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Abstract: Space debris tracking is a challenge for spacecraft operation because of the increasing
number of both satellites and the amount of space debris. This paper investigates space debris
tracking using marginalized δ-generalized labeled multi-Bernoulli filtering on a network of nodes
consisting of a collection of sensors with different observation volumes. A consensus algorithm is
used to achieve the global average by iterative regional averages. The sensor network can have
unknown or time-varying topology. The proposed space debris tracking algorithm provides an
efficient solution to the key challenges (e.g., detection uncertainty, data association uncertainty, clutter,
etc.) for space situational awareness. The performance of the proposed algorithm is verified by
simulation results.
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1. Introduction

This paper presents a distributed space objects tracking approach in the context of space situational
awareness (SSA) [1]. SSA is the ability to track and predict the velocity and location of space objects
in orbit around the Earth. SSA has become a significant concern for both commercial and military
systems. A U.S. Iridium 33 communications satellite was struck by a defunct Russian Cosmos 2251
military communications satellite in February 2009. Collisions like this generate space debris, which
then increases the likelihood of further collisions [2]. Collisions may degrade the performance of a
spacecraft or even fragment one if they involve enough energy [3]. Multi-object tracking algorithms
play a significant role in space object tracking [4,5].

The catalog size which future space objects tracking systems should be able to handle is more
than 100,000 resident space objects [6]. A possible approach to tracking space debris is by the use
of a network with regional nodes. Multi-nodal systems which consist of multiple agents with
sensing, processing, and communication capabilities are widely used in multiple object tracking
systems. Information fusion methods used in multi-node systems fall into three categories: distributed,
centralized, and hierarchical. The Joint Space Operations Center (JSpOC) currently employs the
centralized information processing approach because it can provide the most accurate estimation [6].
As the space debris tracking system has more nodes, the computation load of centralized systems
becomes very challenging. Distributed information fusion can be used as an alternative solution [7].
The main advantages of distributed systems include: the system is reliable (i.e., resilient to failures),
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the network topology can be time-varying or unknown, and the processing is scalable with the number
of nodes [8].

A consensus approach can be used in a distributed system to achieve global information fusion
over the network [9,10]. Consensus has emerged as a useful tool for parameter estimation and
distributed information fusion [11,12]. The logic behind consensus is to reach a global average
by allowing each node to perform iterative local averages [13]. Global average and local average
are achieved with information fusion over the whole network and neighboring nodes, respectively.
The information can be propagated throughout the entire network with such repeated local information
fusion [14,15]. The computation load for each node only depends on the number of its neighboring
nodes. The calculation for each node does not increase dramatically with the number of nodes in the
whole network [16,17]. A consensus approach for multi-target tracking with labeled random finite set
(RFS) filtering was presented in [18]. The Kullback–Leibler average for probability densities can be used
to achieve consensus for distributed estimation in a general state space model [19].

The scenarios presented in most of the information fusion literature have the same observation
volume, with objects staying inside the observation volume all the time. However, space debris
does not stay inside the observation volume except for those in geostationary equatorial orbit.
Normal multi-object filtering methods do not provide estimation for objects outside the observation
volume, and fusion among sensors with different observation volumes fails to provide accurate results.

Multi-object tracking involves the estimation of an unknown number of objects and their
trajectories that are time-varying from noisy observations. The RFS approach has been widely used
in multi-object tracking. The multi-object state is modeled as an RFS, and a systematic treatment of
a multi-object system is provided [20,21]. Due to the complexity of the Bayes filter, the probability
hypothesis density (PHD) [22,23], cardinalized PHD (CPHD) [24,25], and multi-Bernoulli filters [26,27]
have been proposed as approximations. An analytic solution, the δ-generalized labeled multi-Bernoulli
(δ-GLMB) filter and its efficient implementation were proposed in [28,29], respectively. Another
efficient implementation with joint prediction and update and Gibbs sampling is detailed in [30].
Marginalized δ-GLMB (Mδ-GLMB) filter and labeled multi-Bernoulli (LMB) filter were proposed
in [31,32], respectively, as two efficient approximations.

Most SSA literature treats the core elements of data association, detection, and tracking separately.
An integrated approach to all these problems can limit the information loss and improve tracking
performance. The δ-GLMB filter can provide object trajectories in the presence of missed detection,
clutter, and association uncertainty [28]. It is an exact closed-form solution to multi-object Bayes
recursion. The number of components grows without bound in time because of the explicit data
associations in the filter. Mδ-GLMB is an efficient approximation to the δ-GLMB filter which preserves
both the cardinality distribution and the PHD of the posterior [31]. Moreover, Mδ-GLMB densities
are algebraically closed under Kullback–Leibler averaging, which makes Mδ-GLMB filtering a good
choice in distributed processing using a consensus approach [18].

The space debris tracking problem has been an active research area [33–40]. A space object tracking
approach with CPHD filtering and a measurement-based birth model was presented in [41]. A labeled
multi-Bernoulli filter for space object tracking was proposed in [4]. GM-CPHD filtering and a consensus
algorithm were used in [42] to achieve global space object tracking. A consensus algorithm was used
for distributed information fusion. Even though estimation performance was promising, object
trajectories were not available. Preliminary results to track space debris with consensus LMB filtering
was proposed in [40], which can only provide state estimation for targets inside of the observation
volume and fuse information from sensors with the same observation volume.

This paper proposes a consensus Mδ-GLMB approach for space debris tracking. Sensors can have
the same or different observation volumes. Iterative consensus is performed among neighboring nodes
to achieve a global average over the sensor network, which makes the fusion scalable with respect to
the number of nodes. The topology of the sensor network can be time-varying. The network is resilient
to failure since there is no coordination node. In order to achieve space object tracking within a single
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framework, the software Turboprop [43] and UKF are used to approximate the transition density of space
objects. Turboprop has a package of functions which can be used to calculate the trajectories of space debris.

The main contribution of this paper is the distributed fusion algorithm for sensors with different
observation volumes. Most fusion methods assume that all sensors have the same observation volume
or that targets stay in the combined observation volume all the time. When targets leave the observation
volume, normal algorithms cannot keep the estimation of targets because there are no measurements
available. In this paper, the detection probability outside of the observation volume is set to zero.
The expectation maximization (EM) algorithm is used to approximate the densities across the observation
volumes. Since there are no measurements for targets outside the observation volume, the estimation is
essentially the prediction. Then, the fusion among sensors with different observation volumes can be
performed in the same way as fusion among sensors with the same observation volume.

The paper is organized as follows. Background on labeled RFS and the network model are
described in Section 2. The Mδ-GLMB filter recursion is presented in Section 3. The space debris
dynamic model is provided in Section 4. Section 5 details the estimation for objects when they are
outside the observation volume. Section 6 details the consensus with Mδ-GLMB filtering. Numerical
results are presented in Section 7, and concluding remarks are given in Section 8.

2. Background

2.1. Notation

In this paper, the Kronecker delta that takes arbitrary arguments is denoted by:

δY(X) ,

{
1, if X = Y,
0, otherwise.

