detect problems fast and accurately, making it possible for faulty bearings to be found and
replaced before a breakdown. This will improve the overall efficiency of any machine tool installation.

In the system used in this study, a Chua’s circuit was added to a fractional order chaotic system
to pre-process the vibration signals. Extension was then used to identify the fault state. If the
pre-processing was not good enough, the extension theory did not give good results. The adjustment
could be made to the fractional-order parameter. Although the accuracy achieved was close to
100%, we still need to be sure that 0.3 is the best order for all ball bearing systems in future.
Furthermore, the database used in this study only considered changes in axial load at a set speed.
Experiments with different axial load over a range of speed need to be done in the future.

This system can record and store captured signals and diagnosis results. If it could be integrated
with Ethernet control automation technology (EtherCAT), this might helpful in several ways.
For example, the data could be uploaded to the cloud and immediately be available for other users
anywhere. Such a database would be extremely useful as a check for review and evaluation, or the
improvement of existing methods. It would certainly help the development of Industry 4.0.

Author Contributions: Conceptualization, H.-T.Y. and A.-H.T.; Methodology, Y.-C.L. and C.-B.F.; Software, Y.-C.L.,
H.-T.Y. and C.-B.F.; Data Curation, A.-H.T. and C.-B.F.; Writing-Original Draft Preparation, Y.-C.L. and H.-T.Y.;
Writing-Review & Editing, A.-H.T. and H.-T.Y.

Funding: The authors would like to thank the National Science Council of the Republic of China, Taiwan,
for financial support of this project under Contract No. MOST 104-2221-E-167-001. This research project
also received financial support from the Yunnan Province Science and Technology Department and Education
Department Project of China (2017FH001-067, 2017FH001-117, 2016ZDX127).

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2018, 18, 3069 13 of 14

References

1. Corne, B.; Vervisch, B.; Derammelaere, S.; Knockaert, J.; Desmet, J. The reflection of evolving bearing faults
in the stator current’s extended park vector approach for induction machines. Mech. Syst. Sig. Process. 2018,
107, 168–182. [CrossRef]

2. Duan, Z.; Wu, T.; Guo, S.; Shao, T.; Malekian, R.; Li, Z. Development and trend of condition monitoring and
fault diagnosis of multi-sensors information fusion for rolling bearings: A review. Int. J. Adv. Manuf. Technol.
2018, 96, 803–819. [CrossRef]

3. Fei, C.-W.; Choy, Y.-S.; Bai, G.-C.; Tang, W.-Z. Multi-feature entropy distance approach with vibration and
acoustic emission signals for process feature recognition of rolling element bearing faults. Struct. Health
Monit. Int. J. 2018, 17, 156–168. [CrossRef]

4. Liu, J.; Shao, Y. Overview of dynamic modelling and analysis of rolling element bearings with localized and
distributed faults. Nonlinear Dyn. 2018, 93, 1765–1798. [CrossRef]

5. Piltan, F.; Kim, J.-M. Bearing fault diagnosis by a robust higher-order super-twisting sliding mode observer.
Sensors 2018, 18, 1128. [CrossRef] [PubMed]

6. Dang, Z.; Lv, Y.; Li, Y.R.; Wei, G.Q. Improved dynamic mode decomposition and its application to fault
diagnosis of rolling bearing. Sensors 2018, 18, 1972. [CrossRef] [PubMed]

7. Pang, B.; Tang, G.J.; Tian, T.; Zhou, C. Rolling bearing fault diagnosis based on an improved htt transform.
Sensors 2018, 18, 1203. [CrossRef] [PubMed]

8. Wan, S.T.; Zhang, X. Teager energy entropy ratio of wavelet packet transform and its application in bearing
fault diagnosis. Entropy 2018, 20, 388. [CrossRef]

9. Leite, V.C.; da Silva, J.G.B.; Veloso, G.F.C.; da Silva, L.E.B.; Lambert-Torres, G.; Bonaldi, E.L.;
de Oliveira, L.E.D.L. Detection of localized bearing faults in induction machines by spectral kurtosis and
envelope analysis of stator current. IEEE Trans. Ind. Electron. 2015, 62, 1855–1865. [CrossRef]

10. Iorgulescu, M.; Beloiu, R. Faults diagnosis for electrical machines based on analysis of motor current.
In Proceedings of the International Conference on Optimization of Electrical and Electronic Equipment
(OPTIM), Brasov, Romania, 22–24 May 2014; pp. 291–297.

11. Cui, L.; Liu, Z.; Fengxing, Z.; Cheng, G. Application of generalized demodulation in bearing fault diagnosis
of inverter fed induction motors. In Proceedings of the 11th World Congress on Intelligent Control and
Automation, Shenyang, China, 29 June–4 July 2014; pp. 2328–2333.

