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Abstract: In this paper, a novel method, that employs a fractional Fourier transform and a tuneable
Sigmoid transform, is proposed, in order to estimate the Doppler stretch and time delay of wideband
echoes for a linear frequency modulation (LFM) pulse radar in an alpha-stable distribution noise
environment. Two novel functions, a tuneable Sigmoid fractional correlation function (TS-FC) and
a tuneable Sigmoid fractional power spectrum density (TS-FPSD), are presented in this paper. The
novel algorithm based on the TS-FPSD is then proposed to estimate the Doppler stretch and the
time delay. Then, the derivation of unbiasedness and consistency is presented. Furthermore, the
boundness of the TS-FPSD to the symmetric alpha stable (SαS) noise, the parameter selection of the
TS-FPSD, and the feasibility analysis of the TS-FPSD, are presented to evaluate the performance of
the proposed method. In addition, the Cramér–Rao bound for parameter estimation is derived and
computed in closed form, which shows that better performance has been achieved. Simulation results
and theoretical analysis are presented, to demonstrate the applicability of the forgoing method. It is
shown that the proposed method can not only effectively suppress impulsive noise interference, but
it also does not need a priori knowledge of the noise with higher estimation accuracy in alpha-stable
distribution noise environments.

Keywords: alpha stable distribution noise; tuneable Sigmoid transform; fractional power spectrum
density; LFM pulse radar; parameter estimation

1. Introduction

The joint estimation of the Doppler and time delay of a noise-contaminated signal is a fundamental
problem in radar and sonar systems and this has been extensively addressed for the case involving
narrowband signals [1–6]. Weiss [7], Remley [8], and Qu [9] indicated that the narrowband model
and the corresponding narrowband signal processing techniques are applicable when BT � c/2v,
where B is the bandwidth of the transmitted signal, T is the duration of the transmitted signal, v
is the relative velocity between the target and the sensor, and c is the propagation speed of the
signal. The wideband signals, such as linear frequency modulation (LFM) signals with a large time
frequency–bandwidth product, are frequently used in sonar and radar systems because of their lower
probability of interception. In many modern radar systems, however, a wideband signal is utilized, and
the narrowband model is not appropriate. In applications where BT � c/2v is invalid, the wideband
model has to be employed. In wideband radar systems, the echo often contains a Doppler stretch
(DS), and not a Doppler shift only, which results in difficulty in the parameters’ estimation. For the
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determination of the range and the relative velocity of the target, the accurate estimation of these
parameters is crucial.

Since the fractional Fourier transform (FRFT) spectrum of a LFM signal has a greater energy
concentration characteristic, the FRFT, as a new time–frequency tool, has attracted more attention,
and has been widely applied to the parameter estimation of LFM signal [10–16]. Zhao et al. propose
a method for estimating the LFM signal by utilizing the pulse compression in both the time domain
and the FRFT domain [10]. The parameters of the LFM signal can be estimated by a fractional Fourier
transform [11,12], a fractional correlation [13], and a fractional power spectrum [14–16].

Up to now, in most parameter estimation methods for array signal processing, the additive noise
is assumed to be Gaussian. Studies and experimental measurements have shown that a broad class of
noise such as underwater acoustic noise, atmospheric noise, multiuser interference, and radar clutters
in real world applications are non-Gaussian, primarily owing to impulsive phenomena [17,18]. Taking
these scenarios into account, it is inappropriate to model the noise as Gaussian noise. Researchers
have studied this impulsive nature, and shown that the symmetric alpha stable (SαS) processes are
better models for impulsive noise than the Gaussian processes. The conventional algorithms based on
second-order statistics degenerate severely in the SαS noise environment.

To reduce the SαS noise interference, many parameter estimation algorithms based on the
fractional lower-order statistics (FLOS) have been proposed [16,19–21]. However, these algorithms do
need a priori knowledge of the SαS noise and have other limitations, where the characteristic exponent
α and the fractional lower order of moments p must meet the need of 1 ≤ p < α or 0 < p < α/2,
otherwise those algorithms performance can degrade seriously, or even become invalid, while the
fractional lower-order moment value is not appropriate.

The Sigmoid function is widely used as a common nonlinear transform. The Sigmoid function can
suppress impulsive noise interference, and this does not depend on a priori knowledge of the noise.
Yu et al., propose a method based on generalized Sigmoid cyclic cross-ambiguity function to estimate
the time delay and Doppler frequency shift in the impulsive noise and co-channel interference [22].
In [22], the signal is assumed to be the real signal. However, when the signal is a complex signal, the
results do not always hold.

To handle this problem, a novel concept termed the tuneable Sigmoid transform fractional
correlation (TS-FC) is proposed in this paper, and a relative method named the tuneable Sigmoid
fractional power spectrum density (TS-FPSD) is presented, to fulfill the needs mentioned above. The
novel algorithm based on the TS-FPSD is then proposed to estimate the Doppler stretch and time
delay. In addition, we address unbiasedness and consistency by adding their corresponding derivation.
Furthermore, the boundness of the TS-FPSD to the SαS noise, the parameter selection of the TS-FPSD,
the feasibility analysis of the TS-FPSD, and the Cramér–Rao bound for parameter estimation are
presented, to evaluate the performance of the proposed method. The proposed method does not need
a priori knowledge of the alpha stable distribution noise.

This paper is organized as follows. Section 2 presents a signal model of wideband echoes in
an alpha-stable distribution noise environment. In Section 3, the analysis of the fractional power
spectrum density is presented. In Section 4, a novel tuneable Sigmoid fractional correlation function
(TS-FC) and a novel tuneable Sigmoid fractional power spectrum density function (TS-FPSD) are
defined. In addition, unbiasedness and consistency are derived. In Section 5, a novel Doppler stretch
and time delay estimation method based on TS-FPSD for the SαS noise is proposed. In addition, the
boundness of the TS-FPSD to the SαS noise, parameter selection of the TS-FPSD, and a feasibility
analysis of the TS-FPSD are analyzed, and the Cramér–Rao bound for parameter estimation is derived.
In Section 6, the performance of the parameter estimation algorithm is studied through extensive
numerical simulations. Finally, conclusions are drawn in Section 7.
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2. The Signal Model and the Noise Model

2.1. The Signal Model

We consider x(t) as a LFM signal, defined as:

x(t) =

{
A exp

(
j2π
(

f0t + 1
2 µ0t2

))
, 0 < t < T

0, T < t < T0
(1)

where f0 and µ0 are the initial frequency and the frequency modulation rate, respectively. A denotes
the signal amplitude, T0 denotes the modulation period, and T denotes the LFM pulse duration. In a
wideband radar system, the echo from a wideband signal often contains a Doppler stretch (DS), and
not a Doppler shift only. The echo y(t) can be expressed as [9]:

y(t) =
L
∑

l=1
βl x(σl(t− τl)) + n(t)

=


L
∑

l=1
βl A exp

(
j2π
(

σl f0(t− τl) +
1
2 µ0σ2

l (t− τl)
2
))

+ n(t), 0 ≤ t ≤ T

0 T ≤ t ≤ T0

(2)

where βl denotes the attenuation factor of the lth multipath,σl is the Doppler stretch, τl is the time
delay (TD), and L denotes the number of the echo. The noise n(t) is a sequence of the independent
and identically distributed (i.i.d) isotropic complex SαS random variable.

2.2. The SαS Distribution Noise Model

In order to evaluate the robustness of the proposed method, the α-stable distribution noise is
modeled by a complex isotropic symmetric α-stable (SαS) noise distribution [16,17]. The characteristic
function of the SαS distribution is defined as follows:

ρ(ω) = exp
(
−γ|ω|α

)
(3)

where α(0 < α ≤ 2) is usually called the characteristic exponent. When α < 2, the distribution is
algebraic-tailed with a tail constant α, implying infinite variance. The smaller it is, the heavier the tails
of the density. When α = 2, the SαS distribution reduces to the Gaussian distribution. The parameter
γ, usually called the dispersion, is a positive constant that is related to the scale of the distribution.
The parameter γ plays a role that is analogous to that of the variance for a second-order process. The
following proposition gives us a closed-form expression for the geometric power of the symmetric
α-stable random variables [18]:

S0 = (Cγ)1/α/C (4)

where C ≈ 1.78.
Since the α-stable distribution with α < 2 determines an infinite variance, we describe the

signal-to-noise condition of SαS using the generalized signal-noise-ratio (GSNR) [17], which is
defined as:

GSNR = 10lg
(

σ2
x /γ

)
(5)

where σ2
x and γ are the variance of the underlying signal and dispersion of the SαS noise, respectively.