(1)

The inclusion function is denoted by:

1Y(X) ,

{
1, if X ⊆ Y,
0, otherwise.

(2)

The standard inner product notation is denoted by 〈 f , g〉 ,
∫

f (x)g(x)dx, and the exponential
notation hX , Πx∈Xh(x), where h is a real-valued function. The weighting operator � for a given
probability density function (PDF) p and a scalar α is defined as:

(α� p)(x) ,
[p(x)]α

〈pα, 1〉 . (3)

2.2. Network Model

The nodal network can be denoted by a directed graph G = (M,A).M denotes the set of nodes
and A =M×M denotes the connections among nodes. (i, j) ∈ A if node j can receive data from node
i.M(j) , {i ∈M : (i, j) ∈ A} represents the set of neighbors for each node j ∈M (including j itself).

Every node in the network has the same importance and performs the same actions: gathers
measurements, carries out local computation, and exchanges information with neighbors. The fusion
is performed among its own information and information from its neighbors.

2.3. Labeled RFS and Bayesian Multi-Object Filtering

An RFS is a finite set valued random variable. A unique label ` ∈ L = {αi : i ∈ N} is added to the
dynamic state x ∈ X to incorporate the identity of objects, where N is the set of positive integers and
the αi’s are distinct. Labels for objects are ordered pairs of integers ` = (k, i), where k is the time of
object birth and i ∈ N is the index to distinguish objects born at the same time. Lk = {k} ×N is used
to denote the label space for objects born at time k. Then, the new object born at time k has the state
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x ∈ X× Lk. The label space can be constructed recursively by L0:k = L0:k−1 ∪ Lk. The abbreviation
L , L0:k is used for compactness.

Let L : X× L → L denote the projection L((x, `)) = `, then the function ∆(X) , δ|X|(|L(X)|)
is called the distinct label indicator, which means that X has the same cardinality as its labels
L(X) = {L(x) : x ∈ X}. The labeled RFS can be unlabeled by discarding the labels. Let the labeled RFS
distribution be denoted by π({(x1, `1), ..., (xn, `n)}). Then, the unlabeled RFS is distributed according to:

π({x1, ..., xn}) = ∑
(`1,...,`n)∈Ln

π({(x1, `1), ..., (xn, `n)}).

The cardinality distribution (the distribution of the number of objects) of a labeled RFS is the same
as its unlabeled version. More information about labeled RFSs can be found in [28,29].

Assume that there are N(k) object states xk,1, ..., xk,N(k) with state space X×L at time k, and M(k)
measurements zk,1, ..., zk,M(k) with observation space Z. Then, the set of objects and observations are
treated as the multi-object state and multi-object observation, respectively:

Xk = {xk,1, ..., xk,N(k)},
Zk = {zk,1, ..., zk,M(k)}.

Let πk|k−1 denote the multi-object prediction density and πk(·|Zk) denote the multi-object filtering
density at time k. Then, the object density is propagated by the multi-object Bayes filter in time according to:

πk|k−1(Xk) =
∫

fk|k−1(Xk|Xk−1)πk−1(Xk−1|Zk−1)δXk−1, (4)

πk(Xk|Zk) =
gk(Zk|Xk)πk|k−1(Xk)∫
gk(Zk|Xk)πk|k−1(Xk)δX

, (5)

where fk|k−1(·|·) is the multi-object transition density to time k and gk(·|·) is the multi-object likelihood
function at time k. The underlying models of object births, deaths, and motions are encapsulated in
the multi-object transition density, while the underlying models for detections and false alarms are
encapsulated in the multi-object likelihood function.

For convenience, we omit the references to the time index k and denote g , gk, f , fk|k−1,
π+ , πk|k−1, π , πk, B , Lk, L+ , L∪B.

2.4. δ-Generalized Labeled Multi-Bernoulli

The δ-GLMB density has the form

π(X) = ∆(X) ∑
(I,ξ)∈F (L)×Ξ

ω(I,ξ)δI(L(X))[p(ξ)]X, (6)

where each I represents a set of track labels, each ξ represents a history of association maps, and Ξ is a
discrete space. The pair (I, ξ) ∈ F (L)×Ξ is called a hypothesis and the associated weight ω(I,ξ) means
the probability of the hypothesis. p(ξ) is the density of the kinematic state [28,29].

3. The Mδ-GLMB Filter Recursion

Mδ-GLMB filter is an approximation to the δ-GLMB filter. It can be interpreted as performing
a marginalization over the association histories. The Mδ-GLMB filter has the same cardinality
distribution and PHD as the δ-GLMB filter [31].

An Mδ-GLMB density corresponding to the δ-GLMB density in (6) is of the form

π(X) = ∆(X) ∑
I∈F (L)

ω(I)δI(L(X))[p(I)]X, (7)
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where

ω(I) = ∑
ξ∈Ξ

ω(I,ξ), (8)

p(I)(x, `) = 1I(`)
1

ω(I) ∑
ξ∈Ξ

ω(I,ξ)p(ξ)(x, `). (9)

A Mδ-GLMB is a special case of the δ-GLMB, and it is completely characterized by the parameter
set π = {(ω(I), p(I)) : I ∈ F (L)}. The Mδ-GLMB prediction and update are outlined below.

3.1. Mδ-GLMB Prediction

For the current time and a given multi-object state X, each state (x, `) ∈ X either survives with
probability pS(x, `) and evolves to the next step with new state (x+, `+), or dies with probability
1− pS(x, `). The birth density of the new objects at the next time step is

fB(Y) = ∆(Y)ωB(L(Y))[pB]
Y, (10)

where pB and ωB are given parameters of the birth density.
The multi-object state at the next time step X+ includes two parts: the new-born objects and the

surviving objects. Supposing that the births are independent of surviving objects and that objects
evolve independently of each other, the multi-object transition density is given by [28,29]:

f(X+|X) = fS(X+ ∩ (X×L)|X)fB(X+ − (X×L)), (11)

where

fS(W|X) = ∆(W)∆(X)1L(X)(L(W))[Φ(W; ·)]X, (12)

Φ(W; x, `) =

{
pS(x, `) f (x+|x, `), if (x+, `) ∈W,
1− pS(x, `), if ` /∈ L(W).

(13)

Let πk = {(ω
(I)
k , p(I)

k ) : I ∈ F (L)} denote the Mδ-GLMB multi-object posterior density at time k.
The multi-object prediction density is the Mδ-GLMB

πk+1|k(X) = ∆(X) ∑
I∈F (L+)

ω
(I)
k+1|kδI(L(X))[p

(I)
k+1|k]

X, (14)

where

ω
(I)
k+1|k = ω

(I)
S (I ∩L+)ωB(I ∩B+), (15)

ω
(I)
S (L) = [η

(I)
S ]L ∑

J⊇L
[1− η

(I)
S ]J−Lω(J), (16)

η
(I)
S (`) = 〈pS(·, `), p(I)(·, `)〉, (17)

p(I)
k+1|k(x, `) = 1L+

(`)p(I)
S (x, `) + 1B+

(`)pB(x, `), (18)

p(I)
S (x, `) =

〈pS(·, `) fk+1|k(x|·, `), p(I)
k+1|k(·, `)〉

η
(I)
S (`)

. (19)

3.2. Mδ-GLMB Update

Each state (x, `) ∈ X has the probability pD(x, `) to be detected, generates a measurement with
likelihood function g(z|x, `), and has a probability 1− pD(x, `) to be mis-detected. The measurement



Sensors 2018, 18, 3005 6 of 26

set Z is a superposition of detected objects and Poisson clutter with intensity function κ.
An association map is denoted by θ: L→ {0, 1, ..., |Z|} such that θ(i) = θ(i′)> 0 implies i = i′.