12. Esfahani, E.T.; Wang, S.; Sundararajan, V. Multisensor wireless system for eccentricity and bearing fault
detection in induction motors. IEEE/ASME Trans. Mechatron. 2014, 19, 818–826. [CrossRef]

13. Kang, M.; Kim, J.; Wills, L.M.; Kim, J.M. Time-varying and multiresolution envelope analysis and discriminative
feature analysis for bearing fault diagnosis. IEEE Trans. Ind. Electron. 2015, 62, 7749–7761. [CrossRef]

14. Wang, J.; He, Q.; Kong, F. Adaptive multiscale noise tuning stochastic resonance for health diagnosis of
rolling element bearings. IEEE Trans. Instrum. Meas. 2015, 64, 564–577. [CrossRef]

15. Junbo, T.; Weining, L.; Juneng, A.; Xueqian, W. Fault diagnosis method study in roller bearing based on
wavelet transform and stacked auto-encoder. In Proceedings of the 27th Chinese Control and Decision
Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 4608–4613.

16. Harmouche, J.; Delpha, C.; Diallo, D. Improved fault diagnosis of ball bearings based on the global spectrum
of vibration signals. IEEE Trans. Energy Convers. 2015, 30, 376–383. [CrossRef]

17. Yamahata, C.; Sarajlic, E.; Krijnen, G.J.M.; Gijs, M.A.M. Subnanometer translation of microelectromechanical
systems measured by discrete fourier analysis of ccd images. J. Microelectromech. Syst. 2010, 19, 1273–1275.
[CrossRef]

18. Zhang, Z.; Wu, J.; Ma, J.; Wang, X.; Zhou, C. Fault diagnosis for rolling bearing based on lifting wavelet
and morphological fractal dimension. In Proceedings of the 27th Chinese Control and Decision Conference
(2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 6351–6354.

19. Zhang, W.; Zhu, H.; Yang, Z.; Sun, X.; Yuan, Y. Nonlinear model analysis and “switching model” of ac–dc
three-degree-of-freedom hybrid magnetic bearing. IEEE/ASME Trans. Mechatron. 2016, 21, 1102–1115. [CrossRef]

20. Kumar, A.; Kumar, R. Oscillatory behavior-based wavelet decomposition for the monitoring of bearing
condition in centrifugal pumps. Proc. Inst. Mech. Eng. Part J. Eng. Tribol. 2018, 232, 757–772. [CrossRef]

21. Liu, W.B.; Luo, N.S.; Pan, G.; Ouyang, A.J. Chaos particle swarm optimization algorithm for optimization
problems. Int. J. Pattern Recognit. Artif. Intell. 2018, 32, 1859019. [CrossRef]

http://dx.doi.org/10.1016/j.ymssp.2017.12.010
http://dx.doi.org/10.1007/s00170-017-1474-8
http://dx.doi.org/10.1177/1475921716687167
http://dx.doi.org/10.1007/s11071-018-4314-y
http://dx.doi.org/10.3390/s18041128
http://www.ncbi.nlm.nih.gov/pubmed/29642459
http://dx.doi.org/10.3390/s18061972
http://www.ncbi.nlm.nih.gov/pubmed/29921832
http://dx.doi.org/10.3390/s18041203
http://www.ncbi.nlm.nih.gov/pubmed/29662013
http://dx.doi.org/10.3390/e20050388
http://dx.doi.org/10.1109/TIE.2014.2345330
http://dx.doi.org/10.1109/TMECH.2013.2260865
http://dx.doi.org/10.1109/TIE.2015.2460242
http://dx.doi.org/10.1109/TIM.2014.2347217
http://dx.doi.org/10.1109/TEC.2014.2341620
http://dx.doi.org/10.1109/JMEMS.2010.2067445
http://dx.doi.org/10.1109/TMECH.2015.2463676
http://dx.doi.org/10.1177/1350650117727976
http://dx.doi.org/10.1142/S021800141859019X


Sensors 2018, 18, 3069 14 of 14

22. Mishra, C.; Samantaray, A.K.; Chakraborty, G. Rolling element bearing fault diagnosis under slow speed
operation using wavelet de-noising. Measurement 2017, 103, 77–86. [CrossRef]

23. Sinha, A.K.; Das, S.; Chatterjee, T.K. Wavelet transform based ball bearing fault detection scheme for heavy
duty mining electrical motors under supply frequency regulation using mcsa. Int. J. Technol. 2018, 9, 170–180.
[CrossRef]

24. Upadhyay, N.; Kankar, P.K. Diagnosis of bearing defects using tunable q-wavelet transform. J. Mech.
Sci. Technol. 2018, 32, 549–558. [CrossRef]

25. Kuo, Y.C.; Hsieh, C.T.; Yau, H.T.; Li, Y.C. Study on unified chaotic system-based wind turbine blade fault
diagnostic system. Int. J. Bifurcat. Chaos 2015, 25, 1550042. [CrossRef]