3. Analysis of the Fractional Power Spectrum Density

3.1. The Fractional Correlation Function and the Fractional Power Spectrum Density

The fractional Fourier transform (FRFT) is a generalization of the FT, and it can be interpreted as
a rotation of the signal to any angles in the time–frequency plane [15,16].
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The fractional correlation function (FC) of the signal x(t) is defined as [15]:

R̂ρ
xx(ξ) = lim

T→∞

1
2T

∫ +T

−T
Rxx(t + ξ, t) exp(jtξ cot ρ)dt (6)

where Rxx(t + ξ, t) is the correlation function of the signal x(t), ξ denotes the delay, and ρ denotes the
rotation angle in the FRFT domain.

The fractional power spectrum density function (FPSD) of the signal x(t) is expressed as [15]:

Pρ
xx(m) = A−ρFρ

[
R̂ρ

xx(ξ)
]
(m) exp

(
−jm2 cot ρ/2

)
(7)

where Aρ =
√

1−j cot ρ
2π , m denotes the frequency in FRFT domain, and Fρ[·](m) denotes the fractional

Fourier transform.
The continuous FRFT [11] of a signal x(t) with a rotation angle ρ, is defined as:

X(ρ, m) = Fρ[x(t)](m) =
∫ +∞

−∞
x(t)Kb(t, m)dt (8)

where Fb denotes the FRFT operator, b(0 < b ≤ 2) denotes the fractional order, ρ ≡ bπ/2, and Kb(t, m)

is the kernel function of the fractional Fourier transform. Kb(t, m) can be expressed as:

Kb(t, m) =


Aρ exp

(
j
2
(
t2 cot ρ− 2mt csc ρ + m2 cot ρ

))
, ρ 6= nπ

δ(t−m), ρ = 2nπ

δ(t + m), ρ = (2n + 1)π

(9)

3.2. The Parameter Estimation Based on the Fractional Power Spectrum Density Function

From Equations (2) and (6), the fractional correlation R̂ρ
yy(ξ) of the echo signal y(t) can be

expressed as (see Appendix A for details):

R̂ρ
yy(ξ) =

L
∑

l=1
lim

T→∞
1

2T

∫ +T
−T E[y(t + ξ)y∗(t)]exp(jtξ cot ρ)dt

=
L
∑

l=1
β2

l A2 exp
(

j2π
(

f0σl − µ0τlσ
2
l
)
ξ + 1

2 µ0σ2
l ξ2
)

lim
T→∞

1
2T

∫ +T
−T dt

∫ +T
−T exp

(
j
(
2πµ0σ2

l + cot ρ
)
tξ
)
dt

+R̂ρ
yy,lq(ξ) + R̂ρ

yn(ξ) + R̂ρ
nn(ξ)

(10)

where R̂ρ
yy,lq(ξ) denotes the fractional correlation function between yl(t) and yq(t), R̂ρ

yn(ξ) denotes the

fractional correlation functions between the echo signal y(t) and the noise n(t), and R̂ρ
yn(ξ) is treated

as a random interference. R̂ρ
nn(ξ) denotes the fractional correlation function of the noise n(t).

When 2πµ0σ2
l = − cot ρl , Equation (10) can be rewritten as:

R̂ρl
yy(ξ) =

L

∑
l=1

β2
l A2 exp

(
j2π
(

f0σl − µ0τlσ
2
l

)
ξ +

1
2

µ0σ2
l ξ2
)
+ R̂ρl

yy,lq(ξ) + R̂ρl
yn(ξ) + R̂ρl

nn(ξ) (11)

From Equation (11), we can find that R̂ρl
yy(ξ) has the expression of a LFM signal, which has the

characteristics of energy that is concentrated in the FRFT domain. However, R̂ρl
yy,lq(ξ),R̂

ρl
yn(ξ), and

R̂ρl
nn(ξ) do not have such characteristics in the FRFT domain; the amplitudes of TS-FPSD of different

targets are very low at (ρl , ml), and these signals are not considered as randomly interfering. Therefore,
the fractional power spectrum density Pρ

yy(m) of the echo signal y(t) can be computed as:
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Pρ
yy(m) = A−ρFρ

[
R̂ρl

yy(τ)
]
(m) exp

(
−jm2 cot ρ/2

)
=

L
∑

l=1
A−ρ Aρ

∫ + T
2

− T
2

exp
(

j
(
2π f0σl − 2πµ0τlσ

2
l −m csc ρ

)
ξ + j

2

(
2πµ0σ2

l + cot ρ
)
ξ2
)

dξ + Pρ
N(m)

(12)

The Pρ
yy(m) forms a pulse in the FRFT domain, and its peak value appears at (ρl , ml) as:

cot ρl = −2πµ0σ2
l

m0 csc ρl = 2π f0σl − 2πµ0σ2
l τl(

ρl = −arc cot 2πµ0σ2
l , ml = 2π

(
f0σl − 2πµ0σ2

l τl
)

sin β0
)
= arg

ρ,m
max

∣∣∣Pρ
yy(m)

∣∣∣ (13)

Then, it follows directly from Equation (13) that the Doppler stretch σl and the time delay τl are
estimated by [16]:  σ̂l =

√
− cot ρl

2πµ0

τ̂l =
2π f0σ̂l−ml csc ρl

2πµ0σ̂2
l

(14)

When the alpha-stable distribution noise is added, this peak location algorithm may fail.
The reason is that the alpha-stable distribution does not have a finite α-order moment and other
higher-than-α-order moments, and the fractional correlation function and fractional power spectrum
density function are based on a second-order moment. Accordingly, the fractional power spectrum
density algorithm will become unbounded when the received signal contains an alpha-stable
distribution noise. Therefore, we present a tuneable Sigmoid transform, to suppress the alpha-stable
distribution noise interference.

4. The Tuneable Sigmoid-Based Fractional Power Spectrum Density

4.1. The Tuneable Sigmoid Transform

The Sigmoid function is widely used as a common nonlinear transform [23–25]. Its definition is
shown in Equation (15):

Sigmoid[x(t)] =
2

1 + exp[−λx(t)]
− 1 (15)

where λ is the inclined coefficient to adjust x(t) at different scales. The parameter λ is used as a
scale factor to fit various signals and noises. A proper λ will retain sufficient information regarding
the time delay and Doppler stretch, and attenuate most of the outliers at the same time. Thus, the
proper selection of λ will ensure the accuracy of the estimation. The selection of λ is analyzed in
Section 5.3. Through the analysis, the inclined coefficient λ for the TS-FPSD is set as λ = 1 in all the
later simulations of this paper.

For a SαS process with a = 0, the Sigmoid transform has some properties as follows [22,26]:

Property 1. If x(t) is a SαS process with β = 0 and a = 0, then Sigmoid[x(t)] has a symmetric
distribution with zero mean in its probability density function.

Property 2. If x(t)is a SαS process with γ > 0and a = 0, then ‖Sigmoid[x(t)]‖α > 0, and the mean value of
Sigmoid[x(t)] is zero.

Property 3. If x(t)is a SαS process with a = 0, then Sigmoid[x(t)] has a finite second-order moment with
zero mean (referred to as second order moment process).

According to the first three properties, we can derive the following property as:
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Property 4. Set X(t) = Sigmoid[x(t)], then X(t) has the same Doppler shift asx(t).

Proof.
If we set x2(t) = x(ct), then we know that X2(t) = Sigmoid[x2(t)] = Sigmoid[x(ct)] = X(ct).
If we set Fx(ω) is the Fourier transform of x(t) and FX(ω) is that of X(t), they satisfy the following

relationship Fx(ω) =
∫ ∞
−∞ x(t)e−jωtdt and FX(ω) =

∫ ∞
−∞ X(t)e−jωtdt. Then, we know Fx2(ω) =

1
c
∫ ∞
−∞ x(ct)e−jωct/cdct = 1

c Fx(ω/c) and FX2(ω) = 1
c
∫ ∞
−∞ X(ct)e−jωct/cdct = 1

c FX(ω/c).
The frequency shift between x(t) and x2(t) is the same as the frequency shift between X(t) and

X2(t). The frequency shift could be arbitrary as the parameter c varies.
Therefore, X(t) has the same modulation characteristic as x(t).