The set Θ of all such association maps is used to denote the association space, and the subset of
association maps with domain I is denoted by Θ(I).

Conditional on X, detections are independent and clutter is independent of detection, then the
multi-object likelihood is given by [28,29]:

g(Z|X) = e−〈κ,1〉κZ ∑
θ∈Θ(L(X))

[ψZ(·; θ)]X, (20)

where

ψZ(x, `; θ) =


pD(x,`)g(zθ(`) |x,`)

κ(zθ(`))
, if θ(`) > 0,

1− pD(x, `), if θ(`) = 0.
(21)

Given the Mδ-GLMB multi-object prediction density πk+1|k = {(ω(I)
k+1|k, p(I)

k+1|k) : I ∈ F (L+)},
the Mδ-GLMB updated multi-object density at time k + 1 is

πk+1(X|Z) = ∆(X) ∑
I∈F (Lk+1)

∑
θ∈Θ(I)

ω(I,θ)(Z) · δI(L(X))[p(I,θ)(·|Z)]X, (22)

where

ω
(I,θ)
k+1 (Z) ∝ ω

(I)
k+1|k[η

(I,θ)
Z ]I , (23)

η
(I,θ)
Z (`) = 〈p(ξ)k+1|k(·, `), ψ(·, `; θ)〉, (24)

p(I,θ)
k+1 (x, `|Z) =

p(I)
k+1|k(x, `)ψZ(x, `; θ)

η
(I,θ)
Z (`)

. (25)

The updated Mδ-GLMB density can be denoted by πk+1 = {(ω(I)
k+1, p(I)

k+1) : I ∈ F (Lk+1)}.
Note that the updated density is not an Mδ-GLMB, but a δ-GLMB. Using (8) and (9), a δ-GLMB can be
transformed to an Mδ-GLMB.

The ranked assignment and K-shortest paths algorithms are used in [29] to truncate the
multi-object posterior and prediction densities, respectively. The algorithm has a cubic complexity in
the number of measurements.

Given the posterior Mδ-GLMB density π = {(ω(I), p(I)) : I ∈ F (L)}, a tractable suboptimal
multi-object estimation can be derived as follows:

(1) Determine the maximum a posteriori cardinality estimation N∗ from

Pr(|X| = n) = ∑
I∈F (L)

δn(|I|)ω(I); (26)

N∗ = arg max
n

Pr(|X| = n). (27)

(2) Among the label set with cardinality N∗, determine the label set I∗ with highest weight ω(I):

I∗ = arg max
I

ω(I). (28)

(3) Finally, determine the expected values of the kinematic states X∗ from p(x, `; I∗):

X∗ = {(x∗, `∗) : `∗ ∈ I∗, x∗ = arg max
x

p(x, `; I∗)}. (29)
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4. Space Debris Dynamic Model

The tracking algorithm needs a dynamic model of the debris and an observation model to track
objects. The dynamic model is represented by the transition density function fk|k−1(Xk|Xk−1). It is very
difficult to calculate the Markov transition density function of space objects because the space dynamic
model is much more complicated than a constant velocity or a constant turn model. However, we can
approximate the transition density function of space debris with the help of the software Turboprop
and the unscented transform [44]. Turboprop has a package of functions to calculate the trajectories
of space objects, and can be called as a function in MATLAB. The elements in Turboprop include:
an Earth orientation and atmospheric drag model; the lunar gravity models LP100K, GLGM-2, and
LP150Q; the Earth gravity models JGM-3, GGM02C and WGS-84; JPL planetary ephemerides DE403
and DE405; and a solar radiation pressure model.

The Jet Propulsion Laboratory Development Ephemeris (JPL DE) are generally created to support
spacecraft missions to the planets. JPL DE designates a series of models consisting of representations
of accelerations, velocities, and positions of major Solar System bodies. The acceleration caused by the
solar radiation pressure is

r̈SRP = pSRcR
A
m

r̄
r

, (30)

where pSR is the pressure of solar radiation in Pa. cR is the solar radiation coefficient and taken as
1.5 m is the mass of the space debris in kilograms. A is the cross-sectional area of the space debris
facing the Sun in square meters. m and A are 0.05 kg and 0.01 m2, respectively. r̄ represents the vector
from the center of the Sun to the space debris. The mass concentration model is a gravity field, with the
total acceleration determined by a series of point masses. This paper takes the Sun, the Earth, Venus,
Jupiter, and the Moon into consideration.

The unscented transform is used in the nonlinear projection of mean and covariance estimations.
The unscented transform approximates the probability density function (PDF) by a bunch of
sigma points. Suppose that each single object density p(x) is a Gaussian mixture of the form
∑N

i=1 ωiN (x; mi, Pi) and the Gaussian item is n-dimensional. Then, the state of space debris is
propagated as shown in Table 1.

Table 1. State propagation of space debris.

• input: {ωi, mi, Pi}N
i=1

• output: {ω+
i , m+

i , P+
i }

N
i=1

for i = 1 : N
(1) 2n + 1 weighted sigma points S(j) = {(W(j), χ(j))} are chosen

to represent the Gaussian.
(2) every sigma point is propagated with the help of Turboprop.
(3) the predicted Gaussian is reconstructed with the predicted sigma points.

end

The sigma-points are chosen as follows:

χ(0) = m, W(0) =
κ

n + κ
, j = 0 ,

χ(j) = m + (
√
(n + κ)P)j, W(j) =

1
2(n + κ)

, j = 1, ..., n ,

χ(j) = m− (
√
(n + κ)P)j, W(j) =

1
2(n + κ)

, j = n + 1, ..., 2n ,

where n represents the dimension of the state vector (6 in this paper), ∑2n
j=0 W(j) = 1,

(√
(n + κ)P

)
j is

the jth row or column of the square root
√
(n + κ)P, κ is the scaling parameter (2 in this paper).
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5. Estimation of Objects Outside the Observation Volume

Most of the literature in object tracking assumes that objects do not go outside of the observation
volume. This is not the case for space debris tracking. Filters with no special consideration of detection
probability setting cannot provide estimation for objects outside the observation volume because there
are no measurements available. However, since the observation model only affects the update and
not the prediction, the estimation of objects can still be provided because the prediction is always
available. Aiming to provide estimation for the whole area, we set the detection probability to zero for
areas outside of the observation volume.