26. Yau, H.T.; Kuo, Y.C.; Chen, C.L.; Li, Y.C. Ball bearing test-rig research and fault diagnosis investigation.
IET Sci. Meas. Technol. 2016, 10, 259–265. [CrossRef]

27. Fu, C.B.; Tian, A.H.; Li, Y.C.; Yau, H.T. Fractional-order chaos synchronization for real-time intelligent
diagnosis of islanding in solar power grid systems. Energies 2018, 11, 1183. [CrossRef]

28. Yau, H.T.; Wu, S.Y.; Chen, C.L.; Li, Y.C. Fractional-order chaotic self-synchronization-based tracking faults
diagnosis of ball bearing systems. IEEE Trans. Ind. Electron. 2016, 63, 3824–3833. [CrossRef]

29. Chua, L.O. Chua circuit 10 years later. Int. J. Circuit Theory Appl. 1994, 22, 279–305. [CrossRef]
30. Chua, L.O.; Wu, C.W.; Huang, A.; Guo-Qun, Z. A universal circuit for studying and generating chaos. I.

Routes to chaos. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1993, 40, 732–744. [CrossRef]
31. Case Western Reserve University Bearing Data Center. Available online: http://csegroups.case.

edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
(accessed on 13 May 2018).

32. Sheu, L.-J.; Tam, L.-M.; Chen, H.-K.; Lao, S.-K. Alternative implementation of the chaotic chen–lee system.
Chaos Solitons Fractals 2009, 41, 1923–1929. [CrossRef]

33. Chen, J.-H. Controlling chaos and chaotification in the chen–lee system by multiple time delays.
Chaos Solitons Fractals 2008, 36, 843–852. [CrossRef]

34. Huang, C.-H.; Lin, C.-H.; Kuo, C.-L. Chaos synchronization-based detector for power-quality disturbances
classification in a power system. IEEE Trans. Power Del. 2011, 26, 944–953. [CrossRef]

35. Amir, S.Z.; Sun, S.Y. Physics-preserving averaging scheme based on grunwald-letnikov formula for gas flow
in fractured media. J. Pet. Sci. Eng. 2018, 163, 616–639. [CrossRef]

36. Brzezinski, D.W.; Ostalczyk, P. About accuracy increase of fractional-order derivative and integral
computations by applying the grunwald-letnikov formula. Commun. Nonlinear Sci. Numer. Simul. 2016, 40,
151–162. [CrossRef]

37. Neel, M.C.; Abdennadher, A.; Solofoniaina, J. A continuous variant for grunwald-letnikov fractional
derivatives. Phys. Stat. Mech. Appl. 2008, 387, 2750–2760. [CrossRef]

38. Wang, M.H. Application of extension theory to vibration fault diagnosis of generator sets. IEE Proc. Gener.
Transm. Distrib. 2004, 151, 503–508. [CrossRef]

39. Fu, S.; Liu, K.; Xu, Y.G.; Liu, Y. Rolling bearing diagnosing method based on time domain analysis and
adaptive fuzzy c-means clustering. Shock Vibr. 2016, 2016, 942787.

40. Yang, C.; Zheng, L.H. Pressure and temperature bearing capacities of fuzzy-ball fluid. Asian J. Chem. 2014,
26, 5571–5573.

41. Wang, M.-H.; Ho, C.-Y. Application of extension theory to pd pattern recognition in high-voltage current
transformers. IEEE Trans. Power Del. 2005, 20, 1939–1946. [CrossRef]

42. Mang-Hui, W. Extension neural network-type 2 and its applications. IEEE Trans. Neural Netw. 2005, 16,
1352–1361.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.measurement.2017.02.033
http://dx.doi.org/10.14716/ijtech.v9i1.1507
http://dx.doi.org/10.1007/s12206-018-0102-8
http://dx.doi.org/10.1142/S021812741550042X
http://dx.doi.org/10.1049/iet-smt.2015.0146
http://dx.doi.org/10.3390/en11051183
http://dx.doi.org/10.1109/TIE.2016.2522941
http://dx.doi.org/10.1002/cta.4490220404
http://dx.doi.org/10.1109/81.246149
http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
http://dx.doi.org/10.1016/j.chaos.2008.07.053
http://dx.doi.org/10.1016/j.chaos.2006.10.049
http://dx.doi.org/10.1109/TPWRD.2010.2090176
http://dx.doi.org/10.1016/j.petrol.2017.12.078
http://dx.doi.org/10.1016/j.cnsns.2016.03.020
http://dx.doi.org/10.1016/j.physa.2008.01.090
http://dx.doi.org/10.1049/ip-gtd:20040538
http://dx.doi.org/10.1109/TPWRD.2005.848673
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Chua’s Circuit 
	Experiment System 
	Chaos Theory 
	Extension Theory 
	Matter-Element Theory 
	Extension Sets 
	An Extension Theory Matter-Element Model 

	Experiment Results 
	Conclusions 
	References