Property 5. Set X(t) = Sigmoid[x(t)], then X(t) has the same time delay as x(t).

Proof. Set x1(t) = x(t− D), then:

X1(t) = 2
1+exp(−x1(t))

− 1

= 2
1+exp(−x(t−D))

− 1

= X(t− D)

(16)

That is to say, that the Sigmoid transform does not change the time delay contained in x(t).

Property 6. If x(t) is a periodic function, then X(t) has the same period as x(t).

Proof.
For a periodic signal x(t), satisfying x(t + T′) = x(t), where T′ is its period. Then:

X(t + T′) = Sigmoid[x(t + T′)] = Sigmoid[x(t)]
= X(t)

(17)

Accordingly, X(t) is periodic. Since X(t) = Sigmoid[x(t)] = 2
1+exp[−x(t)] − 1 is a monotonic

increasing function for x(t), the period of X(t) is the same as that of x(t).

4.2. Definition of the Tuneable Sigmoid-FC and the Tuneable Sigmoid-FPSD

Overcoming the limitations of the performance degradation of existing methods based on the
fractional Fourier transform in the alpha-stable distribution noise- and the fractional lower-order
statistics-based methods depends on the priori knowledge of noise. This paper presents two novel
function definitions, the TS-FC and the TS-FPSD.

A novel fractional correlation, R̂TS
xx,ρ(ξ), referred to as the TS-FC, is defined as:

R̂TS
xx,ρ(ξ) = lim

T→∞

1
2T

∫ +T

−T
RSigmoid

xx (t + ξ, t) exp(jtξ cot ρ)dt (18)

where RSigmoid
xx (t + ξ, t) = E{Sigmoid[x(t + ξ)]Sigmoid∗[x(t)]}.

A novel power spectrum function PTS
xx,ρ(m), referred to as the TS-FPSD, is defined as:

PTS
xx,ρ(m) = A−ρFρ

[
R̂TS

xx,ρ(ξ)
]
(m) exp

(
−jm2 cot ρ/2

)
(19)
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The TS-FC in the discrete-time case can be defined as follows [15]:

R̂TS
xx,ρ(k) = lim

N→∞

1
2N + 1

N

∑
n=−N

RSigmoid
xx (n + k, n) exp

(
jnkT2 cot ρ

)
(20)

where T is the sampling period, t = nT.
Let w = mT; the discrete-time TS-FPSD can be defined as:

PTS
xx,ρ(w) = A−ρ F̃ρ

[
R̂TS

xx,ρ(k)
]
(w) exp

(
−j
(

w2/2T2
)

cot ρ
)

(21)

Figure 1 shows the spectrum of the FPSD and the TS-FPSD in the no-noise and impulsive noise
environments, respectively. In the α-stable distribution noise environment with GSNR = 5 dB, α = 1.2,
and L = 2, Figure 1a,b shows the time–frequency distribution of the fractional correlation (FC) and
the FPSD of two LFM signals in the no-noise environment. From Figure 1a,b, we can find that the
plots are smooth because there is no interference of noise. Figure 1c,d present that the time–frequency
distribution of FC and FPSD of two echoes with the SαS noise. Figure 1e,f present the time–frequency
distribution of the TS-FC and the TS-FPSD of two echoes with SαS noise. From Figure 1, it is clearly
seen that identifying the correct peak location is not trivial, as the FPSD peak could not be distinguished
from the SαS noise. Accordingly, the estimation performance of the FPSD method degraded severely
in the SαS noise environment. After the application of the tuneable Sigmoid transformation, the SαS
noise was suppressed effectively, and the TS-FPSD spectrum formed an obvious pulse in the FRFT
domain. Thus, the method based on the TS-FPSD yielded better estimation performance. The Sigmoid
transform can result in some information loss, same as other nonlinear transforms, but its capability
for suppression impulsive noise is employed in this paper.
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4.3. Unbiasedness and Consistency

In statistical theory, the bias (or bias function) of an estimator is the difference between the
estimator’s expected value and the true value of the parameter being estimated. In general, the bias is
related to consistency, where consistent estimators are convergent and asymptotically unbiased (hence
they converge to the correct value as the number of data points grows arbitrarily large) [27,28].

In this section, the unbiasedness and consistency of the TS-FC and TS-FPSD are analyzed, to
evaluate the performance of the proposed method. The derivation of the unbiasedness and consistency
are presented in details in Appendix B.

4.3.1. Unbiasedness and Consistency of the TS-FC

Let the estimator of the TS-FC ˆ̂R
TS
xx,ρ(k) is:

ˆ̂R
TS
xx,ρ(k) = lim

N→∞

1
2N + 1

N

∑
n=−N

1
M

M−1−|k|

∑
h=0

Sigmoid[x(h + k)]Sigmoid∗[x(h)] exp
(

jnkT2 cot ρ
)

(22)

According to the definition of the unbiasedness, we can obtain as follows:

bia
[

ˆ̂R
TS
xx,ρ(k)

]
= E

[
ˆ̂R

TS
xx,ρ(k)

]
− R̂TS

xx,ρ(k) (23)
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where:

E
[

ˆ̂R
TS
xx,ρ(k)

]
=

M− |k|
M

R̂TS
xx,ρ(k) (24)

For a given |k| value and as M→ ∞ , we can obtain E
[

ˆ̂R
TS
xx,ρ(k)

]
= R̂TS

xx,ρ(k), i.e., bia
[

ˆ̂R
TS
xx,ρ(k)

]
=

0. Therefore, the estimator of the TS-FC is the asymptotic unbiased estimation.
According to the definition of the consistency, we can obtain:

Var
[

ˆ̂R
TS
xx,ρ(k)

]
= E

{[
ˆ̂R

TS
xx,ρ(k)− E

[
ˆ̂R

TS
xx,ρ(k)

]]2
}

= E

{[
ˆ̂R

TS
xx,ρ(k)

]2
}
−
{

E
[

ˆ̂R
TS
xx,ρ(k)

]}2 (25)

When M→ ∞ , we can obtain Var
[

ˆ̂R
TS
xx,ρ(k)

]
= 0.

In summary, according to the bia
[

ˆ̂R
TS
xx,ρ(k)

]
= 0 and Var

[
ˆ̂R

TS
xx,ρ(k)

]
= 0, we may draw a

conclusion that the estimator of the TS-FC is the asymptotic consistent estimation.

4.3.2. Unbiasedness and Consistency of the TS-FPSD

Let the estimator of the TS-FPSD is:

P̂TS
xx,ρ(w) = A−ρ F̃ρ

[
ˆ̂R

TS
xx,ρ(k)

]
(w) exp

(
−j
(

w2/2T2
)

cot ρ
)

(26)

According to the definition of the unbiasedness, we can obtain:

bia
[

P̂TS
xx,ρ(w)

]
= E

[
P̂TS

xx,ρ(w)
]
− PTS

xx,ρ(w) (27)

For a given |k| value and as M→ ∞ ,E
[

P̂TS
xx,ρ(w)

]
= PTS

xx,ρ(w), i.e., bia
[

P̂TS
xx,ρ(w)

]
= 0. Therefore,

the estimator of the TS-FPSD is the asymptotic unbiased estimation.
According to the definition of the consistency, we can obtain:

Var
[

P̂TS
xx,ρ(w)

]
= E

{[
P̂TS

xx,ρ(w)− E
[

P̂TS
xx,ρ(w)

]]2
}

= E
{[

P̂TS
xx,ρ(w)

]2
}
−
{

E
[

P̂TS
xx,ρ(w)

]}2 (28)

For a given |k| and as M→ ∞ , we can get:

Var
[

P̂TS
xx,ρ(w)

]
=
[

PTS
xx,ρ(w)

]2
−
[

E
{

P̂TS
xx,ρ(w)

}]2
= 0 (29)

In summary, according to bia
[

P̂TS
xx,ρ(w)

]
= 0 and Var

[
P̂TS

xx,ρ(w)
]
= 0, we may draw a conclusion

that the estimator of the TS-FPSD is the asymptotic consistent estimation.