We assume that the single object density is represented by a Gaussian mixture (GM). Since UKF
is used in this paper for the space debris transition function, each Gaussian item is represented by a
bunch of sigma-points. If all sigma-points are inside or outside the observation volume, the detection
probability for this Gaussian item is set to pDin and pDout, respectively. pDin is the detection probability
inside the observation volume and pDout is the detection probability outside the observation volume.
Otherwise, the EM algorithm is used to build a new GM to approximate the current Gaussian item.

An illustration is shown in Figure 1.

−30 −20 −10 0 10 20 30
−30

−20

−10

0

10

20

30

 

Density
Field of view
Sigma points

V1 V2

Observation volume

p_Din=0.98 p_Dout=0

X position (m)

Y position (m
)

Figure 1. The predicted probability density function is shown by a Gaussian mixture (GM). The blue
circle is one Gaussian item. V1 represents the part inside the observation volume, and V2 represents
the outside part.

The predicted probability density function is shown by a GM. The blue circle is one Gaussian item.
V1 represents the part inside the observation volume, and V2 represents the outside part. ∗ represents
the sigma points obtained by the unscented transform. pDin = 0.98 is an example of the detection
probability inside the observation volume. Since there is no measurement from outside the observation
volume, the detection probability is set to pDout = 0. The EM algorithm is used to build a new GM to
represent V1 and V2, respectively.

The EM algorithm is an efficient method to find the maximum-likelihood estimate of the unknown
parameters of an underlying distribution from a given data set. Usually, the data set has missing
values or is incomplete. Each iteration of the EM algorithm has two procedures: The expectation step
(E-step) and the maximization step (M-step). The E-step creates a function for the expectation of the
log-likelihood evaluated using the current estimate for the parameters. In the M-step, the likelihood
function is maximized under the assumption that the missing data are known.

If the sigma-points of one Gaussian item are on both sides of the observation edge, then N = 1000
points are sampled from this Gaussian distribution. Our experience shows that 1000 points are
enough to represent the probability distribution in the experiment. Depending on whether the points
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are inside the observation volume or not, these points are divided into two groups: Pointsin and
Pointsout. Pointsin are the sampled points inside the observation volume and Pointsout are the sampled
points outside the observation volume. The EM algorithm is used afterwards for a Gaussian mixture
parameter estimation. Each Gaussian item is represented by two new Gaussian mixtures. That is,

J(ξ)(`)

∑
i=1

ω
(ξ)
i (`)N (x; m(ξ)

i (`), P(ξ)
i (`)) =

J(ξ)(`)

∑
i=1

ω
(ξ)
i (`)

( H(ξ)(`)

∑
h=1

ω
(ξ)
h (`)N (x; m(ξ)

h (`), P(ξ)
h (`)) +

K(ξ)(`)

∑
k=1

ω
(ξ)
k (`)(x; m(ξ)

k (`), P(ξ)
k (`))

)
.

(31)

The first GM is to represent V1 and the second GM is to represent V2. An illustration of the
method is shown in Figure 2.

The predicted density function is 

represented by a GM and sigma 

points are used to represent each 

Gaussian item 

If all sigma points are 

inside or outside the 

observation volume 

p_Din and p_Dout are used to 

update the Gaussian item 

Yes 

No 

EM algorithm is used to 

approximate the density inside and 

outside the observation volume 

p_Din and p_Dout are used to 

update the approximated density 

function 

Figure 2. Estimation for objection outside the observation volume. EM: expectation maximization.

The estimation of objects is available when they are outside the observation volume. The proposed
consensus Mδ-GLMB can be used for sensors with different observation volumes.

The parameters in the density approximation are the number of Gaussian items, the weights for
the items, the covariance matrices, and the means. These parameters are chosen as follows.

(1) The number of Gaussian components:

The number of new Gaussian mixture components is important in the density approximation
with the EM algorithm. However, it is very difficult to derive the number of Gaussian components.
In practice, we choose a reasonably large number (Jmax = 10 in this paper) as the maximum number of
new Gaussian mixture items in the approximation. The EM algorithm is used for situations with a
different number of Gaussian components (Jmin = 1, ..., Jmax = 10). Then, the Bayesian information
criterion (BIC) is used to determine the best number of Gaussian components. The BIC is a criterion
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for model selection among a finite set of models [45]. The model with the lowest BIC is preferred. The
BIC is defined as follows:

BIC(J, θ, P) = −2log L(θ, J|P) + M ln(N), (32)

where J is the number Gaussian items set for the approximation, θ is the estimated parameter values
that maximize the likelihood function, P is the sampled data, L(·) is the maximized value of the
likelihood function, M is the number of parameters estimated (6 in this paper), and N is the number of
sampled points (1000 in this paper).

(2) The weights for the Gaussian items:

The weights can be the same and set as Wj =
1
J .

(3) The covariance and the means:

The means of the Gaussian position components can be set by uniformly sampling in the
observation volume. The means of the Gaussian velocity components can be set to zero. The initial
covariance is chosen by experience, which is the the same covariance matrix of the Gaussian item that
was sampled from.

6. Distributed Information Fusion with Consensus for Mδ-GLMB

After each node finishes the state estimation of space debris, a distributed information fusion
can be performed to achieve better results. The consensus algorithm is used in this paper to achieve
distributed information fusion. This section shows that the Mδ-GLMB is algebraically closed under
Kullback–Leibler averaging (KLA) (i.e., the KLA of Mδ-GLMB is also Mδ-GLMB) [18]. The closed
form expression for KLA of the Mδ-GLMB is derived and used for consensus fusion of the Mδ-GLMB
posterior density [18].

6.1. Consensus for Mδ-GLMB Filtering

The assumption that the estimation from each node in a multi-sensor network is independent or
that the correlations among them are known is wrong. The correlation is commonly caused by data
incest. Data incest happens when the same information takes several paths from the other sensors
to the fusion center and the raw measurements are inadvertently used multiple times. Centralized
information fusion is carried out by the Bayes solution:

f (X|Za ∪ Zb) =
f (Za ∪ Zb|X) f (X)

f (Za ∪ Zb)
. (33)

The result can be carried out as follows if the information is treated as being independent:

f (X|Za ∪ Zb) =
f (Za|X) f (Zb|X) f (X)

f (Za) f (Zb)
. (34)

Since there is a common measurement history and common process noise, the information from
each node are not independent from each other. Data incest effects can be effectively counteracted by
the consensus algorithm.