5. Parameter Estimation Based on TS-FPSD

5.1. Joint Doppler Stretch and Time Delay Estimation

The echo signal y(t) with α-stable distribution noise can be expressed as:

y(t) =
L

∑
l=1

βl x(σl(t− τl)) + n(t) (30)
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where the noise n(t) denotes the SαS noise.
According to the definition of the TS-FC, the TS-FC R̂TS

yy,ρ(ξ) of the echo signal y(t) can be
expressed as:

R̂TS
yy,ρ(ξ) = lim

T→∞

1
2T

∫ +T

−T
RSigmoid

yy (t + ξ, t) exp(jtξ cot ρ)dt (31)

According to the definition of the TS-FPSD, the TS-FPSD PTS
yy,ρ(m) of the signal y(t) can be

expressed as
PTS

yy,ρ(m) = A−ρFρ
[

R̂TS
yy,ρ(ξ)

]
(m) exp

(
−jm2 cot ρ/2

)
(32)

The joint estimation method for the Doppler stretch σl and the time delay τl based on the TS-FPSD,
is given by [16]:

σ̂l =
√
− cot ρl

2πµ0

τ̂l =
2π f0σ̂l−ml csc ρl

2πµ0σ̂2
l

(ρl , ml) = argmax
ρ,m

∣∣∣PTS
yy,ρ(m)

∣∣∣

 (33)

Accordingly, the estimation of the Doppler stretch and the time delay in wideband echoes for a
LFM pulse radar under an alpha-stable distribution noise was achieved via the proposed tuneable
Sigmoid fractional power spectrum density function. The steps involved in this process are as follows:

Step 1 Obtain the echo signal y(t).
Step 2 Compute the TS-FC R̂TS

yy,ρ(ξ) from Equation (31).
Step 3 Compute the TS-FPSD PTS

yy,ρ(m) from Equation (32).
Step 4 Search for the peaks of PTS

yy,ρ(m) and obtain the locations of these peaks (τ̂l , σ̂l), for l = 1, . . . , L.
Step 5 Estimate the Doppler stretch and time delay according to Equation (33).

5.2. The Boundness of the TS-FPSD to the SαS Noise

We consider z(t) as an observed signal, defined as:

z(t) = s(t) + n(t) (34)

where s(t) denotes the signal, and the noise n(t) is a sequence of the i.i.d isotropic complex SαS
random variable.

According to the definition of the TS-FPSD, we can obtain:

PTS
zz,ρ(m) = A−ρFρ

[
R̂TS

zz,ρ(ξ)
]
(m) exp

(
− 1

2 jm2 cot ρ
)

= A−ρ

{
Aρ

∫ +∞
−∞ R̂TS

zz,ρ(ξ) exp
(

j (
m2+ξ2) cot ρ−2mξ csc ρ

2

)
dξ

}
· exp

(
− jm2 cot ρ

2

)
= Aρ A−ρ

∫ +∞
−∞ exp

(
1
2 jξ2 cot ρ− jmξ csc ρ

)
R̂TS

zz,ρ(ξ)dξ

(35)

Let t = t1 + ξ,

PTS
zz,ρ(m) = Aρ A−ρ

∫ +∞
−∞ exp

(
1
2 jξ2 cot ρ− jmξ csc ρ

)
dξ

·
{

lim
T→∞

1
2T
∫ +T
−T RSigmoid

zz (t1 + ξ, t1) exp(jt1ξ cot ρ)dt1

}
= Aρ A−ρ lim

T→∞
1

2T
∫ +∞
−∞ exp

(
1
2 jξ2 cot ρ− jmξ csc ρ + jt1ξ cot ρ

)
dξ

·
∫ +T
−T E{Sigmoid[z(t1 + ξ)]Sigmoid∗[z(t1)]}dt1

(36)

According to the properties of the tuneable Sigmoid transform, the SαS process with a = 0
can be transformed to a second-order moment process by the Sigmoid transform. Therefore,
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E{Sigmoid[z(t1 + τ)]Sigmoid∗[z(t1)]} is bounded for the SαS process because it is only involved with
Sigmoid[z(t)], which can guarantees the boundness of PTS

zz,ρ(m) under the SαS noise. Furthermore, the
transformation does not change the estimation result of the time delay and the Doppler frequency.
Therefore, the TS-FPSD method can be used to estimate the parameters of the wideband echoes y(t)
under the α-stable distribution noise.

5.3. Parameter Selection of the TS-FPSD

The inclined coefficient λ was used as a scale factor to fit various signals and noises. A proper
λ will retain sufficient information that is associated with the time delay and Doppler stretch, and
it will attenuate most of the impulsive noise at the same time. Thus, the proper selection of λ will
ensure the accuracy of the estimation. According to Yu et al., the attenuation upon x(t) in the tuneable
Sigmoid function changes as |x(t)| changes [26]. This concept is illustrated in Figure 2. When the
signal x(t) is the real signal without noise, no matter what the value of the inclined coefficient λ is,
|Sigmoid[x(t)]| < 1 is true, as illustrated in Figure 2a. Furthermore, when the real signal x(t) contains
the real impulsive noise, no matter what the value of the inclined coefficient λ is, |Sigmoid[x(t)]| < 1
is also true, as illustrated is Figure 2b.

However, when the signal x(t) is a complex signal, the above results do not always hold. Figure 3
demonstrates the Sigmoid function curves of the complex signal with respect to λ, and the ratio
between the real and imaginary component. Figure 3a shows that the tuneable Sigmoid function
changes with respect to λ when the ratio between the real and imaginary components is 2. Figure 3b
shows that the tuneable Sigmoid function changes with respect to x(t), with the same amplitude, but
with a different ratio between the real and imaginary component when the inclined coefficient λ is 1.
We found that the suppression capability may be increased by increasing the ratio between the real
and imaginary components.
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(a) (b) 

Figure 2. The tuneable Sigmoid function curves of the real signal with respect to λ. (a) x(t) is the real
signal; (b) x(t) is the real signal with impulsive noise.
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Figure 3. The Sigmoid function curves of the complex signal. (a) The Sigmoid function curves of the
complex signal with respect to λ; (b) The Sigmoid function curves of the complex signal with respect to
the ratio between its real and imaginary components.

We observed that |Sigmoid[x(t)]| < 1 may not be true when x(t) is a complex signal, as illustrated
in Figure 3. Furthermore, we also found that the amplitude of the complex signal, the inclined
coefficient λ, and the ratio between the real and imaginary components had some effects in suppressing
the impulsive noise capability of the tuneable Sigmoid function.

Figure 4 shows that the suppression ability of the tuneable Sigmoid function for a SαS noise with
GSNR = 5dB and α = 1.2. In this simulation, the signal x(t) is the complex signal with impulsive noise.
The Sigmoid function employs the tuneable parameter λ, which could be used to control the inclination
of the curve. The outliers can be suppressed after the transformation. From Figure 4, we found that
the suppression capability may be decreased by increasing the inclined coefficient λ, and the tuneable
Sigmoid function with λ = 3 fails to suppress the interference of the α-stable distribution noise. A
higher inclined coefficient λ had negative impacts on the suppression capability of the impulsive noise.
Therefore, the proper selection of λ affected accuracy of the estimation.
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5.4. Feasibility Analysis of the TS-FPSD

According to Property 4 of the Sigmoid transform, the Sigmoid transform did not change
the modulation characteristic of the signal, i.e., Sigmoid[x(t)] and x(t) had the same modulation
characteristics. The simulation results are illustrated in Figure 5 below, to verify this property.
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Figure 5. The LFM signal in the time domain and the FRFT domain. (a) the LFM signal and the
tuneable Sigmoid[x(t)]; (b) the FRFT of the LFM signal; (c) FRFT of the the tuneable Sigmoid[x(t)].