Given labeled multi-object densities π(i) on F (X×L), i ∈ I , and the normalized non-negative
weights w(i), i ∈ I , the weighted KLA is defined by

π̄ , arg min
π

∑
i∈I

w(i)DKL(π||π(i)), (35)
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where

DKL(π||π(i)) ,
∫

π(X)log
( π(X)

π(i)(X)

)
δX (36)

is the Kullback–Leibler Divergence (KLD) of π(i) from π [20,22]. The set integral is used in the integral
for any function f on F (X×L):

∫
f (X)δX =

∞

∑
i=0

1
i! ∑

(`1,...,`i)∈Li

∫
f ({(x1, `1), ..., (xi, `i)})d(x1, ..., xi). (37)

Given normalized non-negative weights w(i), i ∈ I and labeled multi-object densities π(i), i ∈ I ,
then the weighted KLA in (35) is

π̄ = ⊕
i∈I

(w(i) �π(i)), (38)

where

⊕
i∈I

(w(i) �π(i)) ,
∏

i∈I
[π(i)(X)]w

(i)

∫
∏

i∈I
[π(i)(X)]w(i)

δX
(39)

is the normalized weighted geometric mean [18]. It was shown in [13] that independent, identically
distributed cluster and Poisson RFSs are algebraically closed under KL averaging. The Mδ-GLMB
family is also algebraically closed under KL averaging.

The following result shows that the KLA of the Mδ-GLMB densities is also a Mδ-GLMB
density [18].

Given the Mδ-GLMB densities π(i) = {(ω(I)
i , p(I)

i ) : I ∈ F (L)}, i ∈ I and normalized
non-negative weights w(i), i ∈ I , the KLA, and hence the normalized weighted geometric mean,
is an Mδ-GLMB given by [18]

π̄ = ⊕
i∈I

(w(i) �π(i)) = {(ω̄(L), p̄(L)) : L ∈ F (L)}, (40)

where

ω̄(L) =

∏
i∈I

(
ω
(L)
i
)w(i)[ ∫

∏
i∈I

(
p(L)

i (x, ·)
)w(i)]L

∑
J⊆L

∏
i∈I

(
ω
(J)
i
)w(i)[ ∫

∏
i∈I

(
p(J)

i (x, ·)
)w(i)]J , (41)

p̄(L)(·, `) =

∏
i∈I

(
p(L)

i (·, `)
)w(i)

∫
∏

i∈I

(
p(L)

i (x, `)
)w(i)

dx
. (42)

The component (ω̄(L), p̄(L)(·)) of the KLA Mδ-GLMB can be rewritten as

ω̄(L) ∝ ∏
i∈I

(
ω
(L)
i
)w(i)[ ∫

∏
i∈I

(
p(L)

i (x, ·)
)w(i)]L

, (43)

p̄(L)(·) = ⊕
i∈I

(
w(i) � p(L)

i (·)
)
, (44)
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where (44) is the Chernoff fusion rule for the single-object PDFs. It can be seen from (43) and (44) that
each fused Mδ-GLMB component (ω̄(L), p̄(L)(·)) can be independently calculated, which makes the
fusion procedure fully parallelizable.

Given a node network N with multi-object probability densities π(i) from each node i,
and normalized non-negative weights w(i,j) for node i to nodes j ∈ N (i), with ∑j∈N (i) w(i,j) = 1,
the KLA over the whole network can be calculated in a scalable and distributed way using the
consensus algorithm. Suppose that each node starts with initial PDF π

(i)
0 = π. The nth consensus can

be calculated by

π
(i)
n = ⊕

j∈N

(
w(i,j)

n �π(j)), (45)

where w(i,j)
n is the (i, j)-th entry of the matrix Ωn. The (i, j)-th entry of the consensus matrix Ω is given

by w(i,j)1N (i)(j). The consensus algorithm enjoys some good convergence properties. It was shown
that if the consensus matrix is doubly stochastic (all rows and columns sum up to 1) and primitive
(there exists an integer m that Ωm has all positive entries), then

lim
n→∞

w(i,j)
n =

1
|N | . (46)

So, with a doubly stochastic and primitive consensus matrix, the global unweighted KLA of the
densities over the whole network can be calculated by the consensus iterative of each node as the
number of consensus steps tends to infinity [13].

A necessary condition for the consensus matrix to be primitive is that the network is strongly
connected, which means that for any pair of nodes (i, j) ∈ N there exists a directed path from node i to
node j and vice versa. This condition can also be satisfied if w(i,j) > 0 ∀i ∈ N , j ∈ N (i). The consensus
matrix is primitive and doubly stochastic for a undirected network (i.e., whenever node i sends
information to node j, it also receives information from node j) if [46]:

w(i,j) =

{ 1
1+max{|N (i) |,|N (j) |} , i ∈ N , j ∈ N (i)\{i},
1−∑j∈N (i)\{i} w(i,j), i ∈ N , j = i.

(47)

The global unweighted KLA of the multi-object posterior densities can be achieved by iterative
local KLA averaging as the consensus step tends to infinity. In practice, the iteration is stopped at some
finite number.

A Gaussian mixture (GM) is a typical choice to represent single-object densities. The fusion rule
involves multiplication and exponentiation of GMs which generally do not provide a GM. A suitable
approximation of the GM exponentiation has to be devised in order to preserve the GM form. For the sake
of simplicity, let us consider only two agents (labeled a and b) with Gaussian mixture location densities

pi(x) =
Ni

G

∑
j=1

αi
jN (x; x̄i

j, Pi
j ), i = a, b. (48)

The fused location PDF is also a Gaussian mixture, and can be approximated as follows:

p̄(x) =
∑

Na
G

i=1 ∑
Nb

G
j=1 αab

ij N (x; x̄ab
ij , Pab

ij )

∑
Na

G
i=1 ∑

Nb
G

j=1 αab
ij

, (49)
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where

Pab
ij = [ω(Pa

i )
−1 + (1−ω)(Pb

j )
−1]−1, (50)

x̄ab
ij = Pab

ij [ω(Pa
i )
−1 x̄a

i + (1−ω)(Pb
j )
−1 x̄b

j ], (51)

αab
ij = (αa

i )
ω(αb

j )
1−ωκ(ω, Pa

i )κ(1−ω, Pb
j ),

·N (x̄a
i − x̄b

j ; 0,
Pa

i
ω

+
Pb

j

1−ω
), (52)

κ(ω, P) =
[det(2πPω−1)]

1
2

[det(2πP)]
ω
2

. (53)

The validity of the equations above depends on the cross-products of the different terms in the
Gaussian mixture being negligible, which requires that the Gaussian components are well separated.
This condition is well-met since a suitable merging step is used to fuse Gaussian components with
Mahalanobis distance [47] below a given threshold. The fusion can be easily extended to more nodes
by sequentially applying the pairwise fusion (50) and (51).

The other common way to represent a single-object density is by particles. The local filtering
steps are more resource-demanding than a GM implementation. Moreover, the in-node computation
burden is increased compared to GM representation because the information fusion requires additional
techniques (e.g., least square estimation, kernel density estimation, or parametric model approaches).

6.2. Discussions on Consensus

Each node in the network performs local prediction and update. They then exchange information
with their neighbors. Information fusion with the consensus algorithm is carried out afterwards.
Depending on the requirements of the system, the procedure can be repeated N times, which is called
N-steps of consensus. An illustration of the system design is shown in Figure 3.

Node Cluster  

Perform GLMB filtering  

in parallel 

N1  N2  N3

1 
Node1 

N5

1 
Node1 

N4  

Exchange information 

with neighbours’ 

Each node performs 

local fusion 

Fusion done 

N times? 