From Figure 5, we found that the LFM signal x(t) and the tuneable Sigmoid transform of the LFM
signal Sigmoid[x(t)] had the same modulation characteristics in the time domain, and the FRFT of the
LFM signal x(t) and the FRFT of the tuneable Sigmoid[x(t)] had the same peak locations in the FRFT
domain. In conclusion, the tuneable Sigmoid transform did not change the modulation characteristics
of the LFM signal. From Figure 6, we found that the FC of the LFM signal x(t) and the FC of the
Sigmoid[x(t)] had energy concentrations at the same rotation angles in the FRFT domain. The FPSD
of the LFM signal and the TS-FPSD of the LFM signal had also the same peak locations in the FRFT
domain Moreover, the peak location was the same for the FRFT of the LFM signal and the FRFT of the
tuneable Sigmoid[x(t)], as illustrated in Figures 5b,c and 6b,c. Thus, the Sigmoid transform did not
change the modulation characteristics of the signal.

In summary, the parameters of the Doppler stretch and the time delay could be estimated by
searching for the peak of the TS-FPSD.
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Figure 6. The LFM signal in the FRFT domain. (a) the FC of the LFM signal; (b) the TS-FC of the LFM
signal; (c) the FPSD of the LFM signal; (d) the TS-FPSD of the LFM signal.
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5.5. The Cramer–Rao Bound

In this section, we derived a novel explicit expression for the exact Cramer–Rao Bound (CRB) on
the accuracy of estimating the signal model parameters.

The CRB expresses a lower bound for the variance of an unbiased estimate and is, in general, not
too difficult to compute. By comparing the performance of an estimator to the CRB, we can often have
an indication on how close the estimator is to the optimum.

The echoes signal can be expressed as the following:

y(t) = x(σ, τ, t)β + n(t) (37)

where β , [β1, . . . , βL]
T,x(a, τ, t) = [x(a1(t− τ1)), x(a2(t− τ2)), . . . , x(aL(t− τL))].

The two parameters to be estimated are the time delay τ and the Doppler stretch σ, which
form the parameter vector ξ, such that ξ = [σ, τ]T ,where []T denotes the transpose of a vector,
σ , [σ1, σ2, . . . , σL], and τ , [τ1, τ2, . . . , τL]. Suppose that the number of snapshots is N.

First, we obtained closed-form expressions for all particular sub-blocks of the Fisher information
matrix (FIM). The element i, j of the FIM for estimating the vector ξ = [σ, τ]T can be shown as [29–31]:

FIMij = NTr
(

Q−1
n

∂Qn
∂ξ i

Q−1
n

∂Qn
∂ξ j

)
+2Re

N
∑

t=1

{(
∂x(σ,τ)β

∂ξ i

)H
Q−1

n

(
∂x(σ,τ)β

∂ξ j

)} (38)

We assumed that the noise was a sequence of the i.i.d isotropic complex SαS random variable. The
geometric power S0 is used to represent the power of symmetric α-stable random noise, i.e., Qn = S0IN .
Since x(σ, τ, t)β and Qn depend on different elements of ξ, it is clear that FIM will be block diagonal
with respect to the signal (ξ = [σ, τ]T) and noise parameters. In particular, the first term of Equation
(38) will give a nonzero result only for the noise block. Since we are concerned only with the CRB for
the signal parameters, we need only consider the second term:

FIMij(ξ) = 2Re
N

∑
t=1

{(
∂x(σ, τ, t)β

∂ξi

)H
Q−1

n

(
∂x(σ, τ, t)β

∂ξ j

)}
(39)

Using Equations (38) and (39), the following explicit expressions for the blocks of the FIM are
derived as follows:

FIMσσ(ξ) = 2Re
N

∑
t=1

{
∆H(x′σ(σ, τ, t)

)HQ−1
n
(
x′σ(σ, τ, t)

)
∆
}

(40)

FIMττ(ξ) = 2Re
N

∑
t=1

{
∆H(x′τ(σ, τ, t)

)HQ−1
n
(
x′τ(σ, τ, t)

)
∆
}

(41)

FIMστ(ξ) = 2Re
N

∑
t=1

{
∆H(x′σ(σ, τ, t)

)HQ−1
n
(
x′τ(σ, τ, t)

)
∆
}

(42)

where:
∆ , diag{β1, β2, . . . , βL} (43)

x′σ(σ, τ, t) ,
∂xσ(σ, τ, t)

∂σ
=
[
x′(σ)(σ, τ, t)

]
(44)

x′(σ)(σ, τ, t) ,
[

∂x(σ1(t− τ1))

∂σ1
,

∂x(σ2(t− τ2))

∂σ2
, . . . ,

∂x(σL(t− τL))

∂σL

]
(45)

x′τ(σ, τ, t) ,
∂xτ(σ, τ, t)

∂τ
=
[
x′(τ)(σ, τ, t)

]
(46)
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x′(τ)(σ, τ, t) ,
[

∂x(σ1(t− τ1))

∂τ1
,

∂x(σ2(t− τ2))

∂τ2
, . . . ,

∂x(σL(t− τL))

∂τL

]
(47)

The expression for the CRB, shown in Equation (48), is obtained by substituting Equations (40)–(47)
into Equation (39):

CRB(ξ) = FIM−1 (48)

6. Simulation Results

In this section, we performed four types of simulation experiments to evaluate the relative
performances of the FPSD [12], the FLOS-FPSD [16], and the TS-FPSD methods under the α-stable
distribution noise, respectively.

The parameters of the transmitted LFM signal in the simulation are assumed as follows. The
initial frequency f0 = 0.2 fs and the modulation rate is set to µ0 = 0.1 f 2

s /N. The sampling rate is set to
fs = 1 MHz with a sampling length of N = 1000, T = 1 ms. The number of multipath is L = 2, and the
Doppler stretch and time delay are set to σ1 = 0.9,σ2 = 1.1,τ1 = 20/ fs and τ2 = 60/ fs, respectively.
The Root Mean Square Error (RMSE) is defined as:

RMSE =
1
2


√√√√ 1

K

K

∑
k=1

[x̂1(k)− x1]

2

+

√√√√ 1
K

K

∑
k=1

[x̂2(k)− x̂2]

2
 (49)

where x̂1 and x̂2 are the estimation of x1 and x2, and K is the Monte Carlo number. The RMSE of the
time delay and Doppler stretch can be expressed as:

RMSEτ =
1
2


√√√√ 1

K

K

∑
k=1

[τ̂1(k)− τ1]

2

+

√√√√ 1
K

K

∑
k=1

[τ̂2(k)− τ2]

2
 (50)

and:

RMSEσ =
1
2


√√√√ 1

K

K

∑
k=1

[σ̂1(k)− σ1]

2

+

√√√√ 1
K

K

∑
k=1

[σ̂2(k)− σ2]

2
 (51)

The numbers of Monte Carlo runs was set to 200 in Simulations 2 and 3.

Simulation 1: Estimation Accuracy with Respect to λ

To evaluate the performance of the TD and DS with respect to λ in this simulation, the
characteristic exponent α was set to α = 1.2 and GSNR = 5 dB. The RMSE was used to evaluate
the performance of the TS-FPSD with respect to λ, as illustrated is Figure 7.
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From Figure 7, we observed that the performance estimation of the TD and DS using λ ∈ [0.8, 2.7]
provided a better performance than that using other λ values, for the case of the alpha-stable noise.
Therefore, the inclined coefficient λ for the TS-FPSD was set as λ = 1 in all the later simulations of
this paper.

Simulation 2: FPSD, FLOS-FPSD, and TS-FPSD for a Single Estimation

Figures 8 and 9 show the estimation results of the FPSD, FLOS-FPSD, and TS-FPSD for a single
trial of data under the SαS noise with GSNR = 5 dB and α = 1.3 and α = 1.1. In order to show the peak
location information and the performance of the algorithm more clearly, the 2D rotation angle plane
and the 2D frequency plane are shown. The 2D rotation angle plane and 2D frequency plane could
better demonstrate the peak location. In Figures 8 and 9, the red line denotes the true values of the
rotation angle and frequency in the FRFT domain. Futhermore, Table 1 shows the comparison of three
algorithms for impulsive noise suppression.
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Figure 8. The spectrum of FPSD, FLOS-FPSD, and TS-FPSD under the SαS noise with GSNR = 5dB
and α = 1.3. (a) The FPSD spectrum of the echo and its rotation angle plane and the frequency
plane; (b) The FLOS-FPSD with a p = 1.4 spectrum of the echo, and its rotation angle plane and the
frequency plane; (c) The FLOS-FPSD with p = 1.0 spectrum of the echo, and its rotation angle plane
and the frequency plane; (d) The TS-FPSD spectrum of the echo, and its rotation angle plane and the
frequency plane.
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Figure 9. The spectrum of FPSD, FLOS-FPSD, and TS-FPSD under the SαS noise with GSNR = 5 dB
and α = 1.1; (a) The FLOS-FPSD with p = 1.0 spectrum of the echo, and its rotation angle plane
and the frequency plane; (b) The TS-FPSD spectrum of the echo, and its rotation angle plane and the
frequency plane.
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Table 1. A comparison of the three algorithms for impulsive noise suppression.

Algorithms Impulsive Noise
Suppression

Obtaining the Correct
Spectrum Peak

Performance of the
Parameter Estimation

FPSD Worse Cannot Poor
FLOS-FPSD with inappropriate p Worse Occasionally Poor
FLOS-FPSD with appropriate p Average Sometimes Average

TS-FPSD Better Always Better

From Figure 8a, we found that the FPSD algorithm failed when the SαS noise occurred. The reason
is that the FPSD method did not have the ability to suppress impulsive noise. Since the second-order
moment of a SαS random variable with 0 < α < 2 does not exist, and the fractional correlation function
was based on second-order moments, the performance of the FPSD degraded severely. The FLOS-FPSD
algorithm, combining the fractional lower order statistics theory with the fractional power spectrum
density function, effectively suppressed the α-stable distribution noise interference, so the FLOS-FPSD
could obtain a clear peak under the SαS noise of GSNR = 5 dB, with α = 1.3 and p = 1.0. However, the
FLOS-FPSD failed to obtain the correct spectrum peak under the SαS noise with α = 1.3 and p = 1.4,
mainly due to the fact the fractional lower-order moment p value was not appropriate, as illustrated in
Figure 8b,c. In fractional lower order statistics theory, the characteristic exponent of the noise must
be estimated to ensure that 1 ≤ p < α or 0 < p < α/2, otherwise the algorithm performance can
degrade seriously, and may even become invalid, while the fractional lower-order moment value is
not appropriate.

The FLOS-FPSD failed to obtain the correct spectrum peak under the α-stable distribution
noise GSNR = 5 dB with α = 1.1 and p = 1.0; however, the TS-FPSD peak could be easily
separated from the impulsive noise, as illustrated in Figure 9, mainly due to the fact that the Sigmoid
transform could suppress the impulsive noise better than the FLOS. Therefore, the performance of
the TS-FPSD outweighed those of the FLOS-FPSD. The proposed method based on the TS-FFPSD
could effectively suppress impulsive noise interference, yielded an accurate peak estimation, and had
a better estimation performance.

Simulation 3: Estimation Accuracy with Respect to GSNR

To evaluate the performance of the time delay (TD) and the Doppler stretch (DS) in this simulation,
the characteristic exponent α was set to α = 1.2 and the fractional lower order moment p was set to
p = 1.1 and p = 1.4 for the FLOS-FPSD method, respectively. The resulting RMSE performance versus
GSNR is illustrated in Figure 10.
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From Figure 10, we can find that the FPSD method had a poor estimation performance with
the SαS noise interference. On the other hand, combining the fractional lower-order statistics theory
with the fractional power spectrum density, the FLOS-FPSD method with α = 1.2 and p = 1.1 could
effectively suppress the SαS noise interference. Accordingly, the FLOS-FPSD method yielded a clear
peak under the SαS noise. However, the performance was affected by the fractional lower-order
moment p value. The FLOS-FPSD method, with α = 1.2 and p = 1.4 could not accurately estimate the
parameters, because the fractional lower-order moment value was not appropriate. On the contrary,
the TS-FPSD method could not suppress the SαS noise interference, employing the tuneable Sigmoid
transform, but the estimation performance of the TS-FPSD also could not be affected by the fractional
lower-order moment p value. Therefore, the performance of the TS-FPSD method outweighed those of
the FLOS-based method.

Simulation 4: Estimation Accuracy with Respect to the Characteristic Exponent α

In this simulation, the GSNR was set to 5 dB, and the fractional lower-order moment p was set
to p = 1.1 and p = 1.4 for the FLOS-FPSD method, respectively. Figure 11 shows the performance
versus the characteristic exponent α. From Figure 11, we found that the FPSD algorithm had a better
estimation performance when the characteristic exponent α was close to 2. The FLOS-FPSD method
may suppress the α-stable distribution noise interference by employing the fractional lower-order
statistic theory. The performance of the FLOS-FPSD method was shown to be better than that of the
FPSD method.
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Since the FLOS and the Sigmoid transform methods could both suppress the impulsive noise, the
suppression capacity of the FLOS method was not sufficient, and the Sigmoid function suppressed
the outliers much harder than did the FLOS. Therefore, the estimation performance of the TS-FPSD
algorithm was superior to that of FLOS-FPSD algorithm.

7. Conclusions

In this paper, two novel concepts, the tuneable Sigmoid transform fractional correlation function
and the tuneable Sigmoid transform fractional power spectrum density function, are proposed to
estimate the time delay and Doppler stretch of the wideband echoes of a LFM pulse radar signal
under the presence of an impulsive noise environment. Then, the unbiased estimation and consistent
estimation of the algorithm are derived. Furthermore, the boundness of the TS-FPSD to the SαS noise,
the parameter selection of the TS-FPSD, the feasibility analysis of the TS-FPSD, and the Cramér–Rao
bound for parameter estimation are presented, to evaluate the performance of the proposed method.
The simulation results and theoretical analysis are presented to illustrate the validity of the foregoing
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method. It is clearly shown that the proposed method cannot only can effectively restrain impulsive
noise interference, but it also does not depend on a priori knowledge of the noise. In addition, it yields a
higher estimation accuracy and a lower computational complexity in the impulsive noise environment.
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Appendix A.

In this section, the derivation details of the Equations (10)–(12) is presented.
Let y(t) = y1(t) + . . . + yl(t) + . . . + yL(t) + n(t), where yl(t) = βl x(σl(t− τl)) + nl(t).
From Equations (2) and (6), the fractional correlation R̂ρ

yy(ξ) of the echo signal y(t) can be
expressed as:

R̂ρ
yy(ξ) = lim

T→∞
1

2T

∫ +T
−T Ryy(t + ξ) exp(jtξ cot ρ)dt

= lim
T→∞

1
2T

∫ +T
−T E

{
[y1(t + ξ) + . . . + yL(t + ξ) + n(t + ξ)][y1(t) + . . . + yL(t) + n(t)]∗

}
exp(jtξ cot ρ)dt

= lim
T→∞

1
2T

∫ +T
−T E{[y1(t + ξ)y∗1(t) + . . . + yL(t + ξ)y∗L(t) + y1(t + ξ)y∗2(t) + . . .

+ yL(t + ξ)y∗L−1(t) + n(t + ξ)n∗(t)
]}

exp(jtξ cot ρ)dt

= lim
T→∞

1
2T

∫ +T
−T {E[y1(t + ξ)y∗1(t) + . . . + yL(t + ξ)y∗L(t)]} exp(jtξ cot ρ)dt

+ lim
T→∞

1
2T

∫ +T
−T

{
E
[
y1(t + ξ)y∗2(t) + . . . + yl(t + ξ)y∗q (t) + . . . + yL(t + ξ)y∗L−1(t)

]}
exp(jtξ cot ρ)dt

+ lim
T→∞

1
2T

∫ +T
−T {E[y(t + ξ)n∗(t) + n(t + ξ)y∗(t)]} exp(jtξ cot ρ)dt

+ lim
T→∞

1
2T

∫ +T
−T {E[n(t + ξ)n∗(t)]} exp(jtξ cot ρ)dt

(A1)

Let:

R̂ρ
yy,l(ξ) = lim

T→∞
1

2T
∫ +T
−T
{

E
[
y1(t + ξ)y∗1(t) + . . . + yL(t + ξ)y∗L(t)

]}
exp(jtξ cot ρ)dt

= lim
T→∞

1
2T
∫ +T
−T

L
∑

l=1
E
[
yl(t + ξ)y∗l (t)

]
exp(jtξ cot ρ)dt

(A2)

R̂ρ
yy,lq(ξ) = lim

T→∞
1

2T

∫ +T
−T

{
E
[
y1(t + ξ)y∗2(t) + . . . + yl(t + ξ)y∗q (t) + . . . + yL(t + ξ)y∗L−1(t)

]}
exp(jtξ cot ρ)dt

= lim
T→∞

1
2T

∫ +T
−T

L
∑

l 6=q
E
[
yl(t + ξ)y∗q (t)

]
exp(jtξ cot ρ)dt

(A3)

R̂ρ
yn(ξ) = lim

T→∞

1
2T

∫ +T

−T
{E[y(t + ξ)n∗(t) + n(t + ξ)y∗(t)]}exp(jtξ cot ρ)dt (A4)

R̂ρ
nn(ξ) = lim

T→∞

1
2T

∫ +T

−T
{E[n(t + ξ)n∗(t)]}exp(jtξ cot ρ)dt (A5)

where R̂ρ
yn(ξ) denotes the fractional correlation functions between the echo signal y(t) and the noise

n(t), and R̂ρ
yn(ξ) is treated as a random interference. R̂ρ

nn(ξ) denotes the fractional correlation functions
of the noise n(t).