No 

Yes 

Each node has the 
fusion result with N-

step consensus 
algorithm 

Figure 3. System design.
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The network used in this paper is a fully distributed one. Every node performs the same
operations: updates its own information, exchanges information with its neighbors, and performs
information fusion using the consensus algorithm.

The consensus algorithm achieves global averaging over the whole network with iterative
averaging among neighboring nodes for each node. The main disadvantage is the computation
complexity. With an increase of network size, the computation load for the whole network and the
time it takes to reach global averaging significantly increases. The performance degradation is mainly
due to the time it takes for the information from each node to be transferred to the rest of the nodes.
In practice, the number of nodes in the whole network is chosen according to the computation power
of each node so that the time required for the consensus algorithm is kept under a certain threshold.

It was proved in [48] that the complexity of the centralized Mδ-GLMB filter is linearly related to
the number of sensors. Each node in the consensus Mδ-GLMB filtering system has to carry out local
prediction and local update. The computation complexity is independent of the number of nodes.
The computation complexity of the consensus algorithm for each node only depends on the number of
neighboring nodes, and has nothing to do with the total number of nodes in the whole network.

As the number of targets increases, tracking becomes more challenging. Even though the ranked
assignment algorithm and K-shortest paths algorithm are used to truncate the posterior densities and
prediction densities, respectively, the filtering still has cubic complexity in the number of measurements.
An efficient implementation of the GLMB filter by combining the prediction and update into a single
step was proposed in [30]. The earlier implementation involves separate truncations in the prediction
and update steps. The proposed implementation requires only one truncation procedure for each
iteration. Furthermore, an efficient algorithm based on Gibbs sampling for GLMB filtering density
truncation was also proposed in [30]. The implementation has a linear complexity in the number
of measurements and a quadratic one in the number of objects. The Mδ-GLMB filter used in this
paper was proposed in [31]. It is a tractable multi-object density approximation that can capture
statistical dependence between objects. It matches the cardinality distribution and the first moment of
the labeled multi-object distribution of interest. The performance of Mδ-GLMB filtering is sufficient for
the situation in this paper.

The computation load of fusion for each node only depends on the consensus steps and the
number of neighbors. For example, if the diameter of a network is 3, then it takes three steps at most
for information in any node to be transferred to any other node in this network. As the number of
nodes increases, it takes more time to reach the global average. However, the computation for each
node at one time is the same, and only depends on the number of neighbors. Large networks will
only be limited by the computation capability of each node. Therefore, the system is scalable and the
processing load for each node is scalable with respect to the size of the network.

Fully decentralized systems suffer from the problem of synchronization and inconsistency. As the
number of nodes increases, it becomes more difficult to achieve synchronization in the system.
The effect of communication delays becomes more severe in larger networks. Even if the time delays are
small, they can deteriorate the system’s performance or even destabilize it. The output synchronization
of nonlinear systems with communication time delays was discussed in [49]. A new framework
was proposed in [50] to address the consensus with multi-agent systems and the synchronization of
complex networks. Coordination can be achieved for the discrete-time delayed systems with linear
dynamics [51] and switching topologies [52].

A space debris tracking approach with GM-CPHD and consensus algorithm was presented in [42].
The performance of the approach was shown with an example of 45 clusters of sensors to achieve
global tracking of space debris. While the performance was very good, the approach used in this
paper has much better results. This is because the Mδ-GLMB filter has a more accurate propagation
of the posterior density than the CPHD filter, which makes the Mδ-GLMB filter better able to locate
targets. Another disadvantage of the CPHD filter is the “spooky” effect which causes the CPHD filter
to temporarily drop tracks which are subjected to missed detections and to declare multiple estimates
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for existing tracks in place of the dropped tracks [29]. Further, the CPHD filter cannot provide the
trajectories of the targets. The estimates of the target from the CPHD filter are indistinguishable.
The Mδ-GLMB filter used in this paper significantly outperforms the CPHD filter used in [42].

This paper presents a scalable solution to the problem of tracking space debris. The space tracking
approach employed in this paper is an improvement over existing methods in several aspects. Firstly,
the core elements of data association, detection, and tracking are solved with an integrated approach
based on labeled RFS in this paper, while most SSA literature treats them separately. Secondly, most
SSA methods use a single sensor (e.g., [4,35,41,53]) or a centralized tracking system as in [6] to track
space objects. The consensus algorithm used in this paper has better performance than single-sensor
methods and has a smaller computation load than a centralized tracking system. Thirdly, the consensus
approach used in this paper can provide estimation for targets outside of the observation volume
and can be used for information fusion for sensors with different observation volumes, unlike most
consensus algorithms (e.g., [13,18,54]) or other distributed information fusion algorithms (e.g., [55,56])
in the current literature which can only be used for sensors with the same observation volume.

The consensus iterate of each node converges to the global unweighted KLA of the multi-object
posterior densities as n tends to infinity. In practice, consensus steps N is chosen based on the network
size. A methodology to achieve distributed average consensus in finite time was proposed in [57].
The proposed algorithm requires less memory at the cost of a slight increase in the number of steps
required for termination. To relax the assumption that the nodes are aware of the upper bound on the
network diameter, the authors provide an upper bound on the network diameter which, in the worst
case, is twice the actual diameter. Ref. [58] reaches consensus in finite time using only linear iterations.
The authors show that finite-time average consensus can always be achieved for undirected networks.

This paper treats the consensus step N as prior information. N is broadcasted to every node
before the information fusion. This is certainly possible, but it becomes difficult when the size of
the network grows. There are some approaches that do not require continuous data exchange nor
knowledge on a global parameter. Ref. [59] reviews some of the main discrete and finite time average
consensus implementations, from theoretical and empirical points of view. Three main aspects, namely
computational analysis, packet loss resilience analysis, and stealth attacks resilience analysis, are analyzed.
The authors of [59] first review synchronous and uniformly sampled approaches which are based
on the standard average consensus iteration [60], on the flooding approach [57], or on a repetition
of the max-consensus procedure [57]. They then present event-based finite-time average consensus
implementations with point-to-point communication capability based on the Converge Cast [61] and
on the token-passing approaches [62].

7. Numerical Results

The goal of this paper is to show the efficacy of consensus Mδ-GLMB in tracking space debris.
We demonstrate this through three experiments. The first experiment was designed to show that the
Mδ-GLMB filter proposed in this paper with special consideration of detection probability setting can
provide estimation for objects outside the observation volume. The second experiment was designed
to show that consensus fusion can be performed among sensors with different observation volumes.
The third experiment was designed to show that the consensus algorithm can significantly improve
the tracking performance when all objects are inside the observation volumes of all sensors.

The object state is a vector of position and velocity, xk = [px py pz vx vy vz]T . The state dynamic
model is:

xk+1 = f (xk) + wk.