Substituting Equations (A2)–(A5) into Equation (A1), we can rewrite Equation (A1) as follows:

R̂ρ
yy(ξ) = R̂ρ

yy,l(ξ) + R̂ρ
yy,l(ξ) + R̂ρ

yn(ξ) + R̂ρ
nn(ξ) (A6)
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According to yl(t) and Equation (A2), we can obtain:

R̂ρ
yy,l(ξ) =

L
∑

l=1
lim

T→∞
1

2T

∫ +T
−T E

[
yl(t + ξ)y∗l (t)

]
exp(jtξ cot ρ)dt

=
L
∑

l=1
lim

T→∞
1

2T

∫ +T
−T E

{
β2

l A2 exp
(

j2π
(

f0σl − µ0τlσ
2
l
)
ξ + 1

2 µ0σ2
l ξ2 + 2πµ0σ2

l tξ
)}

exp(jtξ cot ρ)dt

=
L
∑

l=1
β2

l A2 exp
(

j2π
(

f0σl − µ0τlσ
2
l
)
ξ + 1

2 µ0σ2
l ξ2
)

lim
T→∞

1
2T

∫ +T
−T dt

∫ +T
−T exp

(
j
(
2πµ0σ2

l + cot ρ
)
tξ
)
dt

(A7)

When 2πµ0σ2
l = − cot ρl , Equation (A7) can be rewritten as:

R̂ρl
yy,l(ξ) =

L

∑
l=1

β2
l A2 exp

(
j2π
(

f0σl − µ0τlσ
2
l

)
ξ +

1
2

µ0σ2
l ξ2
)

(A8)

From Equation (A8), we can find that R̂ρl
yy,l(ξ) has the expression of a linear frequency modulation

signal on delay ξ. The value R̂ρl
yy,l(ξ) has the characteristic of energy that is concentrated in the

FRFT domain.

R̂ρ
yy,lq(ξ) = lim

T→∞
1

2T

L
∑

l 6=q
βl βq A2 exp

(
j2π
(

1
2 µ0

(
σ2

l τ2
l − σ2

q τ2
q + σ2

l ξ2 − 2σ2
l τlξ

)
− f0

(
σlτl − σqτq − τlξ

)))
·
∫ +T
−T exp

(
j
(

2π f0
(
σl − σq

)
− πµ0

(
σ2

l τl − σ2
q τq − 2σ2

l ξ
)
+ ξ cot ρ

)
t + πµ0

(
σ2

l − σ2
q

)
t2
)

dt
(A9)

However, R̂ρl
yy,lq(ξ), R̂ρl

yn(ξ) and R̂ρl
nn(ξ) do not have the characteristics of energy that is

concentrated in the FRFT domain, the amplitudes of the TS-FPSD of different targets are very low at
(ρl , ml), and these signals are not considered as random interference. So we can obtain:

R̂ρl
yy(ξ) =

L

∑
l=1

β2
l A2 exp

(
j2π
(

f0σl − µ0τlσ
2
l

)
ξ +

1
2

µ0σ2
l ξ2
)
+ R̂ρl

yy,lq(ξ) + R̂ρl
yn(ξ) + R̂ρl

nn(ξ) (A10)

Therefore, the fractional power spectrum density Pρ
yy(m) of the echo signal y(t) can be

computed as:
Pρ

yy(m) = A−ρFρ
[

R̂ρl
yy(τ)

]
(m) exp

(
−jm2 cot ρ/2

)
= Pρ

yy,l(m) + Pρ
yy,lq(m) + Pρ

yn(m) + Pρ
nn(m)

(A11)

where Pρ
yy,lq(m), Pρ

yn(m) and Pρ
nn(m) are not considered as random interference. Let Pρ

N(m) =

Pρ
yy,lq(m) + Pρ

yn(m) + Pρ
nn(m), the fractional power spectrum density Pρ

yy(m) of the y(t) can be
rewritten as:

Pρ
yy(m) = A−ρFρ

[
R̂ρl

yy(τ)
]
(m) exp

(
−jm2 cot ρ/2

)
=

L
∑

l=1
A−ρ Aρ

∫ + T
2

− T
2

exp
(

j
(
2π f0σl − 2πµ0τlσ

2
l −m csc ρ

)
ξ + j

2

(
2πµ0σ2

l + cot ρ
)
ξ2
)

dξ

+Pρ
N(m)

(A12)

Appendix B.

In this section, the unbiasedness and consistency are derived.
The definitions of the unbiasedness and consistency can be shown as:
If the following holds:

bia
[
θ̂
]
= E

[
θ̂
]
− θ = 0 (A13)

Then, θ̂ is an unbiased estimator of the parameter θ. Otherwise, θ̂ is a biased estimator of θ.
and if the following holds: {

bia
[
θ̂
]
= E

[
θ̂
]
− θ = 0

Var
[
θ̂
]
= E

{
θ̂ − E

[
θ̂
]}2

= 0
(A14)
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Then,θ̂ is a consistent estimator of the parameter θ. Otherwise, θ̂ is not a consistent estimator of
the parameter θ.

Appendix B.1. Unbiasedness and Consistency of the TS-FC

Let the estimator of the TS-FC ˆ̂R
TS
xx,ρ(k) be:

ˆ̂R
TS
xx,ρ(k) = lim

N→∞

1
2N + 1

N

∑
n=−N

1
M

M−1−|k|

∑
h=0

Sigmoid[x(h + k)]Sigmoid∗[x(h)] exp
(

jnkT2 cot ρ
)

(A15)

According to the definition of the unbiasedness, we can obtain as follows:

bia
[

ˆ̂R
TS
xx,ρ(k)

]
= E

[
ˆ̂R

TS
xx,ρ(k)

]
− R̂TS

xx,ρ(k) (A16)

where:

E
[

ˆ̂R
TS
xx,ρ(k)

]
= E

[
lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

) 1
M

M−1−|k|
∑

h=0
Sigmoid[x(h + k)]Sigmoid∗[x(h)]

]
= lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

) 1
M

M−1−|k|
∑

h=0
E[Sigmoid[x(h + k)]Sigmoid∗[x(h)]]

= M−|k|
M R̂TS

xx,ρ(k)

(A17)

When |k| is given and M→ ∞ , we can obtain E
[

ˆ̂R
TS
xx,ρ(k)

]
= R̂TS

xx,ρ(k), i.e., bia
[

ˆ̂R
TS
xx,ρ(k)

]
= 0.