The first step is to build the space debris trajectories with the help of Turboprop.
f (·) is the transition density function and wk ∼ N(·; 0, Q) is the process noise with
Q = diag([σ2

px, σ2
py, σ2

pz, σ2
vx, σ2

vy, σ2
vz]), σpx=σpy=σpz=1 km, σvx=σvy=σvz=0.01 km/s. The birth model to
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generate the simulation scenario is a labeled multi-Bernoulli RFS with parameters πB = {r(i)B , p(i)B }5
i=1,

where r(i)B = 0.02 and p(i)B (x) = N (x; m(i)
B , PB), with

m(1)
γ =[42, 097.71 km,−2221.31 km,−3.68 km, 0.1620 km/s, 3.0703 km/s, 6.7817 km/s]T ,

m(2)
γ =[42, 097.31 km,−2097.2 km,−756.51 km, 0.1625 km/s, 2.8851 km/s, 1.0501 km/s]T ,

m(3)
γ =[42, 096.91 km,−1719.39 km,−1425.14 km, 0.1628 km/s, 2.3520 km/s, 1.9735 km/s]T ,

m(4)
γ =[42, 098.08 km,−2083.03 km, 745.34 km, 0.1613 km/s, 2.8852 km/s,−1.0500 km/s]T ,

m(5)
γ =[42, 098.43 km,−1700.09 km, 1407.22 km, 0.1610 km/s, 2.3522 km/s,−1.9734 km/s]T ,

Pγ =diag([10 km, 10 km, 10 km, 0.01 km/s, 0.01 km/s, 0.01 km/s]).

r(i)B is the birth intensity, which is the expected number of new objects born at each time step, at
each object birth place i. All targets are initially born inside the observation volume of a sensor
(not necessarily the same one). The situation where a target is born outside of the observation
volume of all sensors and goes from outside to inside of the observation volume can be handled
by a measurement-based birth model, which is beyond the scope of this paper. The space object
trajectories generated by the birth model in this experiment are very common in real space object
tracking scenarios.

Clutter is modeled as a Poisson RFS with intensity κk(z) = λcVu(z). λc is the average of clutter
returns per unit volume, which was 100 in the simulation. u(·) is the uniform density over the
observation region, V is the “volume” of the observation region.

All nodes used in this paper were located on the surface of the Earth and rotated with the Earth.
The latitudes and longitudes of nodes were

L1 = (0◦, 0◦), L2 = (0◦, 30◦N), L3 = (0◦, 30◦S), L4 = (30◦E, 0◦), L5 = (30◦W, 0◦),

respectively. Node1 was initially on the x–z plane.
The sensor’s observation is a noisy bearing and range vector given by

zk =



√
p2

x,k + p2
y,k + p2

z,k

arctan
( py,k

px,k

)
arctan

(
pz,k√

p2
x,k+p2

y,k

)
+ εk, (54)

where εk ∼ N(·; 0, Rk) with

Rk1 = diag([σ2
r1, σ2

α1, σ2
β1]), σr1 = 0.05 km, σα1 = 0.02◦ σβ1 = 0.02◦,

Rk2 = diag([σ2
r2, σ2

α2, σ2
β2]), σr2 = 0.22 km, σα2 = 0.01◦ σβ2 = 0.01◦,

Rk3 = diag([σ2
r3, σ2

α3, σ2
β3]), σr3 = 0.12 km, σα3 = 0.02◦ σβ3 = 0.01◦,

Rk4 = diag([σ2
r4, σ2

α4, σ2
β4]), σr4 = 0.1 km, σα4 = 0.01◦ σβ4 = 0.02◦,

Rk5 = diag([σ2
r5, σ2

α5, σ2
β5]), σr5 = 0.15 km, σα5 = 0.015◦ σβ5 = 0.015◦.

∆ = 40 s was the sampling period. The detection probability inside the observation volume pDin = 0.98.
The δ-GLMB filter was capped to 10,000 components.

In order to show statistical significance, results were shown over 100 Monte Carlo trials for the same
object trajectories but different, independently generated, clutter and measurement noise realizations.
The first experiment showed the efficacy of the algorithm with one realization. The second and third
experiments showed with the mean value over 1000 Monte Carlo trials. Typically, the optimal sub-pattern
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assignment (OSPA) performance in the RFS area is shown with mean values. The OSPA distance is the
sum of two parts: location error and cardinality error. The cardinality error is shown with not just the
mean value, but also the standard deviation.

Performance evaluation of the multi-target algorithm is of great practical importance in the design
and comparison of tracking systems. The difference between the estimation and true trajectories
is very small compared with the motion range of space debris. Therefore, the OSPA metric was
used to evaluate the performance with Euclidean distance p = 2, and cutoff parameter c = 20 km for
the second experiment and c = 1 km for the third experiment. The OSPA is a mathematically and
intuitively consistent metric for multi-object filtering performance evaluation [63]. OSPA distance
has two components: localization and cardinality. The total OSPA distance is the sum of the two
components. The cut-off parameter c determines the penalty weighting for cardinality errors as
opposed to localization errors. The second experiment was mainly designed to show the estimation
performance for targets when they go outside the observation volume. As there were no measurements
available, the estimation error became larger and larger, and so did the OSPA value. Therefore,
c = 20 km was used in this experiment. The third experiment was mainly intended to show the
efficacy of the consensus algorithm when targets were all inside the combined observation volumes.
Since measurements were available all the time, the estimation error was smaller than in the second
experiment. So, the cut-off value c = 2 km was used in the third experiment.

The consensus algorithm stops at N steps. The information of N should be broadcasted to every
node beforehand and treated as prior information. In practice, N is chosen based on the size of the
network. This paper shows the estimation performance with 1-step consensus, 2-step consensus, and
3-step consensus.

7.1. Estimation of Objects Outside the Observation Volume

This section demonstrates that estimation can be provided for objects outside the observation
volume by setting the detection probability outside the observation volume to zero. Only node1 is used
in this section. A fixed number of objects are presented here for simplicity. All objects are inside the
observation volume initially, but as time goes on, some objects go outside. The field of view for node1 is

V1 = [30, 000 km 40, 000 km] × [−15◦ 0◦] × [−5◦ 5◦].

This yields a sensor volume of 150 deg2. Some objects go outside of the observation volume with
this setting.

The estimation from the Mδ-GLMB filter with uniform detection probability [13,18,48,54] is shown
in Figure 4a. The filtering with uniform detection probability cannot provide estimation for targets
when they are outside of the observation volumes. The estimation from Mδ-GLMB with detection
probability outside of the observation volume set to zero is shown in Figure 4b.

Since this section is intended to show the estimation of target positions, estimation results from
one simulation are shown here, instead of the mean values from all simulations. Note that all the
simulations had similar results. It can be seen from Figure 4b that even when the measurements for
objects outside the observation volume were not available, estimation could still be provided. In this
case, the estimation for objects outside was essentially the prediction. The figure also demonstrates
that the estimation became worse for objects outside the observation volume since there were no
measurements to update.
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(a) Mδ-GLMB estimation with
uniform detection probability. Two
objects go outside the observation
volume at around the 44th time
step and another two targets at
the 88th time step. Estimation is
only available for objects inside the
observation volume.
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Figure 4. Estimation with different detection probability settings.

7.2. Consensus among Nodes with Different Observation Volumes

This subsection demonstrates the effectiveness of information fusion with a consensus algorithm
for nodes with different observation volumes. It is complicated to fuse information from nodes with
no estimation for objects outside the observation volumes. The fusion algorithm must consider the
observation volume overlap, which makes the fusion more difficult when more nodes are involved.
With the estimation available for objects outside the observation volume, the fusion algorithm can be
performed in the same way as for nodes with the same observation volume.

Five nodes in the same position as node1 with complementary observation volumes are used in
this subsection. The observation volumes for nodes were, respectively,

V1 = [30, 000 km 40, 000 km] × [−15◦ 0◦] × [−5◦ 5◦],

V2 = [30, 000 km 40, 000 km] × [−15◦ 0◦] × [5◦ 15◦],

V3 = [30, 000 km 40, 000 km] × [−15◦ 0◦] × [15◦ 25◦],

V4 = [30, 000 km 40, 000 km] × [−15◦ 0◦] × [−15◦ − 5◦],

V5 = [30, 000 km 40, 000 km] × [−15◦ 0◦] × [−25◦ − 15◦].

This ensures that all objects were inside the combined observation volume of all sensors. The
OSPA performance of a single-node and 5-node consensus is shown in Figure 5. The cardinality
performance of a single-node and 5-node consensus is shown in Figure 6.
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Figure 5. Estimation from single-node and 5-node consensus. Objects are starting to go outside the
observation volume from the 60th time step and the performance for a single node becomes worse.
Five-node consensus with complementary observation volumes provides accurate estimation for
objects as long as they are in at least one node’s observation volume.
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Figure 6. Cardinality performance from single-node and 5-node consensus. Two targets die at the
140th time step. A single node cannot provide cardinality estimation for objects outside the observation
volume, while multiple nodes can be used to counteract the lack of observation volume of a single node.

It can be seen that the single-node Mδ-GLMB filter [48] could provide good estimation for objects
inside the observation volume. Since there was no update for objects outside the observation volume
and only prediction was available, the estimation became worse with time. Two objects disappeared at
the 140th time step, at which time they were outside the observation volume. A single node could not
provide accurate cardinality estimation for objects outside the observation volume. Since all objects
were in the combined observation volume of five nodes all the time, information fusion from five
nodes could provide better estimation than a single node for objects outside the observation volume.

Since there was no measurement outside the observation volume, the best we could do is use
the prediction model as the final estimation. The estimation performance was subject to the dynamic
model which was characterized by the transition density noise. As time progressed, the estimation
error became larger and larger without bound until new measurements were captured. The estimation
confidence can be illustrated by the covariance matrix.



Sensors 2018, 18, 3005 20 of 26

7.3. Consensus for Nodes with Similar Observation Volumes

This subsection is to show the performance of the consensus algorithm for nodes with similar
observation volumes. The angle range of all nodes was 50◦, which was large enough for all objects to
stay in the observation volume of all nodes all the time. The connection among the nodes is shown in
Figure 7. A network with only five nodes was used in this paper to show the efficacy of the proposed
method in distributed space debris tracking. A larger-scale network would involve more computation
and processing time.

N3 

N4 

N2 

N5 
N1 

Figure 7. Network topology. Note that this topology is used as an example to show the efficacy of the
consensus algorithm. The topology can be time-varying and unknown.

We only show the estimation from node3.
The numerical experimental results from a single sensor [48], 1-step consensus, 5-node consensus,

and centralized Mδ-GLMB filtering [48] are shown in Figure 8. Five-node consensus was the fusion
procedure for all the information from five nodes. It is shown that the performance of 1-step consensus
was better than single-node estimation. Since 5-node consensus uses information from all the nodes,
it had better performance than 1-step consensus. Centralized Mδ-GLMB filtering makes use of raw
measurements from all sensors, and had the best performance.
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Figure 8. Optimal sub-pattern assignment (OSPA) performance from single sensor, 1-step consensus,
5-node consensus, and centralized Mδ-GLMB filtering.

OSPA performance with different consensus steps is shown in Figure 9. It is shown in the figure
that the OSPA performance was better with more consensus steps. With the designed network topology,
the 3-step consensus had similar performance to the 5-node consensus. This is because it took 3 steps
at most to transfer information from all of the other nodes to node3. After 3 steps of consensus, every
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node in the network had similar information, which is the average of the information from all nodes.
There was no central node and the processing for each node was only carried among its neighbors,
which makes the fusion scalable with respect to the size of the network.
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Figure 9. OSPA performance with different consensus steps. More consensus steps
yielded better performance.

The mean and standard deviation of the estimated cardinality of single-node Mδ-GLMB, 1-step
consensus, 2-step consensus, 3-step consensus, 5-node consensus, and centralized Mδ-GLMB filtering
versus time are shown in Figures 10 and 11, respectively. All filters estimated the cardinality accurately.
The centralized Mδ-GLMB filtering had the best cardinality estimation performance. Consensus with
more steps showed better cardinality estimation.
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Figure 10. The mean of the estimated cardinality of single-node Mδ-GLMB, 1-step consensus, 2-step
consensus, 3-step consensus, 5-node consensus, and centralized Mδ-GLMB filtering versus time.
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Figure 11. The standard deviation of the estimated cardinality of single-node Mδ-GLMB, 1-step
consensus, 2-step consensus, 3-step consensus, 5-node consensus, and centralized Mδ-GLMB filtering
versus time.

We can see that there are peaks in the plots in Figures 8, 9 and 11. The peaks happen at the
time when there was a change in the number of objects. The change in the number of objects also
contributed to the peaks in the cardinality standard deviation estimation. Cardinality estimation had a
larger error than when the number of objects was not changing. The peaks in the total OSPA distance
are because of the peaks in the cardinality OSPA distance.

The network can also be time-varying because the processing is performed only among neighbors.
The time-varying topology is shown in Figure 12, and the performance of the consensus algorithm
is shown in Figure 13. Node3 and node4 were in the network from the start to the 60th time step.
Node3, node4, and node1 were in the network from the 61st time step to the 130th time step. All five
nodes were in the network the rest of the time. Carrying out consensus only among a node’s neighbors
makes it possible for the method to handle a network topology that is time-varying.
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Figure 12. The time-varying topology for different time steps.
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Figure 13. OSPA performance for time-varying topology.
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8. Concluding Remarks

This paper presented a consensus algorithm for space debris tracking with labeled RFS. The key
innovation lies in the fusion among sensors with different observation volumes, and most importantly,
the processing load for each node is scalable with respect to the size of the network. The system is
robust because of the avoidance of data incest. A salient feature is that the network topology can be
time-varying. The scalability makes the approach appealing for future space object tracking systems as
more nodes are connected to the network. Experiments confirm that the proposed algorithm has the
potential to be used in distributed space debris tracking systems.

In recent years, there is more need for finite-time average consensus algorithms. Future work
will focus on distributed space debris tracking systems with finite-time average consensus methods.
Strengths and shortcomings of different consensus algorithms will be presented for different tracking
scenarios in future work.
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