Therefore the estimator of the TS-FC is the asymptotic unbiased estimation.
According to the definition of the consistency, we can obtain as follows:

Var
[

ˆ̂R
TS
xx,ρ(k)

]
= E

{[
ˆ̂R

TS
xx,ρ(k)− E

[
ˆ̂R

TS
xx,ρ(k)

]]2
}

= E

{[
ˆ̂R

TS
xx,ρ(k)

]2
}
−
{

E
[

ˆ̂R
TS
xx,ρ(k)

]}2 (A18)

where: {
E
[

ˆ̂R
TS
xx,ρ(k)

]}2
=

[
M− |k|

M
R̂TS

xx,ρ(k)
]2

(A19)

E

{[
ˆ̂R

TS
xx,ρ(k)

]2
}

= E

{(
lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

) 1
M

M−1−|k|
∑

h=0
Sigmoid[x(h + k)]Sigmoid∗ [x(h)]

)

·
(

lim
N→∞

1
2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

) 1
M

M−1−|k|
∑

p=0
Sigmoid[x(p + k)]Sigmoid∗ [x(p)]

)}
= lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

)
lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

)
·
{

1
M2

M−1−|k|
∑

h=0

M−1−|k|
∑

p=0
E[Sigmoid∗ [x(h)]Sigmoid∗ [x(p)]Sigmoid[x(h + k)]Sigmoid[x(p + k)]]

}
= lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

)
lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

)
·
{

1
M2

M−1−|k|
∑

h=0

M−1−|k|
∑

p=0

{[
RSigmoid

xx (h− p)
]2

+
[

RSigmoid
xx (k)

]2
+ RSigmoid

xx (h− p− k)RSigmoid
xx (p− h− k)

}}
=
[

M−|k|
M R̂TS

xx,ρ(k)
]2

+ lim
N→∞

1
2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

)
lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

)
·
{

1
M2

M−1−|k|
∑

h=0

M−1−|k|
∑

p=0

{[
RSigmoid

xx (h− p)
]2

+ RSigmoid
xx (h− p− k)RSigmoid

xx (p− h− k)
}}

(A20)
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According to the Equations (A19) and (A20), we can obtain as follows:

Var
[

ˆ̂R
TS
xx,ρ(k)

]
= lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

)
lim

N→∞
1

2N+1

N
∑

n=−N
exp

(
jnkT2 cot ρ

)
·
{

1
M

M−1−|k|
∑

i=−(M−1−|k|)

[
1− |k|+|i|M

]{[
RSigmoid

xx (i)
]2

+ RSigmoid
xx (i− k)RSigmoid

xx (i + k)
}} (A21)

When M→ ∞ , we can obtain Var
[

ˆ̂R
TS
xx,ρ(k)

]
= 0.

In summary, according to the bia
[

ˆ̂R
TS
xx,ρ(k)

]
= 0 and Var

[
ˆ̂R

TS
xx,ρ(k)

]
= 0, we may draw the

conclusion that the estimator of the TS-FC is the the asymptotic consistent estimation.

Appendix B.2. Unbiasedness and Consistency of the TS-FPSD

Let the estimator of the TS-FPSD be:

P̂TS
xx,ρ(w) = A−ρ F̃ρ

[
ˆ̂R

TS
xx,ρ(k)

]
(w) exp

(
−j
(

w2/2T2
)

cot ρ
)

(A22)

Then:

E
[

P̂TS
xx,ρ(w)

]
= E

[
A−ρ F̃ρ

[
ˆ̂R

TS
xx,ρ(k)

]
(w) exp

(
−j
(
w2/2T2) cot ρ

)]
= A−ρ F̃ρ

[
E
[

ˆ̂R
TS
xx,ρ(k)

]]
(w) exp

(
−j
(
w2/2T2) cot ρ

) (A23)

According to the Equation (A17), Equation (A23) can be rewritten as:

E
[

P̂TS
xx,ρ(w)

]
= A−ρ F̃ρ

[
M−|k|

M R̂TS
xx,ρ(k)

]
(w) exp

(
−j
(
w2/2T2) cot ρ

)
= A−ρ F̃ρ

[
R̂TS

xx,ρ(k)
]
(w) exp

(
−j
(
w2/2T2) cot ρ

)
+A−ρ F̃ρ

[
− |k|M R̂TS

xx,ρ(k)
]
(w) exp

(
−j
(
w2/2T2) cot ρ

)
= PTS

xx,ρ(w) + WTS
xx,ρ(w)

(A24)

where WTS
xx,ρ(w) denotes the TS-FPSD of the − |k|M R̂TS

xx,ρ(k).
For a given |k| value and as M→ ∞ , WTS

xx,ρ(w) = 0, i.e.:

E
[

P̂TS
xx,ρ(w)

]
= PTS

xx,ρ(w) (A25)

Thus, bia
[

P̂TS
xx,ρ(w)

]
= 0, and the estimator of the TS-FPSD is the asymptotic unbiased estimation.

According to the definition of the consistency, we can obtain:

Var
[

P̂TS
xx,ρ(w)

]
= E

{[
P̂TS

xx,ρ(w)− E
[

P̂TS
xx,ρ(w)

]]2
}

= E
{[

P̂TS
xx,ρ(w)

]2
}
−
{

E
[

P̂TS
xx,ρ(w)

]}2 (A26)

Equation (A26) may involve the fourth moment problem, which is difficult to solve directly.
Therefore, we may compute the covariance of the P̂TS

xx,ρ(w) with w1 and w2 as follows:

Cov
[

P̂TS
xx,ρ(w1), P̂TS

xx,ρ(w2)
]

= E
{[

P̂TS
xx,ρ(w1)− E

{
P̂TS

xx,ρ(w1)
}][

P̂TS
xx,ρ(w2)− E

{
P̂TS

xx,ρ(w2)
}]}

= E
{

P̂TS
xx,ρ(w1)P̂TS

xx,ρ(w2)
}
− E

{
P̂TS

xx,ρ(w1)
}

E
{

P̂TS
xx,ρ(w2)

} (A27)



Sensors 2018, 18, 3012 24 of 25

where:

E
{

P̂TS
xx,ρ(w1)P̂TS

xx,ρ(w2)
}

= E
{[

A−ρ F̃ρ

[
ˆ̂R

TS
xx,ρ(k)

]
(w1) exp

(
−j
(
w2

1/2T2
)

cot ρ
)][

A−ρ F̃ρ

[
ˆ̂R

TS
xx,ρ(k)

]
(w2) exp

(
−j
(
w2

2/2T2
)

cot ρ
)]}

=

[
A−ρ F̃ρ

{
E
[

ˆ̂R
TS
xx,ρ(k)

]}
(w1) exp

(
−j
(
w2

1/2T2
)

cot ρ
)][

A−ρ F̃ρ

{
E
[

ˆ̂R
TS
xx,ρ(k)

]}
(w2) exp

(
−j
(
w2

2/2T2
)

cot ρ
)] (A28)

Let w1 = w2; we can obtain:

Cov
[

P̂TS
xx,ρ(w1), P̂TS

xx,ρ(w1)
]
= Var

[
P̂TS

xx,ρ(w)
]

(A29)

According to Equation (A17), Equation (A28) can be rewritten as:

E
{

P̂TS
xx,ρ(w1)P̂TS

xx,ρ(w2)
}

=
[

A−ρ F̃ρ
{

M−|k|
M R̂TS

xx,ρ(k)
}
(w1) exp

(
−j
(
w2

1/2T2) cot ρ
)]

·
[

A−ρ F̃ρ
{

M−|k|
M R̂TS

xx,ρ(k)
}
(w2) exp

(
−j
(
w2

2/2T2) cot ρ
)] (A30)

For a given |k| value and as M→ ∞ , Equation (A30) can be rewritten as:

E
{

P̂TS
xx,ρ(w1)P̂TS

xx,ρ(w2)
}
= PTS

xx,ρ(w1)PTS
xx,ρ(w2) (A31)

Substituting Equation (A31) into Equation (A27), we can obtain the covariance of the P̂TS
xx,ρ(w) as:

Cov
[

P̂TS
xx,ρ(w1), P̂TS

xx,ρ(w2)
]
= PTS

xx,ρ(w1)PTS
xx,ρ(w2)− E

{
P̂TS

xx,ρ(w1)
}

E
{

P̂TS
xx,ρ(w2)

}
(A32)

According to Equations (A26)–(A29) and Equations (A31)–(A32), we can get:

Var
[

P̂TS
xx,ρ(w)

]
=
[

PTS
xx,ρ(w)

]2
−
[

E
{

P̂TS
xx,ρ(w)

}]2
= 0 (A33)

In summary, for bia
[

P̂TS
xx,ρ(w)

]
= 0 and Var

[
P̂TS

xx,ρ(w)
]
= 0, we may draw the conclusion that the

estimator of the TS-FPSD is the asymptotic consistent estimation.
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